1
|
Younger DS. Pediatric early-onset neuropsychiatric obsessive compulsive disorders. J Psychiatr Res 2025; 186:84-97. [PMID: 40222306 DOI: 10.1016/j.jpsychires.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
At the time of this writing, most pediatricians or child psychiatrists will probably have treated a child with early acute-onset obsessive compulsive disorder (OCD) behaviors due to the pediatric autoimmune neuropsychiatric disorder associated with Group A beta-hemolytic streptococcus, abbreviated PANDAS, described more than two decades ago; or Tourette syndrome, incorporating motor and vocal tics, described more than a century ago. One typically self-limited post-infectious OCD resulting from exposure to other putative microbial disease triggers defines PANS, abbreviating pediatric autoimmune neuropsychiatric syndrome. Tourette syndrome, PANDAS and PANS share overlapping neuroimaging features of hypometabolism of the medial temporal lobe and hippocampus on brain 18Fluorodeoxyglucose positron emission tomography fused to magnetic resonance imaging (PET/MRI) consistent with involvement of common central nervous system (CNS) pathways for the shared clinical expression of OCD. The field of pediatric neuropsychiatric disorders manifesting OCD behaviors is at a crossroads commensurate with recent advances in the neurobiology of the medial temporal area, with its wide-ranging connectivity and cortical cross-talk, and CNS immune responsiveness through resident microglia. This review advances the field of pediatric neuropsychiatric disorders and in particular PANS, by providing insights through clinical vignettes and descriptive clinical and neuroimaging correlations from the author's file. Neuroscience collaborations with child psychiatry and infectious disease practitioners are needed to design clinical trials with the necessary rigor to provide meaningful insights into the rational clinical management of PANS with the aim of developing evidence-based guidelines for the clinical management of early, abrupt-onset childhood OCD to avert potentially life-long neuropsychological struggles.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, And the Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, USA.
| |
Collapse
|
2
|
Wang Y, Fasching L, Wu F, Suvakov M, Huttner A, Berretta S, Roberts R, Leckman JF, Fernandez TV, Abyzov A, Vaccarino FM. Interneuron Loss and Microglia Activation by Transcriptome Analyses in the Basal Ganglia of Tourette Disorder. Biol Psychiatry 2025:S0006-3223(25)00064-2. [PMID: 39892689 DOI: 10.1016/j.biopsych.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Tourette disorder (TS) is characterized by motor hyperactivity and tics that are believed to originate in the basal ganglia. Postmortem immunocytochemical analyses has revealed decreases in cholinergic (CH), as well as parvalbumin and somatostatin GABA (gamma-aminobutyric acid) interneurons (INs) within the caudate/putamen of individuals with TS. METHODS We obtained transcriptome and open chromatin datasets by single-nucleus RNA sequencing and single-nucleus ATAC sequencing, respectively, from caudate/putamen postmortem specimens of 6 adults with TS and 6 matched normal control subjects. Differential gene expression and differential chromatin accessibility analyses were performed in identified cell types. RESULTS The data reproduced the known cellular composition of the human striatum, including a majority of medium spiny neurons (MSNs) and small populations of GABA-INs and CH-INs. INs were decreased by ∼50% in TS brains, with no difference in other cell types. Differential gene expression analysis suggested that mitochondrial oxidative metabolism in MSNs and synaptic adhesion and function in INs were both decreased in subjects with TS, while there was activation of immune response in microglia. Gene expression changes correlated with changes in activity of cis-regulatory elements, suggesting a relationship of transcriptomic and regulatory abnormalities in MSNs, oligodendrocytes, and astrocytes of TS brains. CONCLUSIONS This initial analysis of the TS basal ganglia transcriptome at the single-cell level confirms the loss and synaptic dysfunction of basal ganglia INs, consistent with in vivo basal ganglia hyperactivity. In parallel, oxidative metabolism was decreased in MSNs and correlated with activation of microglia cells, which is attributable at least in part to dysregulated activity of putative enhancers, implicating altered epigenomic regulation in TS.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, Connecticut
| | - Feinan Wu
- Child Study Center, Yale University, New Haven, Connecticut
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sabina Berretta
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Rosalinda Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale University, New Haven, Connecticut; Yale Kavli Institute for Neuroscience, New Haven, Connecticut.
| |
Collapse
|
3
|
Yang Y, Zhou J, Yang H, Wang A, Tian Y, Luo R. Structural and functional alterations in the brain gray matter among Tourette syndrome patients: a multimodal meta-analysis of fMRI and VBM studies. J Neurol 2025; 272:133. [PMID: 39812838 PMCID: PMC11735548 DOI: 10.1007/s00415-024-12852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Tourette syndrome (TS) is a prevalent neurodevelopmental disorder with an uncertain etiology. Numerous neuroimaging studies have investigated patients with TS, but their conclusions remain inconsistent. The current study attempted to provide an unbiased statistical meta-analysis of published neuroimaging studies of TS. METHODS A comprehensive literature search was conducted to identify voxel-based whole-brain morphology (VBM) and functional magnetic resonance imaging (fMRI) studies related to TS. Two separate meta-analyses of neurofunctional activation and gray matter volume (GMV) were performed using a seed-point-based d-mapping software package, followed by joint and subgroup analyses. RESULTS 11 VBM studies and 18 fMRI studies were included in this study. We found that grey matter volumes were significantly decreased in the right anterior cingulate/paracingulate gyri and the left postcentral gyrus; while the cerebellum, bilateral cortico-spinal projections, and striatum showed increased GMV in patients with TS. In fMRI studies, patients with TS showed overactivation in the right superior frontal gyrus and right superior temporal gyrus, and significant hypoactivation in left SMA. In the multimodal studies, TS patients showed that there was an overlap between decreased GMV and hypoactivation in the right median cingulate/paracingulate gyri. CONCLUSION Abnormal alterations in the structure and function of the brain regions may play a role in the pathogenesis of TS in patients, and may be used as an imaging indicator for patients with TS to be diagnosed.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Jielan Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Hua Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Anqi Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yu Tian
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Lei T, Yang K, Jun J, Hu S, Yang Q, Hong X, Cui Y. Relationship Between Anxiety Symptoms and Age-Related Differences in Tic Severity. Neuropsychiatr Dis Treat 2025; 21:25-36. [PMID: 39802543 PMCID: PMC11721545 DOI: 10.2147/ndt.s499083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Tic disorders are neurodevelopmental disorders characterized by movements or vocalizations, often accompanied by anxiety symptoms. However, the relationships between tic severity, age, and anxiety symptoms remain unclear. Here, we investigated the association between tic severity and age and examined how anxiety symptoms might influence this relationship. Patients and Methods Paediatric patients with tic disorders were recruited from the outpatient clinic of the in Department of Psychiatry at Beijing Children's Hospital, Capital Medical University. The final sample included 372 subjects (77 females, 295 males; mean age = 10.50 ± 2.70 years; age range: 6.33-15.92 years). Tic severity was assessed using the Yale Global Tic Severity Scale (YGTSS), while anxiety symptoms were measured using the Screen for Child Anxiety Related Emotional Disorders (SCARED). Results We found a significant positive correlation between both total and subscale anxiety scores and tic severity. Furthermore, anxiety symptoms, particularly separation anxiety, were found to be significantly correlated with age-related differences in tic severity. In the high anxiety group, tic severity increased significantly with age, mirroring the overall trend. Conversely, in the low anxiety group, tic severity remained relatively stable with age. Conclusion Our findings highlight the role of anxiety in the progression of tic disorders and emphasize the importance of addressing anxiety in the clinical management of children with tic disorders.
Collapse
Affiliation(s)
- Tianyuan Lei
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Kai Yang
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - JinHyun Jun
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shujin Hu
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Qinghao Yang
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Xu Hong
- Cloud Services Innovation Laboratory, Institute of Intelligent Science and Technology, China Electronics Technology Group Corporation, Beijing, People’s Republic of China
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Parvizi-Wayne D, Severs L. When the interoceptive and conceptual clash: The case of oppositional phenomenal self-modelling in Tourette syndrome. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:660-680. [PMID: 38777988 PMCID: PMC11233343 DOI: 10.3758/s13415-024-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Tourette syndrome (TS) has been associated with a rich set of symptoms that are said to be uncomfortable, unwilled, and effortful to manage. Furthermore, tics, the canonical characteristic of TS, are multifaceted, and their onset and maintenance is complex. A formal account that integrates these features of TS symptomatology within a plausible theoretical framework is currently absent from the field. In this paper, we assess the explanatory power of hierarchical generative modelling in accounting for TS symptomatology from the perspective of active inference. We propose a fourfold analysis of sensory, motor, and cognitive phenomena associated with TS. In Section 1, we characterise tics as a form of action aimed at sensory attenuation. In Section 2, we introduce the notion of epistemic ticcing and describe such behaviour as the search for evidence that there is an agent (i.e., self) at the heart of the generative hierarchy. In Section 3, we characterise both epistemic (sensation-free) and nonepistemic (sensational) tics as habitual behaviour. Finally, in Section 4, we propose that ticcing behaviour involves an inevitable conflict between distinguishable aspects of selfhood; namely, between the minimal phenomenal sense of self-which is putatively underwritten by interoceptive inference-and the explicit preferences that constitute the individual's conceptual sense of self. In sum, we aim to provide an empirically informed analysis of TS symptomatology under active inference, revealing a continuity between covert and overt features of the condition.
