1
|
Morales-Ovalles Y, Miranda-Contreras L, Peña-Contreras Z, Dávila-Vera D, Balza-Quintero A, Sánchez-Gil B, Mendoza-Briceño RV. Developmental exposure to mancozeb induced neurochemical and morphological alterations in adult male mouse hypothalamus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:139-146. [PMID: 30391875 DOI: 10.1016/j.etap.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Mancozeb, a dithiocarbamate widely used in agriculture, is considered a developmental hazard in humans; however, more evidences are still needed concerning the consequences of chronic exposure to this pesticide. Mancozeb neurotoxicity in developing mouse hypothalamus was evaluated by subchronic exposure of male Mus musculus mice to low and high doses of mancozeb (30 and 90 mg/kg body weight, respectively) from late neonatal until adolescence. Variations in hypothalamic amino acid neurotransmitter levels and changes in histological as well as cytological characteristics were analyzed in young adult experimental mice and compared with control. A dose-dependent increase in excitation/ inhibition ratio was observed in mancozeb-exposed hypothalamus, indicating an overall state of excitoxicity. Histopathological and ultrastructural studies showed increased apoptosis, neuroinflammation and demyelination, demonstrating mancozeb-induced cytotoxicity in hypothalamic neurosecretory cells. In summary, both neurochemical and morphological data revealed mancozeb-induced alterations during development of hypothalamic circuitry that are critical for maturation of the neuroendocrine system.
Collapse
Affiliation(s)
- Yasmin Morales-Ovalles
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | | | - Zulma Peña-Contreras
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Delsy Dávila-Vera
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Alirio Balza-Quintero
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Beluardi Sánchez-Gil
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | | |
Collapse
|
2
|
Filice F, Lauber E, Vörckel KJ, Wöhr M, Schwaller B. 17-β estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms. Mol Autism 2018; 9:15. [PMID: 29507711 PMCID: PMC5833085 DOI: 10.1186/s13229-018-0199-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 01/10/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods Based on the hypothesis that PV expression might be increased by 17-β estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments.
Collapse
Affiliation(s)
- Federica Filice
- Anatomy Unit, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| | - Emanuel Lauber
- Anatomy Unit, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| | - Karl Jakob Vörckel
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Faculty of Psychology, Philipps-University of Marburg, Gutenbergstraße 18, 35032 Marburg, Germany
- Marburg Center for Mind, Brain, and Behavior (MCMBB), Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Beat Schwaller
- Anatomy Unit, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Salari AA, Bakhtiari A, Homberg JR. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice. Eur Neuropsychopharmacol 2015; 25:1260-74. [PMID: 25983020 DOI: 10.1016/j.euroneuro.2015.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 04/16/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders.
Collapse
Affiliation(s)
- Ali-Akbar Salari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Laboratory of Neuropsychopharmacology and Psychoneuroimmunology, Hayyan Research Institute, University of Tabriz, Tabriz, Iran.
| | - Amir Bakhtiari
- Department of Microbiology, Faculty of Sciences, Karaj Branch, Islamic Azad University, Alborz, Iran
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Zhao Y, Zhang Z, Liu X, Xiong C, Xiao Z, Yan J. Imbalance of excitation and inhibition at threshold level in the auditory cortex. Front Neural Circuits 2015; 9:11. [PMID: 25852485 PMCID: PMC4364151 DOI: 10.3389/fncir.2015.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/28/2015] [Indexed: 11/29/2022] Open
Abstract
The interplay of cortical excitation and inhibition is a fundamental feature of cortical information processing. Excitation and inhibition in single cortical neurons are balanced in their response to optimal sensory stimulation due to thalamocortical feedforward microcircuitry. It is unclear whether the balance between cortical excitation and inhibition is maintained at the threshold stimulus level. Using in vivo whole-cell patch-clamp recording of thalamocortical recipient neurons in the primary auditory cortex of mice, we examined the tone-evoked excitatory and inhibitory postsynaptic currents at threshold levels. Similar to previous reports, tone induced excitatory postsynaptic currents when the membrane potentials were held at 70 mV and inhibitory postsynaptic currents when the membrane potentials were held at 0 mV on single cortical neurons. This coupled excitation and inhibition is not demonstrated when threshold-level tone stimuli are presented. In most cases, tone induced only excitatory postsynaptic current. The best frequencies of excitatory and inhibitory responses were often different and thresholds of inhibitory responses were mostly higher than those of excitatory responses. Our data suggest that the excitatory and inhibitory inputs to single cortical neurons are imbalanced at the threshold level. This imbalance may result from the inherent dynamics of thalamocortical feedforward microcircuitry.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Physiology, School of Basic Medical Science, Southern Medical University Guangzhou, China ; Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Xiuping Liu
