1
|
Yang Y, Ma K, Li S, Xiong T. Multifaceted role of nitric oxide in vascular dementia. Med Gas Res 2025; 15:496-506. [PMID: 40300885 PMCID: PMC12124705 DOI: 10.4103/mgr.medgasres-d-24-00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 05/01/2025] Open
Abstract
Vascular dementia is a highly heterogeneous neurodegenerative disorder induced by a variety of factors. Currently, there are no definitive treatments for the cognitive dysfunction associated with vascular dementia. However, early detection and preventive measures have proven effective in reducing the risk of onset and improving patient prognosis. Nitric oxide plays an integral role in various physiological and pathological processes within the central nervous system. In recent years, nitric oxide has been implicated in the regulation of synaptic plasticity and has emerged as a crucial factor in the pathophysiology of vascular dementia. At different stages of vascular dementia, nitric oxide levels and bioavailability undergo dynamic alterations, with a marked reduction in the later stages, which significantly contributes to the cognitive deficits associated with the disease. This review provides a comprehensive review of the emerging role of nitric oxide in the physiological and pathological processes underlying vascular dementia, focusing on its effects on synaptic dysfunction, neuroinflammation, oxidative stress, and blood‒brain barrier integrity. Furthermore, we suggest that targeting the nitric oxide soluble guanylate cyclase-cyclic guanosine monophosphate pathway through specific therapeutic strategies may offer a novel approach for treating vascular dementia, potentially improving both cognitive function and patient prognosis. The review contributes to a better understanding of the multifaceted role of nitric oxide in vascular dementia and to offering insights into future therapeutic interventions.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Kangrong Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shun Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University), Yangzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Chen D, Zhao Z, Zhang S, Chen S, Wu X, Shi J, Liu N, Pan C, Tang Y, Meng C, Zhao X, Tao B, Liu W, Chen D, Ding H, Zhang P, Tang Z. Evolving Therapeutic Landscape of Intracerebral Hemorrhage: Emerging Cutting-Edge Advancements in Surgical Robots, Regenerative Medicine, and Neurorehabilitation Techniques. Transl Stroke Res 2025; 16:975-989. [PMID: 38558011 PMCID: PMC12045821 DOI: 10.1007/s12975-024-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Intracerebral hemorrhage (ICH) is the most serious form of stroke and has limited available therapeutic options. As knowledge on ICH rapidly develops, cutting-edge techniques in the fields of surgical robots, regenerative medicine, and neurorehabilitation may revolutionize ICH treatment. However, these new advances still must be translated into clinical practice. In this review, we examined several emerging therapeutic strategies and their major challenges in managing ICH, with a particular focus on innovative therapies involving robot-assisted minimally invasive surgery, stem cell transplantation, in situ neuronal reprogramming, and brain-computer interfaces. Despite the limited expansion of the drug armamentarium for ICH over the past few decades, the judicious selection of more efficacious therapeutic modalities and the exploration of multimodal combination therapies represent opportunities to improve patient prognoses after ICH.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhixian Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglun Zhang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Shi
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cai Meng
- School of Astronautics, Beihang University, Beijing, China
| | - Xingwei Zhao
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Tao
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjie Liu
- Beijing WanTeFu Medical Instrument Co., Ltd., Beijing, China
| | - Diansheng Chen
- Institute of Robotics, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Han Ding
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Liu YJ, Jia GR, Zhang SH, Guo YL, Ma XZ, Xu HM, Xie JX. The role of microglia in neurodegenerative diseases: from the perspective of ferroptosis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01560-4. [PMID: 40307457 DOI: 10.1038/s41401-025-01560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
Iron plays a pivotal role in numerous fundamental biological processes in the brain. Among the various cell types in the central nervous system, microglia are recognized as the most proficient cells in accumulating and storing iron. Nonetheless, iron overload can induce inflammatory phenotype of microglia, leading to the production of proinflammatory cytokines and contributing to neurodegeneration. A growing body of evidence shows that disturbances in iron homeostasis in microglia is associated with a range of neurodegenerative disorders. Recent research has revealed that microglia are highly sensitive to ferroptosis, a form of iron-dependent cell death. How iron overload influences microglial function? Whether disbiosis in iron metabolism and ferroptosis in microglia are involved in neurodegenerative disorders and the underlying mechanisms remain to be elucidated. In this review we focus on the recent advances in research on microglial iron metabolism as well as ferroptosis in microglia. Meanwhile, we provide a comprehensive overview of the involvement of microglial ferroptosis in neurodegenerative disorders from the perspective of crosstalk between microglia and neuron, with a focus on Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ying-Juan Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Guo-Rui Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Sheng-Han Zhang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yun-Liang Guo
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Xi-Zhen Ma
- College of Life Sciences and Health, University of Health and Rehabilitation Science, Qingdao, 266113, China.