Collapse
Affiliation(s)
- D Parvizi-Wayne
- Department of Psychology, Royal Holloway University of London, London, UK.
| | - L Severs
- Centre for the Philosophy of Science, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Ruhr-Universität Bochum, Institute of Philosophy II, Bochum, Germany
| |
Collapse
|
6
|
Marshall RD, Menniti FS, Tepper MA. A Novel PDE10A Inhibitor for Tourette Syndrome and Other Movement Disorders. Cells 2024; 13:1230. [PMID: 39056811 PMCID: PMC11274801 DOI: 10.3390/cells13141230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Tourette syndrome is a neurodevelopmental movement disorder involving basal ganglia dysfunction. PDE10A inhibitors modulate signaling in the striatal basal ganglia nuclei and are thus of interest as potential therapeutics in treating Tourette syndrome and other movement disorders. METHODS The preclinical pharmacology and toxicology, human safety and tolerability, and human PET striatal enzyme occupancy data for the PDE10A inhibitor EM-221 are presented. RESULTS EM-221 inhibited PDE10A with an in vitro IC50 of 9 pM and was >100,000 selective vs. other PDEs and other CNS receptors and enzymes. In rats, at doses of 0.05-0.50 mg/kg, EM-221 reduced hyperlocomotion and the disruption of prepulse inhibition induced by MK-801, attenuated conditioned avoidance, and facilitated novel object recognition, consistent with PDE10A's inhibition. EM-221 displayed no genotoxicity and was well tolerated up to 300 mg/kg in rats and 100 mg/kg in dogs. In single- and multiple-day ascending dose studies in healthy human volunteers, EM-221 was well tolerated up to 10 mg, with a maximum tolerated dose of 15 mg. PET imaging indicated that a PDE10A enzyme occupancy of up to 92.8% was achieved with a ~24 h half-life. CONCLUSIONS The preclinical and clinical data presented here support the study of EM-221 in phase 2 trials of Tourette syndrome and other movement disorders.
Collapse
Affiliation(s)
| | - Frank S. Menniti
- MindImmune Therapeutics, Inc., Kingston, RI 02881, USA;
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Mark A. Tepper
- EuMentis Therapeutics Inc., 275 Grove Street, 2-400, Newton, MA 02466, USA;
| |
Collapse
|
7
|
Orth L, Meeh J, Leiding D, Habel U, Neuner I, Sarkheil P. Aberrant Functional Connectivity of the Salience Network in Adult Patients with Tic Disorders: A Resting-State fMRI Study. eNeuro 2024; 11:ENEURO.0223-23.2024. [PMID: 38744491 PMCID: PMC11167695 DOI: 10.1523/eneuro.0223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 05/16/2024] Open
Abstract
Tic disorders (TD) are characterized by the presence of motor and/or vocal tics. Common neurophysiological frameworks suggest dysregulations of the cortico-striatal-thalamo-cortical (CSTC) brain circuit that controls movement execution. Besides common tics, there are other "non-tic" symptoms that are primarily related to sensory perception, sensorimotor integration, attention, and social cognition. The existence of these symptoms, the sensory tic triggers, and the modifying effect of attention and cognitive control mechanisms on tics may indicate the salience network's (SN) involvement in the neurophysiology of TD. Resting-state functional MRI measurements were performed in 26 participants with TD and 25 healthy controls (HC). The group differences in resting-state functional connectivity patterns were measured based on seed-to-voxel connectivity analyses. Compared to HC, patients with TD exhibited altered connectivity between the core regions of the SN (insula, anterior cingulate cortex, and temporoparietal junction) and sensory, associative, and motor-related cortices. Furthermore, connectivity changes were observed in relation to the severity of tics in the TD group. The SN, particularly the insula, is likely to be an important site of dysregulation in TD. Our results provide evidence for large-scale neural deviations in TD beyond the CSTC pathologies. These findings may be relevant for developing treatment targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| | - Delia Leiding
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Zapparoli L, Devoto F, Mariano M, Seghezzi S, Servello D, Porta M, Paulesu E. Mapping Gilles de la Tourette syndrome through the distress and relief associated with tic-related behaviors: an fMRI study. Transl Psychiatry 2024; 14:7. [PMID: 38191475 PMCID: PMC10774308 DOI: 10.1038/s41398-023-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Personal distress associated with tic urges or inhibition and relief associated with tic production are defining features of the personal experience in Gilles de la Tourette syndrome (GTS). These affective phenomena have not been studied using fMRI, hindering our understanding of GTS pathophysiology and possible treatments. Here, we present a novel cross-sectional fMRI study designed to map tic-related phenomenology using distress and relief as predicting variables. We adopted a mental imagery approach and dissected the brain activity associated with different phases of tic behaviors, premonitory urges, and the ensuing tic execution or inhibition: these were compared with the mental simulation of "relaxed situations" and pre-determined stereotyped motor behaviors. We then explored whether the ensuing brain patterns correlated with the distress or relief perceived for the different phases of the tasks. Patients experienced a higher level of distress during the imagery of tic-triggering scenarios and no relief during tic inhibition. On the other hand, patients experienced significant relief during tic imagery. Distress during tic-triggering scenarios and relief during tic imagery were significantly correlated. The distress perceived during urges correlated with increased activation in cortical sensorimotor areas, suggesting a motor alarm. Conversely, relief during tic execution was positively associated with the activity of a subcortical network. The activity of the putamen was associated with both distress during urges and relief during tic execution. These findings highlight the importance of assessing the affective component of tic-related phenomenology. Subcortical structures may be causally involved in the affective component of tic pathophysiology, with the putamen playing a central role in both tic urge and generation. We believe that our results can be readily translated into clinical practice for the development of personalized treatment plans tailored to each patient's unique needs.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
- fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| | - Francantonio Devoto
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marika Mariano
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Silvia Seghezzi
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | | - Mauro Porta
- Tourette Center, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
- fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| |
Collapse
|
9
|
Gur N, Zimmerman-Brenner S, Fattal-Valevski A, Rotstein M, Pilowsky Peleg T. Group comprehensive behavioral intervention for tics contribution to broader cognitive and emotion regulation in children. Eur Child Adolesc Psychiatry 2023; 32:1925-1933. [PMID: 35695947 DOI: 10.1007/s00787-022-02018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
There is increasing evidence for the effectiveness of behavioral techniques in managing tics in youth with Tourette syndrome and tics disorders (TDs). One such intervention is Comprehensive Behavioral Intervention for Tics (CBIT), which focuses on reducing tic severity by training control and regulation. In view of the regulation deficits characteristic to TDs, in the current study, we aimed to explore the contribution of CBIT beyond tic control, to a wider expression of regulation abilities-cognitive inhibition and emotion regulation. A total of 55 participants with TDs, aged 8-15, who were randomly assigned to group-CBIT or group-Educational Intervention for Tics, were compared on cognitive inhibition tests and use of emotion-regulation strategies, pre- and post-intervention. Whereas on none of the scales a significant interaction effect was found reflecting superiority of CBIT over EIT, repeated measures ANOVA revealed a significant time effect, with post hoc analyses indicating that cognitive inhibition and cognitive reappraisal significantly increased following CBIT intervention only. Within the group-CBIT, the increase in cognitive reappraisal was associated with higher intellectual ability. These findings may lead to a broader understanding of CBIT contribution to more than tic control, but rather to better cognitive and emotional regulation abilities.
Collapse
Affiliation(s)
- Noa Gur
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, 9190501, Jerusalem, Israel.
- The Neuropsychological Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Sharon Zimmerman-Brenner
- The Tourette Syndrome Association in Israel (TSAI), Tel Aviv-Yafo, Israel
- School of Psychology, Reichman University IDC, Herzliya, Israel
| | - Aviva Fattal-Valevski
- The Pediatric Neurology Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michael Rotstein
- The Pediatric Neurology Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Pediatric Movement Disorders Clinic, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tammy Pilowsky Peleg
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, 9190501, Jerusalem, Israel
- The Neuropsychological Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
10
|
Rae CL, Raykov P, Ambridge EM, Colling LJ, Gould van Praag CD, Bouyagoub S, Polanski L, Larsson DEO, Critchley HD. Elevated representational similarity of voluntary action and inhibition in Tourette syndrome. Brain Commun 2023; 5:fcad224. [PMID: 37705680 PMCID: PMC10497185 DOI: 10.1093/braincomms/fcad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Many people with Tourette syndrome are able to volitionally suppress tics, under certain circumstances. To understand better the neural mechanisms that underlie this ability, we used functional magnetic resonance neuroimaging to track regional brain activity during performance of an intentional inhibition task. On some trials, Tourette syndrome and comparison participants internally chose to make or withhold a motor action (a button press), while on other trials, they followed 'Go' and 'NoGo' instructions to make or withhold the same action. Using representational similarity analysis, a functional magnetic resonance neuroimaging multivariate pattern analysis technique, we assessed how Tourette syndrome and comparison participants differed in neural activity when choosing to make or to withhold an action, relative to externally cued responses on Go and NoGo trials. Analyses were pre-registered, and the data and code are publicly available. We considered similarity of action representations within regions implicated as critical to motor action release or inhibition and to symptom expression in Tourette syndrome, namely the pre-supplementary motor area, inferior frontal gyrus, insula, caudate nucleus and primary motor cortex. Strikingly, in the Tourette syndrome compared to the comparison group, neural activity within the pre-supplementary motor area displayed greater representational similarity across all action types. Within the pre-supplementary motor area, there was lower response-specific differentiation of activity relating to action and inhibition plans and to internally chosen and externally cued actions, implicating the region as a functional nexus in the symptomatology of Tourette syndrome. Correspondingly, patients with Tourette syndrome may experience volitional tic suppression as an effortful and tiring process because, at the top of the putative motor decision hierarchy, activity within the population of neurons facilitating action is overly similar to activity within the population of neurons promoting inhibition. However, not all pre-supplementary motor area group differences survived correction for multiple comparisons. Group differences in representational similarity were also present in the primary motor cortex. Here, representations of internally chosen and externally cued inhibition were more differentiated in the Tourette syndrome group than in the comparison group, potentially a consequence of a weaker voluntary capacity earlier in the motor hierarchy to suppress actions proactively. Tic severity and premonitory sensations correlated with primary motor cortex and caudate nucleus representational similarity, but these effects did not survive correction for multiple comparisons. In summary, more rigid pre-supplementary motor area neural coding across action categories may constitute a central feature of Tourette syndrome, which can account for patients' experience of 'unvoluntary' tics and effortful tic suppression.