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Colin Xiong
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Science, Southern Medical University Guangzhou, China
| | - Jun Yan
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
5
|
Adult cortical plasticity following injury: Recapitulation of critical period mechanisms? Neuroscience 2014; 283:4-16. [PMID: 24791715 DOI: 10.1016/j.neuroscience.2014.04.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
A primary goal of research on developmental critical periods (CPs) is the recapitulation of a juvenile-like state of malleability in the adult brain that might enable recovery from injury. These ambitions are often framed in terms of the simple reinstatement of enhanced plasticity in the growth-restricted milieu of an injured adult brain. Here, we provide an analysis of the similarities and differences between deprivation-induced and injury-induced cortical plasticity, to provide for a nuanced comparison of these remarkably similar processes. As a first step, we review the factors that drive ocular dominance plasticity in the primary visual cortex of the uninjured brain during the CP and in adults, to highlight processes that might confer adaptive advantage. In addition, we directly compare deprivation-induced cortical plasticity during the CP and plasticity following acute injury or ischemia in mature brain. We find that these two processes display a biphasic response profile following deprivation or injury: an initial decrease in GABAergic inhibition and synapse loss transitions into a period of neurite expansion and synaptic gain. This biphasic response profile emphasizes the transition from a period of cortical healing to one of reconnection and recovery of function. Yet while injury-induced plasticity in adult shares several salient characteristics with deprivation-induced plasticity during the CP, the degree to which the adult injured brain is able to functionally rewire, and the time required to do so, present major limitations for recovery. Attempts to recapitulate a measure of CP plasticity in an adult injury context will need to carefully dissect the circuit alterations and plasticity mechanisms involved while measuring functional behavioral output to assess their ultimate success.
Collapse
|
6
|
Liu X, Wang C, Pan C, Yan J. Physiological Correspondence Dictates Cortical Long-Term Potentiation and Depression by Thalamic Induction. Cereb Cortex 2013; 25:545-53. [DOI: 10.1093/cercor/bht259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study. PLoS One 2012; 7:e34837. [PMID: 22514672 PMCID: PMC3325946 DOI: 10.1371/journal.pone.0034837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/06/2012] [Indexed: 11/28/2022] Open
Abstract
Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.
Collapse
|
8
|
Froemke RC, Jones BJ. Development of auditory cortical synaptic receptive fields. Neurosci Biobehav Rev 2011; 35:2105-13. [PMID: 21329722 PMCID: PMC3133871 DOI: 10.1016/j.neubiorev.2011.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 12/25/2022]
Abstract
The central nervous system is plastic throughout life, but is most sensitive to the statistics of the sensory environment during critical periods of early postnatal development. In the auditory cortex, various forms of acoustic experience have been found to shape the formation of receptive fields and influence the overall rate of cortical organization. The synaptic mechanisms that control cortical receptive field plasticity are beginning to be described, particularly for frequency tuning in rodent primary auditory cortex. Inhibitory circuitry plays a major role in critical period regulation, and new evidence suggests that the formation of excitatory-inhibitory balance determines the duration of critical period plasticity for auditory cortical frequency tuning. Cortical inhibition is poorly tuned in the infant brain, but becomes co-tuned with excitation in an experience-dependent manner over the first postnatal month. We discuss evidence suggesting that this may be a general feature of the developing cortex, and describe the functional implications of such transient excitatory-inhibitory imbalance.
Collapse
Affiliation(s)
- Robert C Froemke
- Molecular Neurobiology Program, the Helen and Martin Kimmel Center for Biology and Medicine/Skirball Institute for Biomolecular Medicine, Departments of Otolaryngology, Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|