Collapse
Affiliation(s)
- Charlotte L Rae
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - Petar Raykov
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | | | | | | | - Samira Bouyagoub
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
| | - Liliana Polanski
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Dennis E O Larsson
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
- Sussex Partnership NHS Foundation Trust, Worthing BN3 7HZ, UK
| |
Collapse
|
11
|
Rothe J, Buse J, Uhlmann A, Bodmer B, Kirschbaum C, Hoekstra PJ, Dietrich A, Roessner V. Hair Cortisol and Perceived Stress-Predictors for the Onset of Tics? A European Longitudinal Study on High-Risk Children. Biomedicines 2023; 11:1561. [PMID: 37371656 DOI: 10.3390/biomedicines11061561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Some retrospective studies suggest that psychosocial stressors trigger the onset of tics. This study examined prospective hypothalamic-pituitary-adrenal (HPA) axis activity and perceived stress prior to tic onset. In the present study, 259 children at high risk for developing tics were assessed for hair cortisol concentration (HCC) and parent-on-child-reported perceived stress four-monthly over a three-year period. We used (i) generalised additive modelling (GAM) to investigate the time effects on HCC (hair samples n = 765) and perceived stress (questionnaires n = 1019) prior to tic onset and (ii) binary logistic regression to predict tic onset in a smaller subsample with at least three consecutive assessments (six to nine months before, two to five months before, and at tic onset). GAM results indicated a non-linear increasing course of HCC in children who developed tics, and a steady HCC course in those without tics, as well as a linear-increasing course of perceived stress in both groups. Logistic regression showed that with a higher HCC in hair samples collected in a range of two to five months before tic onset (which refers to cortisol exposure in a range of four to eight months), the relative likelihood of tic onset rose. Our study suggests increased stress prior to tic onset, as evidenced by higher HCC several months before tic onset.
Collapse
Affiliation(s)
- Josefine Rothe
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany
| | - Judith Buse
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany
| | - Benjamin Bodmer
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany
| | - Clemens Kirschbaum
- Department of Psychology, Institute of Biopsychology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Accare Child Study Center, 9723 HE Gronigen, The Netherlands
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Accare Child Study Center, 9723 HE Gronigen, The Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
12
|
Woods DW, Himle MB, Stiede JT, Pitts BX. Behavioral Interventions for Children and Adults with Tic Disorder. Annu Rev Clin Psychol 2023; 19:233-260. [PMID: 37159286 DOI: 10.1146/annurev-clinpsy-080921-074307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Over the past decade, behavioral interventions have become increasingly recognized and recommended as effective first-line therapies for treating individuals with tic disorders. In this article, we describe a basic theoretical and conceptual framework through which the reader can understand the application of these interventions for treating tics. The three primary behavioral interventions for tics with the strongest empirical support (habit reversal, Comprehensive Behavioral Intervention for Tics, and exposure and response prevention) are described. Research on the efficacy and effectiveness of these treatments is summarized along with a discussion of the research evaluating the delivery of these treatments in different formats and modalities. The article closes with a review of the possible mechanisms of change underlying behavioral interventions for tics and areas for future research.
Collapse
Affiliation(s)
- Douglas W Woods
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA;
| | - Michael B Himle
- Department of Psychology, University of Utah, Salt Lake City, Utah, USA
| | - Jordan T Stiede
- Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Brandon X Pitts
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA;
| |
Collapse
|
13
|
Zito GA, Hartmann A, Béranger B, Weber S, Aybek S, Faouzi J, Roze E, Vidailhet M, Worbe Y. Multivariate classification provides a neural signature of Tourette disorder. Psychol Med 2023; 53:2361-2369. [PMID: 35135638 DOI: 10.1017/s0033291721004232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tourette disorder (TD), hallmarks of which are motor and vocal tics, has been related to functional abnormalities in large-scale brain networks. Using a fully data driven approach in a prospective, case-control study, we tested the hypothesis that functional connectivity of these networks carries a neural signature of TD. Our aim was to investigate (i) the brain networks that distinguish adult patients with TD from controls, and (ii) the effects of antipsychotic medication on these networks. METHODS Using a multivariate analysis based on support vector machine (SVM), we developed a predictive model of resting state functional connectivity in 48 patients and 51 controls, and identified brain networks that were most affected by disease and pharmacological treatments. We also performed standard univariate analyses to identify differences in specific connections across groups. RESULTS SVM was able to identify TD with 67% accuracy (p = 0.004), based on the connectivity in widespread networks involving the striatum, fronto-parietal cortical areas and the cerebellum. Medicated and unmedicated patients were discriminated with 69% accuracy (p = 0.019), based on the connectivity among striatum, insular and cerebellar networks. Univariate approaches revealed differences in functional connectivity within the striatum in patients v. controls, and between the caudate and insular cortex in medicated v. unmedicated TD. CONCLUSIONS SVM was able to identify a neuronal network that distinguishes patients with TD from control, as well as medicated and unmedicated patients with TD, holding a promise to identify imaging-based biomarkers of TD for clinical use and evaluation of the effects of treatment.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- Support Centre for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Andreas Hartmann
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Benoît Béranger
- Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMR, 7225, Paris, France
| | - Samantha Weber
- Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Selma Aybek
- Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Johann Faouzi
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Inria Paris, Aramis project-team, Paris, France
| | - Emmanuel Roze
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
| | - Marie Vidailhet
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
| | - Yulia Worbe
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
14
|
Ricketts EJ, Swisher V, Greene DJ, Silverman D, Nofzinger EA, Colwell CS. Sleep Disturbance in Tourette's Disorder: Potential Underlying Mechanisms. CURRENT SLEEP MEDICINE REPORTS 2023; 9:10-22. [PMID: 37636897 PMCID: PMC10457082 DOI: 10.1007/s40675-022-00242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/24/2023]
Abstract
Purpose of review Sleep disturbance is common in TD. However, our understanding of the pathophysiological mechanisms involved is preliminary. This review summarizes findings from neuroimaging, genetic, and animal studies to elucidate potential underlying mechanisms of sleep disruption in TD. Recent findings Preliminary neuroimaging research indicates increased activity in the premotor cortex, and decreased activity in the prefrontal cortex is associated with NREM sleep in TD. Striatal dopamine exhibits a circadian rhythm; and is influenced by the suprachiasmatic nucleus via multiple molecular mechanisms. Conversely, dopamine receptors regulate circadian function and striatal expression of circadian genes. The association of TD with restless legs syndrome and periodic limb movements indicates shared pathophysiology, including iron deficiency, and variants in the BTDB9 gene. A mutations in the L-Histidine Decarboxylase gene in TD, suggests the involvement of the histaminergic system, implicated in arousal, in TD. Summary These biological markers have implications for application of novel, targeted interventions, including noninvasive neuromodulation, iron supplementation, histamine receptor antagonists, and circadian-based therapies for tic symptoms and/or sleep and circadian rhythms in TD.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Valerie Swisher
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego
| | - Daniel Silverman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles
| | - Eric A Nofzinger
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
15
|
Younger DS. Pediatric neuropsychiatric disorders with motor and nonmotor phenomena. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:367-387. [PMID: 37620079 DOI: 10.1016/b978-0-323-98817-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The concept of pediatric autoimmune neuropsychiatric disorders associated with group A beta-hemolytic streptococcus (PANDAS) has become seminal since first introduced more than two decades ago. At the time of this writing, most neurologists, pediatricians, psychiatrists, and general pediatricians will probably have heard of this association or treated an affected child with PANDAS. The concept of an acute-onset, and typically self-limited, postinfectious autoimmune neuropsychiatric disorder resembling PANDAS manifesting vocal and motor tics and obsessive-compulsive disorder has broadened to other putative microbes and related endogenous and exogenous disease triggers. These disorders with common features of hypometabolism in the medial temporal lobe and hippocampus in brain 18fluorodeoxyglucose positron emission tomography fused to magnetic resonance imaging (FDG PET-MRI), form a spectrum: with the neuropsychiatric disorder Tourette syndrome and PANDAS with its well-defined etiopathogenesis at one end, and pediatric abrupt-onset neuropsychiatric syndrome (PANS), alone or associated with specific bacterial and viral pathogens, at the other end. The designation of PANS in the absence of a specific trigger, as an exclusionary diagnosis, reflects the current problem in nosology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
16
|
Beste C. Overcoming the phenomenological Perpetuum mobile in clinical cognitive neuroscience for the benefit of replicability in research and the societal view on mental disorders. Front Hum Neurosci 2022; 16:1054714. [DOI: 10.3389/fnhum.2022.1054714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cognitive neuroscience comes in many facets, and a particularly large branch of research is conducted in individuals with mental health problems. This article outlines why it is important that cognitive neuroscientists re-shape their role in mental health research and re-define directions of research for the next decades. At present, cognitive neuroscience research in mental health is too firmly rooted in categorial diagnostic definitions of mental health conditions. It is discussed why this hampers a mechanistic understanding of brain functions underlying mental health problems and why this is a problem for replicability in research. A possible solution to these problems is presented. This solution affects the strategy of research questions to be asked, how current trends to increase replicability in research can or cannot be applied in the mental health field and how data are analyzed. Of note, these aspects are not only relevant for the scientific process, but affect the societal view on mental disorders and the position of affected individuals as members of society, as well as the debate on the inclusion of so-called WEIRD and non-WEIRD people in studies. Accordingly, societal and science political aspects of re-defining the role of cognitive neuroscientists in mental health research are elaborated that will be important to shape cognitive neuroscience in mental health for the next decades.
Collapse
|
17
|
Fecal transplantation can alleviate tic severity in a Tourette syndrome mouse model by modulating intestinal flora and promoting serotonin secretion. Chin Med J (Engl) 2022; 135:707-713. [PMID: 35288507 PMCID: PMC9276343 DOI: 10.1097/cm9.0000000000001885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background : Tourette syndrome (TS) is a neuropsychiatric disorder with onset in childhood that warrants effective therapies. Gut microbiota can affect central physiology and function via the microbiota–gut-brain axis. Therefore, the gut microbiota plays an important role in some mental illnesses. A small clinical trial showed that fecal microbiota transplantation (FMT) may alleviate TS symptoms in children. Herein, FMT effects and mechanisms were explored in a TS mouse model. Methods : TS mice model (TSMO) (n = 80) were established with 3,3′-iminodipropionitrile, and 80 mice were used as controls. Mice were grouped into eight groups and were subjected to FMT with feces from children or mice with or without TS, or were given probiotics. Fecal specimens were collected 3 weeks after FMT. 16S rRNA sequencing, behavioral observation, and serum serotonin (5-HT) assay were performed. Differences between groups were analyzed using Mann-Whitney U test and Kolmogorov-Smirnov (KS) tests. Results : A total of 18 discriminative microbial signatures (linear discriminant analysis score > 3) that varied significantly between TS and healthy mice (CONH) were identified. A significant increase in Turicibacteraceae and Ruminococcaceae in TSMO after FMT was observed (P < 0.05). Compared with non-transplanted TSMO, the symptoms of those transplanted with feces from CONH were alleviated (W = 336, P = 0.046). In the probiotic and FMT experiments, the serum 5-HT levels significantly increased in TSMO that received probiotics (KS = 1.423, P = 0.035) and in those transplanted with feces from CONH (W = 336.5, P = 0.046) compared with TSMO without transplantation. Conclusions : This study suggests that FMT may ameliorate TS by promoting 5-HT secretion, and it provides new insights into the underlying mechanisms of FMT as a treatment for TS.
Collapse
|
18
|
Virameteekul S, Bhidayasiri R. We Move or Are We Moved? Unpicking the Origins of Voluntary Movements to Better Understand Semivoluntary Movements. Front Neurol 2022; 13:834217. [PMID: 35265031 PMCID: PMC8899122 DOI: 10.3389/fneur.2022.834217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
The capacity for voluntary control is seen as essential to human movements; the sense that one intended to move (willing) and those actions were self-generated (self-agency) gives the sense of voluntariness and of being in control. While the mechanisms underlying voluntary movement have long been unclear, recent neuroscientific tools have identified networks of different brain areas, namely, the prefrontal cortex, supplementary motor area, and parietal cortex, that underlie voluntary action. Dysfunction in these brain areas can result in different forms of semivoluntary movement as the borderland of voluntary and involuntary movement where a person may experience a disordered sense of will or agency, and thus the movement is experienced as unexpected and involuntary, for an otherwise voluntary-appearing movement. Tics, functional movement disorders, stereotypies, perseveration, compulsions, utilization behaviors, and motor mannerism have been described elsewhere in the context of psychoses, and are often mistaken for each other. Yet, they reflect an impairment of prefrontal cortices and related circuits rather than simple motor systems, which results in the absence of subjective recognition of the movements, in contrast to other neurological movement disorders where principal abnormalities are located within the basal ganglia and its connections. Therefore, their recognition is clinically important since they are usually associated with neurodevelopmental and neurodegenerative disorders. In this review, we first defined a conceptual framework, from both a neuroanatomical and a neurophysiological point of view, for the generation of voluntary movement. We then examined the evidence linking dysfunctions in different motor pathways to each type of movement disorder. We looked at common semivoluntary movement disorders providing an overview, where possible, of their phenomenology and brain network abnormalities for each condition. We also emphasized important clinical feature similarities and differences to increase recognition of each condition in practice.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Roongroj Bhidayasiri
- Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- *Correspondence: Roongroj Bhidayasiri
| |
Collapse
|
19
|
Indrajeet I, Atkinson-Clement C, Worbe Y, Pouget P, Ray S. Compromised reactive but intact proactive inhibitory motor control in Tourette disorder. Sci Rep 2022; 12:2193. [PMID: 35140247 PMCID: PMC8828748 DOI: 10.1038/s41598-022-05692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Tourette disorder (TD) is characterized by tics, which are sudden repetitive involuntary movements or vocalizations. Deficits in inhibitory control in TD patients remain inconclusive from the traditional method of estimating the ability to stop an impending action, which requires careful interpretation of a metric derived from race model. One possible explanation for these inconsistencies is that race model's assumptions of independent and stochastic rise of GO and STOP process to a fixed threshold are often violated, making the classical metric to assess inhibitory control less robust. Here, we used a pair of metrics derived from a recent alternative model to address why stopping performance in TD is unaffected despite atypical neural circuitry. These new metrics distinguish between proactive and reactive inhibitory control and estimate them separately. When these metrics in adult TD group were contrasted with healthy controls (HC), we identified robust deficits in reactive control, but not in proactive control in TD. The TD group exhibited difficulty in slowing down the speed of movement preparation, which they rectified by their intact ability to postpone the movement.
Collapse
Affiliation(s)
- Indrajeet Indrajeet
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Centre of Behavioural and Cognitive Science, University of Allahabad, Prayagraj, India
| | - Cyril Atkinson-Clement
- Sorbonne University, INSERM U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
| | - Yulia Worbe
- Sorbonne University, INSERM U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France
- Department of Neurophysiology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pierre Pouget
- Sorbonne University, INSERM U1127, CNRS UMR7225, UM75, ICM, Movement Investigation and Therapeutics Team, Paris, France.
- Department of Neurophysiology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Supriya Ray
- Centre of Behavioural and Cognitive Science, University of Allahabad, Prayagraj, India.
| |
Collapse
|
20
|
Małek A. Pain in Tourette Syndrome-Children’s and Parents’ Perspectives. J Clin Med 2022; 11:jcm11020460. [PMID: 35054154 PMCID: PMC8779202 DOI: 10.3390/jcm11020460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Tourette Syndrome (TS) is a neurodevelopmental condition characterized by the presence of tics and associated behavioral problems. Yale Global Tic Severity Scale (YGTSS), The PedsQL Pediatric Pain Questionnaire, and Pediatric Pain Coping Inventory were used to assess the severity of tics, the severity of the pain, the location of the pain and pain coping strategies both from children’s and parents’ perspectives. Sixty percent of children demonstrated pain (past or present); the pain was reported by 72% of parents raising children with TS. The pain most commonly was cervical, throat, shoulder, ocular, and joint pain; most children declared pain located in more than one part of the body. Consistency between the declarations of children and their parents in coping with pain was observed. Pain should be recognized as a common comorbid aspect of tic disorders in childhood and therapeutic treatment must include the reduction of pain caused by tics.
Collapse
Affiliation(s)
- Agnieszka Małek
- Department of Physical Education and Social Sciences, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
21
|
Paschou P, Jin Y, Müller-Vahl K, Möller HE, Rizzo R, Hoekstra PJ, Roessner V, Mol Debes N, Worbe Y, Hartmann A, Mir P, Cath D, Neuner I, Eichele H, Zhang C, Lewandowska K, Munchau A, Verrel J, Musil R, Silk TJ, Hanlon CA, Bihun ED, Brandt V, Dietrich A, Forde N, Ganos C, Greene DJ, Chu C, Grothe MJ, Hershey T, Janik P, Koller JM, Martin-Rodriguez JF, Müller K, Palmucci S, Prato A, Ramkiran S, Saia F, Szejko N, Torrecuso R, Tumer Z, Uhlmann A, Veselinovic T, Wolańczyk T, Zouki JJ, Jain P, Topaloudi A, Kaka M, Yang Z, Drineas P, Thomopoulos SI, White T, Veltman DJ, Schmaal L, Stein DJ, Buitelaar J, Franke B, van den Heuvel O, Jahanshad N, Thompson PM, Black KJ. Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration. Front Psychiatry 2022; 13:958688. [PMID: 36072455 PMCID: PMC9443935 DOI: 10.3389/fpsyt.2022.958688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yin Jin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Hannover University Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renata Rizzo
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Nanette Mol Debes
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Yulia Worbe
- Department of Neurophysiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Danielle Cath
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Chencheng Zhang
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | | | - Alexander Munchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Tim J Silk
- Deakin University, Geelong, VIC, Australia
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily D Bihun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Andrea Dietrich
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Natalie Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christos Ganos
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chunguang Chu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Juan Francisco Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Adriana Prato
- Child and Adolescent Neurology and Psychiatric Section, Department of Clinical and Experimental Medicine, Catania University, Catania, Italy
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Federica Saia
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zeynep Tumer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Tanja Veselinovic
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Pritesh Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mary Kaka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sophia I Thomopoulos
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dan J Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jan Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Barbara Franke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Odile van den Heuvel
- Department Psychiatry, Department Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
22
|
Farkas BC, Tóth-Fáber E, Janacsek K, Nemeth D. A Process-Oriented View of Procedural Memory Can Help Better Understand Tourette's Syndrome. Front Hum Neurosci 2021; 15:683885. [PMID: 34955784 PMCID: PMC8707288 DOI: 10.3389/fnhum.2021.683885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by repetitive movements and vocalizations, also known as tics. The phenomenology of tics and the underlying neurobiology of the disorder have suggested that the altered functioning of the procedural memory system might contribute to its etiology. However, contrary to the robust findings of impaired procedural memory in neurodevelopmental disorders of language, results from TS have been somewhat mixed. We review the previous studies in the field and note that they have reported normal, impaired, and even enhanced procedural performance. These mixed findings may be at least partially be explained by the diversity of the samples in both age and tic severity, the vast array of tasks used, the low sample sizes, and the possible confounding effects of other cognitive functions, such as executive functions, working memory or attention. However, we propose that another often overlooked factor could also contribute to the mixed findings, namely the multiprocess nature of the procedural system itself. We propose that a process-oriented view of procedural memory functions could serve as a theoretical framework to help integrate these varied findings. We discuss evidence suggesting heterogeneity in the neural regions and their functional contributions to procedural memory. Our process-oriented framework can help to deepen our understanding of the complex profile of procedural functioning in TS and atypical development in general.
Collapse
Affiliation(s)
- Bence Cs. Farkas
- LNC, Département d’Études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris, France
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
23
|
Towards an Ideology-Free, Truly Mechanistic Health Psychology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111126. [PMID: 34769644 PMCID: PMC8583446 DOI: 10.3390/ijerph182111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Efficient transfer of concepts and mechanistic insights from the cognitive to the health sciences and back requires a clear, objective description of the problem that this transfer ought to solve. Unfortunately, however, the actual descriptions are commonly penetrated with, and sometimes even motivated by, cultural norms and preferences, a problem that has colored scientific theorizing about behavioral control—the key concept for many psychological health interventions. We argue that ideologies have clouded our scientific thinking about mental health in two ways: by considering the societal utility of individuals and their behavior a key criterion for distinguishing between healthy and unhealthy people, and by dividing what actually seem to be continuous functions relating psychological and neurocognitive underpinnings to human behavior into binary, discrete categories that are then taken to define clinical phenomena. We suggest letting both traditions go and establish a health psychology that restrains from imposing societal values onto individuals, and then taking the fit between behavior and values to conceptualize unhealthiness. Instead, we promote a health psychology that reconstructs behavior that is considered to be problematic from well-understood mechanistic underpinnings of human behavior.
Collapse
|
24
|
Wehmeyer L, Schüller T, Kiess J, Heiden P, Visser-Vandewalle V, Baldermann JC, Andrade P. Target-Specific Effects of Deep Brain Stimulation for Tourette Syndrome: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:769275. [PMID: 34744993 PMCID: PMC8563609 DOI: 10.3389/fneur.2021.769275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Extended research has pointed to the efficacy of deep brain stimulation (DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four most commonly used DBS targets for TS include the centromedian nucleus-nucleus ventrooralis internus (CM-Voi) and the centromedian nucleus-parafascicular (CM-Pf) complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial portion of the globus pallidus internus (amGPi). Differences and commonalities between those targets need to be compared systematically. Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms and target-specific differences. Methods: A PubMed literature search was conducted according to the PRISMA guidelines. Eligible literature was used to conduct a systematic review and meta-analysis. Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients. DBS also resulted in significant reductions of secondary outcome measures, including the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf, also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis including six randomized controlled and double-blinded trials demonstrated clinical efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation in two separate meta-analyses. Conclusion: We conclude that DBS is a clinically effective treatment option for patients with treatment-refractory TS, with all targets showing comparable improvement rates. Future research might focus on personalized and symptom-specific target selection.
Collapse
Affiliation(s)
- Laura Wehmeyer
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany,*Correspondence: Laura Wehmeyer
| | - Thomas Schüller
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jana Kiess
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Inhibitory Control Deficits in Children with Tic Disorders Revealed by Object-Hit-and-Avoid Task. Neural Plast 2021; 2021:8825091. [PMID: 34306065 PMCID: PMC8270726 DOI: 10.1155/2021/8825091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background Tic disorders may reflect impaired inhibitory control. This has been evaluated using different behavioural tasks, yielding mixed results. Our objective was to test inhibitory control in children with tics through simultaneous presentation of multiple, mobile stimuli. Methods Sixty-four children with tics (mean age 12.4 years; 7.5-18.5) were evaluated using a validated robotic bimanual exoskeleton protocol (Kinarm) in an object-hit-and-avoid task, in which target and distractor objects moved across a screen and participants aimed to hit only the targets while avoiding distractors. Performance was compared to 146 typically developing controls (mean age 13 years; 6.1-19.9). The primary outcome was the percentage of distractors struck. Results ANCOVA (age as covariate) showed participants struck significantly more distractors (participants without comorbid ADHD, 22.71% [SE 1.47]; participants with comorbid ADHD, 23.56% [1.47]; and controls, 15.59% [0.68]). Participants with comorbid ADHD struck significantly fewer targets (119.74 [2.77]) than controls, but no difference was found between participants without comorbid ADHD (122.66 [2.77]) and controls (127.00 [1.28]). Participants and controls did not differ significantly in movement speed and movement area. Just over 20% of participants with tics fell below the age-predicted norm in striking distractors, whereas fewer than 10% fell outside age-predicted norms in other task parameters. Conclusions In children with tics (without comorbid ADHD), acting upon both targets and distractors suggests reduced ability to suppress responses to potential triggers for action. This may be related to increased sensorimotor noise or abnormal sensory gating.
Collapse
|
26
|
Benítez-Burraco A, Progovac L. Language evolution: examining the link between cross-modality and aggression through the lens of disorders. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200188. [PMID: 33745319 PMCID: PMC8059641 DOI: 10.1098/rstb.2020.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
We demonstrate how two linguistic phenomena, figurative language (implicating cross-modality) and derogatory language (implicating aggression), both demand a precise degree of (dis)inhibition in the same cortico-subcortical brain circuits, in particular cortico-striatal networks, whose connectivity has been significantly enhanced in recent evolution. We examine four cognitive disorders/conditions that exhibit abnormal patterns of (dis)inhibition in these networks: schizophrenia (SZ), autism spectrum disorder (ASD), synaesthesia and Tourette's syndrome (TS), with the goal of understanding why the two phenomena altered reactive aggression and altered cross-modality cluster together in these disorders. Our proposal is that enhanced cross-modality (necessary to support language, in particular metaphoricity) was a result, partly a side-effect, of self-domestication (SD). SD targeted the taming of reactive aggression, but reactive impulses are controlled by the same cortico-subcortical networks that are implicated in cross-modality. We further add that this biological process of SD did not act alone, but was engaged in an intense feedback loop with the cultural emergence of early forms of language/grammar, whose high degree of raw metaphoricity and verbal aggression also contributed to increased brain connectivity and cortical control. Consequently, in conjunction with linguistic expressions serving as approximations/'fossils' of the earliest stages of language, these cognitive disorders/conditions serve as confident proxies of brain changes in language evolution, helping us reconstruct certain crucial aspects of early prehistoric languages and cognition, as well as shed new light on the nature of the disorders. This article is part of the theme issue 'Reconstructing prehistoric languages'.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ljiljana Progovac
- Linguistics Program, Department of English, Wayne State University, Detroit, MI, USA
| |
Collapse
|
27
|
Jurgiel J, Miyakoshi M, Dillon A, Piacentini J, Makeig S, Loo SK. Inhibitory control in children with tic disorder: aberrant fronto-parietal network activity and connectivity. Brain Commun 2021; 3:fcab067. [PMID: 33977267 PMCID: PMC8093924 DOI: 10.1093/braincomms/fcab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/03/2022] Open
Abstract
Chronic tic disorders, including Tourette syndrome, are typically thought to have deficits in cognitive inhibition and top down cognitive control due to the frequent and repetitive occurrence of tics, yet studies reporting task performance results have been equivocal. Despite similar behavioural performance, individuals with chronic tic disorder have exhibited aberrant patterns of neural activation in multiple frontal and parietal regions relative to healthy controls during inhibitory control paradigms. In addition to these top down attentional control regions, widespread alterations in brain activity across multiple neural networks have been reported. There is a dearth, however, of studies examining event-related connectivity during cognitive inhibitory paradigms among affected individuals. The goal of this study was to characterize neural oscillatory activity and effective connectivity, using a case–control design, among children with and without chronic tic disorder during performance of a cognitive inhibition task. Electroencephalogram data were recorded in a cohort of children aged 8–12 years old (60 with chronic tic disorder, 35 typically developing controls) while they performed a flanker task. While task accuracy did not differ by diagnosis, children with chronic tic disorder displayed significant cortical source-level, event-related spectral power differences during incongruent flanker trials, which required inhibitory control. Specifically, attenuated broad band oscillatory power modulation within the anterior cingulate cortex was observed relative to controls. Whole brain effective connectivity analyses indicated that children with chronic tic disorder exhibit greater information flow between the anterior cingulate and other fronto-parietal network hubs (midcingulate cortex and precuneus) relative to controls, who instead showed stronger connectivity between central and posterior nodes. Spectral power within the anterior cingulate was not significantly correlated with any connectivity edges, suggesting lower power and higher connectivity are independent (versus resultant) neural mechanisms. Significant correlations between clinical features, task performance and anterior cingulate spectral power and connectivity suggest this region is associated with tic impairment (r = −0.31, P = 0.03) and flanker task incongruent trial accuracy (r’s = −0.27 to −0.42, P’s = 0.0008–0.04). Attenuated activation of the anterior cingulate along with dysregulated information flow between and among nodes within the fronto-parietal attention network may be neural adaptations that result from frequent engagement of neural pathways needed for inhibitory control in chronic tic disorder.
Collapse
Affiliation(s)
- Joseph Jurgiel
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea Dillon
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Piacentini
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott Makeig
- Swartz Center for Neural Computation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Cothros N, Medina A, Martino D, Dukelow SP, Hawe RL, Kirton A, Ganos C, Nosratmirshekarlou E, Pringsheim T. Children with Tic Disorders Show Greater Variability in an Arm-Position-Matching Proprioceptive Task. Mov Disord 2020; 36:782-784. [PMID: 33284995 DOI: 10.1002/mds.28413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Nicholas Cothros
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Alex Medina
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Rachel L Hawe
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Adam Kirton
- Department of Paediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | | | - Tamara Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Kleimaker A, Kleimaker M, Bäumer T, Beste C, Münchau A. Gilles de la Tourette Syndrome-A Disorder of Action-Perception Integration. Front Neurol 2020; 11:597898. [PMID: 33324336 PMCID: PMC7726237 DOI: 10.3389/fneur.2020.597898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Gilles de la Tourette syndrome is a multifaceted and complex neuropsychiatric disorder. Given that tics as motor phenomena are the defining and cardinal feature of Tourette syndrome, it has long been conceptualized as a motor/movement disorder. However, considering premonitory urges preceding tics, hypersensitivity to external stimuli and abnormalities in sensorimotor integration perceptual processes also seem to be relevant in the pathophysiology of Tourette syndrome. In addition, tic expression depends on attention and tics can, at least partly and transiently, be controlled, so that cognitive processes need to be considered as well. Against this background, explanatory concepts should encompass not only the motor phenomenon tic but also perceptual and cognitive processes. Representing a comprehensive theory of the processing of perceptions and actions paying particular attention to their interdependency and the role of cognitive control, the Theory of Event Coding seems to be a suitable conceptual framework for the understanding of Tourette syndrome. In fact, recent data suggests that addressing the relation between actions (i.e., tics) and perceptions (i.e., sensory phenomena like premonitory urges) in the context of event coding allows to gaining relevant insights into perception-action coding in Tourette syndrome indicating that perception action binding is abnormally strong in this disorder.
Collapse
Affiliation(s)
- Alexander Kleimaker
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maximilian Kleimaker
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Tobias Bäumer
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander Münchau
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Kleimaker M, Kleimaker A, Weissbach A, Colzato LS, Beste C, Bäumer T, Münchau A. Non-invasive Brain Stimulation for the Treatment of Gilles de la Tourette Syndrome. Front Neurol 2020; 11:592258. [PMID: 33244309 PMCID: PMC7683779 DOI: 10.3389/fneur.2020.592258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Gilles de la Tourette Syndrome is a multifaceted neuropsychiatric disorder typically commencing in childhood and characterized by motor and phonic tics. Its pathophysiology is still incompletely understood. However, there is convincing evidence that structural and functional abnormalities in the basal ganglia, in cortico-striato-thalamo-cortical circuits, and some cortical areas including medial frontal regions and the prefrontal cortex as well as hyperactivity of the dopaminergic system are key findings. Conventional therapeutic approaches in addition to counseling comprise behavioral treatment, particularly habit reversal therapy, oral pharmacotherapy (antipsychotic medication, alpha-2-agonists) and botulinum toxin injections. In treatment-refractory Tourette syndrome, deep brain stimulation, particularly of the internal segment of the globus pallidus, is an option for a small minority of patients. Based on pathophysiological considerations, non-invasive brain stimulation might be a suitable alternative. Repetitive transcranial magnetic stimulation appears particularly attractive. It can lead to longer-lasting alterations of excitability and connectivity in cortical networks and inter-connected regions including the basal ganglia through the induction of neural plasticity. Stimulation of the primary motor and premotor cortex has so far not been shown to be clinically effective. Some studies, though, suggest that the supplementary motor area or the temporo-parietal junction might be more appropriate targets. In this manuscript, we will review the evidence for the usefulness of repetitive transcranial magnetic stimulation and transcranial electric stimulation as treatment options in Tourette syndrome. Based on pathophysiological considerations we will discuss the rational for other approaches of non-invasive brain stimulation including state informed repetitive transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Maximilian Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
31
|
Naro A, Billeri L, Colucci VP, Le Cause M, De Domenico C, Ciatto L, Bramanti P, Bramanti A, Calabrò RS. Brain functional connectivity in chronic tic disorders and Gilles de la Tourette syndrome. Prog Neurobiol 2020; 194:101884. [PMID: 32659317 DOI: 10.1016/j.pneurobio.2020.101884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 01/23/2023]
Abstract
The pathophysiology of chronic tic disorder (cTD) and Gilles de la Tourette syndrome (GTS) is characterized by the dysfunction of both motor and non - motor cortico - striatal - thalamo - cortical (CSTC) circuitries, which leads to tic release and comorbids. A role of fronto - parietal network (FPN) connectivity breakdown has been postulated for tic pathogenesis, given that the FPN entertain connections with limbic, paralimbic, and CSTC networks. Our study was aimed at characterizing the FPN functional connectivity in cTD and GTS in order to assess the role of its deterioration in tic severity and the degree of comorbids. We recorded scalp EEG during resting state in patients with cTD and GTS. The eLORETA current source densities were analyzed, and the lagged phase synchronization (LPS) was calculated to estimate nonlinear functional connectivity between cortical areas. We found that the FPN functional connectivity in delta band was more detrimental in more severe GTS patients. Also, the sensorimotor functional connectivity in beta2 band was stronger in more severe cTD and GTS patients. FPN functional connectivity deterioration correlated with comorbids presence and severity in patients with GTS. Our data suggest that a FPN disconnection may contribute to the motoric symptomatology and comorbid severity in GTS, whereas sensorimotor disconnection may contribute to tic severity in cTD and GTS. Although preliminary, our study points out a differently disturbed brain connectivity between patients with cTD and GTS. This may serve as diagnostic marker and potentially interesting base to develop pharmacological and noninvasive neuromodulation trials aimed at reducing tic symptomatology.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Laura Ciatto
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | |
Collapse
|
32
|
Andrade P, Heiden P, Hoevels M, Schlamann M, Baldermann JC, Huys D, Visser-Vandewalle V. Modulation of Fibers to Motor Cortex during Thalamic DBS in Tourette Patients Correlates with Tic Reduction. Brain Sci 2020; 10:brainsci10050302. [PMID: 32429216 PMCID: PMC7287978 DOI: 10.3390/brainsci10050302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Probabilistic tractography in Tourette syndrome (TS) patients have shown an alteration in the connectivity of the primary motor cortex and supplementary motor area with the striatum and thalamus, suggesting an abnormal connectivity of the cortico-striatum-thalamocortical-pathways in TS. Deep brain stimulation (DBS) of the centromedian nucleus–nucleus ventrooralis internus (CM-Voi complex) in the thalamus is an effective treatment for refractory TS patients. We investigated the connectivity of activated fibers from CM-Voi to the motor cortex and its correlation between these projections and their clinical outcome. Seven patients with TS underwent CM-Voi-DBS surgery and were clinically evaluated preoperatively and six months postoperatively. We performed diffusion tensor imaging to display the activated fibers projecting from the CM-Voi to the different motor cortex regions of interest. These analyses showed that the extent of tic reduction during DBS is associated with the degree of stimulation-dependent connectivity between CM-Voi and the motor cortex, and in particular, an increased density of projections to the presupplementary motor area (preSMA). Non-responder patients displayed the largest amount of active fibers projecting into cortical areas other than motor cortex compared to responder patients. These findings support the notion that an abnormal connectivity of thalamocortical pathways underlies TS, and that modulation of these circuits through DBS could restore the function and reduce symptoms.
Collapse
Affiliation(s)
- Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, 50397 Cologne, Germany; (P.H.); (M.H.); (V.V.-V.)
- Correspondence: ; Tel.: +49-221-478-82737; Fax: +49-221-478-82824
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, 50397 Cologne, Germany; (P.H.); (M.H.); (V.V.-V.)
- Department of Neurosurgery, University Hospital of Cologne, 50397 Cologne, Germany
| | - Moritz Hoevels
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, 50397 Cologne, Germany; (P.H.); (M.H.); (V.V.-V.)
| | - Marc Schlamann
- Department of Neuroradiology, University Hospital of Cologne, 50397 Cologne, Germany;
| | - Juan C. Baldermann
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, 50397 Cologne, Germany; (J.C.B.); (D.H.)
- Department of Neurology, University Hospital of Cologne, 50397 Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University Hospital of Cologne, 50397 Cologne, Germany; (J.C.B.); (D.H.)
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, 50397 Cologne, Germany; (P.H.); (M.H.); (V.V.-V.)
| |
Collapse
|
33
|
Abstract
Introduction: Though many unanswered questions about the pathophysiology of Tourette Syndrome remain, several pharmacotherapies for tics have been studied, with varying results in terms of efficacy and the strength of evidence.Areas covered: This literature review encompasses pharmacotherapies for tics. The pharmacotherapies discussed in this review include: alpha agonists, antipsychotics, topiramate, botulinum toxin, and dopamine depleters.Expert opinion: Once the presence of tics is confirmed and psychoeducation and support are provided to patients and caregivers, one must examine the degree of tic-related impairment and the presence of psychiatric comorbidities. These factors influence treatment decisions as the presence of comorbidity and related impairment may shift the treatment target. When selecting a medication for tics, the presence of ADHD (the most frequent comorbidity) strengthens the case for choosing an alpha agonist. The case for antipsychotic medications is strongest when tic-related impairment is severe and/or the tics are refractory to more conservative measures. All medications require drug safety monitoring procedures and reevaluation over time.
Collapse
Affiliation(s)
- Nicholas Cothros
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Alex Medina
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Foothills Hospital, Calgary, Alberta, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Examining the functional activity of different obsessive-compulsive symptom dimensions in Tourette syndrome. NEUROIMAGE-CLINICAL 2020; 26:102198. [PMID: 32062563 PMCID: PMC7025096 DOI: 10.1016/j.nicl.2020.102198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022]
Abstract
Patients with Tourette Syndrome completed an obsessive–compulsive provocation task. Patients reported higher anxiety for the provocation conditions than did controls. Group differences found in the insula, sensorimotor cortex and supramarginal gyri. Obsessive–compulsive severity associated with frontal and parietal lobe activity. Tic severity associated with anterior cingulate activity for the symmetry condition.
Objectives Tourette syndrome (TS) is commonly comorbid with obsessive–compulsive disorder (OCD) and many phenomenological similarities exist between tics and obsessive–compulsive symptoms (OCS). Therefore, due to the clinical importance of comorbid OCD, the goal of this study was to investigate the neural substrates of OCS in TS using functional magnetic resonance imaging. Methods Forty patients with TS and 20 healthy controls underwent functional magnetic resonance imaging while viewing blocks of OCS-provoking pictures relating to washing, checking and symmetry symptoms, as well as generally disgusting and neutral scenes. Statistical comparisons were made between patients with moderate/severe OCS, absent/mild OCS and healthy controls. As well, within the entire TS patient group, significant associations with clinical measures were assessed for each of the provocation conditions. Results Group differences in the insula, sensorimotor cortex, supramarginal gyrus and visual processing regions were common among the checking, washing and disgust conditions. In the patient group, negative associations between OCS severity and activity in the supramarginal gyrus, inferior frontal gyrus, sensorimotor cortex, precuneus and visual processing regions were common among the provocation conditions. Tic severity was only associated with activity in the anterior cingulate cortex for the symmetry condition. Conclusion Our findings implicate areas previously reported to be involved in OCD, as well as areas not typically implicated in OCD, suggesting that the neurobiological profile of TS+OCD is intermediate to pure TS and pure OCD.
Collapse
|
35
|
Comprehensive Behavioral Intervention for Tics reduces perception-action binding during inhibitory control in Gilles de la Tourette syndrome. Sci Rep 2020; 10:1174. [PMID: 31980733 PMCID: PMC6981113 DOI: 10.1038/s41598-020-58269-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/10/2020] [Indexed: 11/08/2022] Open
Abstract
Gilles de la Tourette Syndrome (GTS) is a developmental disorder. Empirical studies and an emerging cognitive framework on GTS suggest that GTS is a disorder of abnormally strong ‘perception-action binding’. Theoretical considerations imply that the effectiveness of long-established behavioral interventions might be related to a normalization of increased binding in GTS. This has not been tested yet. We examined the effect of a standardized Comprehensive Behavior Intervention for Tics (CBIT) in N = 21 adolescent GTS patients and N = 21 healthy controls on perception-action binding in an inhibitory control paradigm. Prior to CBIT, GTS patients showed compromised performance compared to controls, specifically when inhibitory control was triggered by uni-modal visual compared to bi-modal stimuli. After CBIT intervention, GTS patient’s performance was at the same level as healthy controls. This is supported by a Bayesian data analysis. CBIT specifically affected inhibitory control in a condition where reconfigurations of perception-action bindings are necessary to perform inhibitory control. A power of 95% was evident for these effects. CBIT reduces increased ‘binding’ between perception and action in GTS and thereby increases the ability to perform response inhibition. The results are the first to provide insights as to why CBIT is effective by relating elements of this intervention to overarching cognitive theoretical frameworks on perception-action bindings.
Collapse
|
36
|
Kurvits L, Martino D, Ganos C. Clinical Features That Evoke the Concept of Disinhibition in Tourette Syndrome. Front Psychiatry 2020; 11:21. [PMID: 32161555 PMCID: PMC7053490 DOI: 10.3389/fpsyt.2020.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/09/2020] [Indexed: 01/14/2023] Open
Abstract
The capacity to efficiently control motor output, by either refraining from prepotent actions or disengaging from ongoing motor behaviors, is necessary for our ability to thrive in a stimulus-rich and socially complex environment. Failure to engage in successful inhibitory motor control could lead to aberrant behaviors typified by an excess of motor performance. In tic disorders and Tourette syndrome (TS) - the most common tic disorder encountered in clinics - surplus motor output is rarely the only relevant clinical sign. A range of abnormal behaviors is often encountered which are historically viewed as "disinhibition phenomena". Here, we present the different clinical features of TS from distinct categorical domains (motor, sensory, complex behavioral) that evoke the concept of disinhibition and discuss their associations. We also present evidence for their consideration as phenomena of inhibitory dysfunction and provide an overview of studies on TS pathophysiology which support this view. We then critically dissect the concept of disinhibition in TS and illuminate other salient aspects, which should be considered in a unitary pathophysiological approach. We briefly touch upon the dangers of oversimplification and emphasize the necessity of conceptual diversity in the scientific exploration of TS, from disinhibition and beyond.
Collapse
Affiliation(s)
- Lille Kurvits
- Department of Neurology, Charité University Hospital, Berlin, Germany
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Christos Ganos
- Department of Neurology, Charité University Hospital, Berlin, Germany
| |
Collapse
|
37
|
Çam Ray P, Gül Çelik G, Tahiroğlu A, Jaicks ÇCD, Avcı A. Çocukluk çağı tik bozukluklarının sosyodemografik ve klinik özellikleri. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.628103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Progovac L, Benítez-Burraco A. From Physical Aggression to Verbal Behavior: Language Evolution and Self-Domestication Feedback Loop. Front Psychol 2019; 10:2807. [PMID: 31920850 PMCID: PMC6930236 DOI: 10.3389/fpsyg.2019.02807] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
We propose that human self-domestication favored the emergence of a less aggressive phenotype in our species, more precisely phenotype prone to replace (reactive) physical aggression with verbal aggression. In turn, the (gradual) transition to verbal aggression and to more sophisticated forms of verbal behavior favored self-domestication, with the two processes engaged in a mutually reinforcing feedback loop, considering that verbal behavior entails not only less violence and better survival but also more opportunities to interact longer and socialize with more conspecifics, ultimately enabling the emergence of more complex forms of language. Whereas in the case of self-domestication, sexual selection has been proposed to work against physical aggression traits, in the case of verbal insult, the selection has been proposed to work in favor of verbal aggression. The tension between these two seemingly opposing forces gets resolved/alleviated by a tendency to replace physical aggression with verbal aggression and with verbal behavior more generally. This also helps solve the paradox of the Self-Domestication Hypothesis regarding aggression, more precisely why aggression in humans has been reduced only when it comes to reactive aggression, but not when it comes to proactive aggression, the latter exhibiting an increase in the advent of modern language. We postulate that this feedback loop was particularly important during the time period arguably between 200 and 50 kya, when humans were not fully modern, neither in terms of their skull/brain morphology and their behavior/culture nor in terms of their self-domestication. The novelty of our approach lies in (1) giving an active role to early forms of language in interacting with self-domestication processes; (2) providing specific linguistic details and functions of this early stage of grammar (including insult and humor); (3) supplying neurobiological, ontogenetic, and clinical evidence of a link between (reactive) aggression and (reactive) verbal behavior; (4) identifying proxies of the earlier stages in evolution among cognitive disorders; and (5) identifying specific points of contact and mutual reinforcement between these two processes (self-domestication and early language evolution), including reduction in physical aggression and stress/tension, as well as sexual selection.
Collapse
Affiliation(s)
- Ljiljana Progovac
- Linguistics Program, Department of English, Wayne State University, Detroit, MI, United States
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
39
|
Wagner-Altendorf TA, Roessner V, Münte TF. Swearing, Cursing, Coprophenomena. ZEITSCHRIFT FUR NEUROPSYCHOLOGIE 2019. [DOI: 10.1024/1016-264x/a000277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract. In healthy individuals, expletive language occurs as swearing/cursing, in patients with Tourette syndrome as coprolalia. Swearing and coprolalia thus have been likened as two ends of a continuum. Both occur apparently automatically, are triggered by emotional activation, e. g., by stress or pain, and are typically instantiations of nonpropositional language. Neurobiologically, a thalamo-cortical-limbic dysfunction is discussed. However, there are notable differences between the two: While swearing fulfills intra- and inter-individual functions coprolalia seems less functional and can result in considerable social stigma because of their occurrence in socially inappropriate situations. Patients with coprolalia report antecedents, especially feelings of urge and premonitory sensations, like itches or tingles. Finally, coprolalia seems to extend to more serious and insulting expressions compared to “everyday” swearwords.
Collapse
Affiliation(s)
| | - Veit Roessner
- Klinik für Kinder- und Jugendpsychiatrie und -psychotherapie, Medizinische Fakultät, Technische Universität Dresden, Germany
| | - Thomas F. Münte
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Germany
| |
Collapse
|
40
|
Herrmann K, Sprenger A, Baumung L, Alvarez-Fischer D, Münchau A, Brandt V. Help or hurt? How attention modulates tics under different conditions. Cortex 2019; 120:471-482. [DOI: 10.1016/j.cortex.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
|
41
|
Akkermans SEA, van Rooij D, Naaijen J, Forde NJ, Boecker-Schlier R, Openneer TJC, Dietrich A, Hoekstra PJ, Buitelaar JK. Neural reward processing in paediatric Tourette syndrome and/or attention-deficit/hyperactivity disorder. Psychiatry Res Neuroimaging 2019; 292:13-22. [PMID: 31473435 DOI: 10.1016/j.pscychresns.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 07/10/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most common comorbidity in individuals with Tourette syndrome (TS). Yet, it is unclear to what extent TS and ADHD show overlapping or distinct neural abnormalities. ADHD has been associated with altered reward processing, but there are very few studies on reward processing in TS. This study assessed neural activation of basal ganglia and thalamus during reward anticipation and receipt in children with TS and/or ADHD. We analysed mean activations of a priori specified regions of interest during an fMRI monetary incentive delay task. Data was used from 124 children aged 8-12 years (TS n = 47, of which 29 had comorbid ADHD; ADHD n = 29; healthy controls n = 48). ADHD severity across ADHD and TS groups and healthy controls was marginally related to hypoactivation of the right nucleus accumbens during reward anticipation; this effect was not moderated by TS diagnosis. We detected no associations of neural activation with TS. The association between ADHD severity and hypoactivation of the right nucleus accumbens during reward anticipation, independent of the presence or absence of TS, is in line with the view of nucleus accumbens hypoactivation as a dimensional, neurofunctional marker of ADHD severity, transcending the boundaries of primary diagnosis.
Collapse
Affiliation(s)
- Sophie E A Akkermans
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, the Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands.
| | - Daan van Rooij
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, the Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Jilly Naaijen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, the Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Natalie J Forde
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| | - Regina Boecker-Schlier
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Thaira J C Openneer
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands
| | - Jan K Buitelaar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, the Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| |
Collapse
|
42
|
Quality and temporal properties of premonitory urges in patients with skin picking disorder. Cortex 2019; 121:125-134. [PMID: 31605885 DOI: 10.1016/j.cortex.2019.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022]
Abstract
Skin picking is a newly recognized obsessive-compulsive spectrum disorder in DSM-5. Similar to some repetitive behaviors in Gilles de la Tourette syndrome (GTS) and obsessive-compulsive disorder (OCD), premonitory urges are assumed to play a critical role in maintaining skin picking behavior, by creating a vicious cycle. The present study is the first to investigate the quality of premonitory urges, as well as the temporal relationship between urges and skin picking behavior in individuals with skin picking disorder. Quality and intensity of premonitory urges was assessed in 15 individuals with skin picking. Urge quality was assessed with the translated University of São Paulo Sensory Phenomena Scale (USP-SPS). Urge intensity was assessed continuously over 20 min using a computer-based tool. Participants were instructed either a) to pick freely or b) to suppress their skin picking behavior. Skin picking events during the free and suppression condition were recorded on video and coded manually. Regarding the types of urges, individuals with skin picking reported mainly physical urge sensations (80%), visual "just-right" feelings (80%), and urge-only sensations (80%) similar to urges reported by GTS and OCD patients. Moreover, the data showed a strong temporal relationship between the intensity of premonitory urges and the emergence of skin picking behavior (R2 = .23) that was weakened when skin picking was suppressed (R2 = .06). The results suggest that skin picking behavior is maintained by premonitory urges and that this vicious cycle of negative reinforcement can be, at least partially, broken by suppressing skin picking behavior.
Collapse
|
43
|
Stenner MP, Baumgaertel C, Heinze HJ, Ganos C, Müller-Vahl KR. Intact automatic motor inhibition in patients with tourette syndrome. Mov Disord 2019; 33:1800-1804. [PMID: 30485912 DOI: 10.1002/mds.27493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Behavioral disinhibition has been proposed as a key mechanism in Tourette syndrome. Yet classic inhibition tasks have yielded inconsistent results, likely reflecting interference by strategies compensating for tic release. METHODS We examined a core inhibitory function that is immune to such interference because it suppresses movements automatically. We measured automatic motor inhibition behaviorally in 21 adults with Tourette syndrome and 21 healthy controls via the negative compatibility effect. When a motor response is activated, for example, by a subliminal prime stimulus, but execution is delayed, activation turns into inhibition, increasing reaction time and error. Diminished automatic inhibition could underlie tic release. RESULTS Both controls and patients showed strong automatic motor inhibition with no significant group difference. Bayesian statistics, allowing inference on the absence of effects, favored intact inhibition in patients. Our study was well powered. CONCLUSIONS Automatic motor inhibition in Tourette syndrome is neither impaired nor harnessed by compensation. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Max-Philipp Stenner
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Charlotte Baumgaertel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christos Ganos
- Department of Neurology, Charité, University Medicine Berlin, Berlin, Germany
| | - Kirsten R Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Zapparoli L, Macerollo A, Joyce EM, Martino D, Kilner JM. Voluntary tic suppression and the normalization of motor cortical beta power in Gilles de la Tourette syndrome: an
EEG
study. Eur J Neurosci 2019; 50:3944-3957. [DOI: 10.1111/ejn.14548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Antonella Macerollo
- School of Psychology Faculty of Health and Life Sciences University of Liverpool Liverpool UK
- The Walton Centre NHS Foundation Trust Fazakerley UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neurosciences UCL Institute of Neurology London UK
| | - Davide Martino
- Department of Clinical Neurosciences University of Calgary Calgary Canada
- Hotchkiss Brain Institute University of Calgary Calgary Canada
| | - James M. Kilner
- Department of Clinical and Movement Neurosciences UCL Institute of Neurology London UK
| |
Collapse
|
45
|
Petruo V, Bodmer B, Brandt VC, Baumung L, Roessner V, Münchau A, Beste C. Altered perception-action binding modulates inhibitory control in Gilles de la Tourette syndrome. J Child Psychol Psychiatry 2019; 60:953-962. [PMID: 29924402 DOI: 10.1111/jcpp.12938] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gilles de la Tourette Syndrome (GTS) is a multifaceted neuropsychiatric developmental disorder with onset in childhood or adolescence and frequent remissions in early adulthood. A rather new emerging concept of this syndrome suggests that it is a disorder of purposeful actions, in which sensory processes and their relation to motor responses (actions) play a particularly important role. Thus, this syndrome might be conceived as a condition of altered 'perception-action binding'. In the current study, we test this novel concept in the context of inhibitory control. METHODS We examined N = 35 adolescent GTS patients and N = 39 healthy controls in a Go/Nogo-task manipulating the complexity of sensory information triggering identical actions; i.e. to inhibit a motor response. This was combined with event-related potential recordings, EEG data decomposition and source localization. RESULTS GTS patients showed worse performance compared to controls and larger performance differences when inhibitory control had to be exerted using unimodal visual compared to bimodal auditory-visual stimuli. This suggests increased binding between bimodal stimuli and responses leading to increased costs of switching between responses instructed by bimodal and those instructed by unimodal stimuli. The neurophysiological data showed that this was related to mechanisms mediating between stimulus evaluation and response selection; i.e. perception-action binding processes in the right inferior parietal cortex (BA40). CONCLUSIONS Stimulus-action inhibition binding is stronger in GTS patients than healthy controls and affects inhibitory control corroborating the concept suggesting that GTS might be a condition of altered perception-action integration (binding); i.e. a disorder of purposeful actions.
Collapse
Affiliation(s)
- Vanessa Petruo
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Valerie C Brandt
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Leoni Baumung
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| |
Collapse
|
46
|
The urge to blink in Tourette syndrome. Cortex 2019; 120:556-566. [PMID: 31525588 DOI: 10.1016/j.cortex.2019.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Functional neuroimaging studies have attempted to explore brain activity that occurs with tic occurrence in subjects with Tourette syndrome (TS). However, they are limited by the difficulty of disambiguating brain activity required to perform a tic, or activity caused by the tic, from brain activity that generates a tic. Inhibiting ticcing following the urge to tic is important to patients' experience of tics and we hypothesize that inhibition of a compelling motor response to a natural urge will differ in TS subjects compared to controls. This study examines the urge to blink, which shares many similarities to premonitory urges to tic. Previous neuroimaging studies with the same hypothesis have used a one-size-fits-all approach to extract brain signal putatively linked to the urge to blink. We aimed to create a subject-specific and blink-timing-specific pathophysiological model, derived from out-of-scanner blink suppression trials, to eventually better interpret blink suppression fMRI data. Eye closure and continuously self-reported discomfort were reported during five blink suppression trials in 30 adult volunteers, 15 with a chronic tic disorder. For each subject, data from four of the trials were used with an empirical mathematical model to predict discomfort from eye closure observed during the remaining trial. The blink timing model of discomfort during blink suppression predicted observed discomfort much better than previously applied models. Combining this approach with observed eye closure during fMRI blink suppression trials should therefore extract brain signal more tightly linked to the urge to blink. The simple mean of time-discomfort curves from each subject's other trials also outperformed older models. The TS group blinked more than twice as often during the blink suppression block, and reported higher baseline discomfort, smaller excursion from baseline to peak discomfort during the blink suppression block, and slower return of discomfort to baseline during the recovery block.
Collapse
|
47
|
Loo SK, Miyakoshi M, Tung K, Lloyd E, Salgari G, Dillon A, Chang S, Piacentini J, Makeig S. Neural activation and connectivity during cued eye blinks in Chronic Tic Disorders. NEUROIMAGE-CLINICAL 2019; 24:101956. [PMID: 31382238 PMCID: PMC6698693 DOI: 10.1016/j.nicl.2019.101956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 05/06/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022]
Abstract
Objective The pathophysiology of Chronic Tic Disorders (CTDs), including Tourette Syndrome, remains poorly understood. The goal of this study was to compare neural activity and connectivity during a voluntary movement (VM) paradigm that involved cued eye blinks among children with and without CTDs. Using the precise temporal resolution of electroencephalography (EEG), we used the timing and location of cortical source resolved spectral power activation and connectivity to map component processes such as visual attention, cue detection, blink regulation and response monitoring. We hypothesized that neural activation and connectivity during the cued eye blink paradigm would be significantly different in regions typically associated with effortful control of eye blinks, such as frontal, premotor, parietal, and occipital cortices between children with and without CTD. Method Participants were 40 children (23 with CTD, 17 age-matched Healthy Control [HC]), between the ages of 8–12 (mean age = 9.5) years old. All participants underwent phenotypic assessment including diagnostic interviews, behavior rating scales and 128-channel EEG recording. Upon presentation of a cue every 3 s, children were instructed to make an exaggerated blink. Results Behaviorally, the groups did not differ in blink number, latency, or ERP amplitude. Within source resolved clusters located in left dorsolateral prefrontal cortex, posterior cingulate, and supplemental motor area, children with CTD exhibited higher gamma band spectral power relative to controls. In addition, significant diagnostic group differences in theta, alpha, and beta band power in inferior parietal cortex emerged. Spectral power differences were significantly associated with clinical characteristics such as tic severity and premonitory urge strength. After calculating dipole density for 76 anatomical regions, the CTD and HC groups had 70% overlap of top regions with the highest dipole density, suggesting that similar cortical networks were used across groups to carry out the VM. The CTD group exhibited significant information flow increase and dysregulation relative to the HC group, particularly from occipital to frontal regions. Conclusion Children with CTD exhibit abnormally high levels of neural activation and dysregulated connectivity among networks used for regulation and effortful control of voluntary eye blinks. First cortical source level EEG study on brain activity and connectivity in CTD. Children with CTD exhibit aberrant levels of neural activation and connectivity. Neural activation was significantly associated with tic severity and premonitory urge.
Collapse
Affiliation(s)
- Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States of America.
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0559, United States of America
| | - Kelly Tung
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States of America
| | - Evan Lloyd
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States of America
| | - Giulia Salgari
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States of America
| | - Andrea Dillon
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States of America
| | - Susanna Chang
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States of America
| | - John Piacentini
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, United States of America
| | - Scott Makeig
- Swartz Center for Neural Computation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0559, United States of America
| |
Collapse
|
48
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
49
|
Rae CL, Critchley HD, Seth AK. A Bayesian Account of the Sensory-Motor Interactions Underlying Symptoms of Tourette Syndrome. Front Psychiatry 2019; 10:29. [PMID: 30890965 PMCID: PMC6412155 DOI: 10.3389/fpsyt.2019.00029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/17/2019] [Indexed: 11/17/2022] Open
Abstract
Tourette syndrome is a hyperkinetic movement disorder. Characteristic features include tics, recurrent movements that are experienced as compulsive and "unwilled"; uncomfortable premonitory sensations that resolve through tic release; and often, the ability to suppress tics temporarily. We demonstrate how these symptoms and features can be understood in terms of aberrant predictive (Bayesian) processing in hierarchical neural systems, explaining specifically: why tics arise, their "unvoluntary" nature, how premonitory sensations emerge, and why tic suppression works-sometimes. In our model, premonitory sensations and tics are generated through over-precise priors for sensation and action within somatomotor regions of the striatum. Abnormally high precision of priors arises through the dysfunctional synaptic integration of cortical inputs. These priors for sensation and action are projected into primary sensory and motor areas, triggering premonitory sensations and tics, which in turn elicit prediction errors for unexpected feelings and movements. We propose experimental paradigms to validate this Bayesian account of tics. Our model integrates behavioural, neuroimaging, and computational approaches to provide mechanistic insight into the pathophysiological basis of Tourette syndrome.
Collapse
Affiliation(s)
- Charlotte L. Rae
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hugo D. Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, United Kingdom
- Sussex Partnership NHS Foundation Trust, Brighton, United Kingdom
| | - Anil K. Seth
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
50
|
Pichler EM, Kawohl W, Seifritz E, Roser P. Pure delta-9-tetrahydrocannabinol and its combination with cannabidiol in treatment-resistant Tourette syndrome: A case report. Int J Psychiatry Med 2019; 54:150-156. [PMID: 30058466 DOI: 10.1177/0091217418791455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Anecdotal reports and preliminary studies suggest a therapeutic potential of cannabis in Tourette syndrome. We report the case of a female patient suffering from treatment-resistant Tourette syndrome. METHODS Guideline-directed antipsychotic treatment with risperidone and aripiprazole as well as pure delta-9-tetrahydrocannabinol had no significant effect on Tourette syndrome symptomatology. RESULTS Following administration of a daily dosage of 10 mg delta-9-tetrahydrocannabinol combined with 20 mg cannabidiol (CBD), the patient showed a rapid and highly significant improvement in the Yale Global Tic Severity Scale. CONCLUSIONS It can be speculated whether the beneficial effects may rely on the pharmacological properties of cannabidiol.
Collapse
Affiliation(s)
- Eva-Maria Pichler
- 1 Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau AG, Brugg, Switzerland.,2 Department for Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Wolfram Kawohl
- 1 Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau AG, Brugg, Switzerland.,2 Department for Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- 2 Department for Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Patrik Roser
- 1 Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau AG, Brugg, Switzerland
| |
Collapse
|