| | - Hua-Min Xu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Saija C, Currò M, Ientile R, Caccamo D, Bertuccio MP. Impact of Alterations in Homocysteine, Asymmetric Dimethylarginine and Vitamins-Related Pathways in Some Neurodegenerative Diseases: A Narrative Review. Int J Mol Sci 2025; 26:3672. [PMID: 40332285 PMCID: PMC12027465 DOI: 10.3390/ijms26083672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Hyperhomocysteinemia (HHcy) influences the development and progression of neurodegenerative disorders in different ways. Homocysteine (Hcy) metabolism is related to that of asymmetric dimethylarginine (ADMA) and group B vitamins. The breakdown of the pathway involving nitric oxide (NO) and ADMA can be considered one of the causes of endothelial alteration that represents a crucial step in the development of several neurodegenerative disorders. Deficiencies of vitamins other than group B ones, such as D and A, have also been associated with central nervous system disorders. The aim of this narrative review is to describe the link between HHcy, ADMA, and vitamins in Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS) in terms of dysfunctional pathways and neuropathological processes, performing a literature search from 2015 to 2025 on PubMed. This review also provides an overview of the effects of vitamin supplementation on neurodegenerative diseases. The alteration of pathways involving NO production can lead to HHcy and elevated ADMA concentrations, causing neurodegeneration through various mechanisms, while vitamin supplementation has been shown to reduce Hcy levels, although with conflicting results about the improvement in clinical symptoms. Further studies are needed to develop optimal combined therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (C.S.); (M.C.); (R.I.); (D.C.)
| |
Collapse
|
5
|
Hao MY, Li HJ, Han HS, Chu T, Wang YW, Si WR, Jiang QY, Wu DD. Recent advances in the role of gasotransmitters in necroptosis. Apoptosis 2025; 30:616-635. [PMID: 39833633 DOI: 10.1007/s10495-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis. This paper reviews the evidence that these gasotransmitters are involved in the regulation of necroptosis by influencing the production of reactive oxygen species, regulating the modification of S subunits of RIPK1 and RIPK3, regulating inflammatory mediators, and signal transduction. In addition, this review explores the potential therapeutic applications of these gasotransmitters in pathological conditions such as cardiovascular disease and ischemia-reperfusion injury. Although some studies have revealed the important role of gasotransmitters in necroptosis, the specific mechanism of action is still not fully understood. Future research is needed to further elucidate the molecular mechanisms of gasotransmitters in precisely regulating necroptosis, which will help develop new therapeutic strategies to prevent and treat related diseases.
Collapse
Affiliation(s)
- Meng-Yuan Hao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hong-Jie Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang-Shen Han
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wei-Rong Si
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
6
|
Wu DX, Yang J, Chen LH, Xu SY, Jin J, Li YN, Hao XJ, Yuan CM. Anti-neuroinflammatory terpenes from Magnolia grandiflora. PHYTOCHEMISTRY 2025; 232:114370. [PMID: 39706541 DOI: 10.1016/j.phytochem.2024.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Six previously undescribed sesquiterpenes, magnogranoides A-F (1-6), along with 10 known terpenes, were isolated from the leaves of Magnolia grandiflora L. Six previously undescribed sesquiterpene derivatives (11a-11e and 14a) were synthesized using chemical methods. Those structures were identified through extensive spectroscopic data and quantum chemical calculations. Notably, compound 1 represents the first sesquiterpene with a previously undescribed 8/5/5 tricyclic ring, and compound 2 was elucidated to be the first 13-norguaiane-type sesquiterpenoid with a 5/7/5 tricyclic ring system. Four compounds (3, 7, 8, and 16) exhibited better anti-neuroinflammatory activities in BV-2 cells with IC50 values ranging from 3.23 ± 0.23 μM to 15.98 ± 1.79 μM than the positive control, minocycline (IC50: 20.56 ± 0.93). Furthermore, the chemotaxonomic significance of the isolates was also discussed.
Collapse
Affiliation(s)
- Ding-Xun Wu
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang, 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Li-Hua Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Shuang-Yu Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Jun Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Ya-Nan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China; State Key Laboratory of Phytochemistry and Natural Medicine, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, PR China.
| |
Collapse
|
7
|
Li Y, Cao Y, Wong VKW, Chen M, Liu W, Zhao S. Inhibition of LPS-induced NO production by plant essential oils. Food Sci Biotechnol 2025; 34:1443-1451. [PMID: 40110401 PMCID: PMC11914553 DOI: 10.1007/s10068-024-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 03/22/2025] Open
Abstract
Essential oils (EOs), derived from medicinal plants, has been reported to possess various bioactivities to treat inflammatory diseases. Therefore, it is urgent to investigate the effect and the mechanism of EOs essential oils as naturally anti-inflammatory agents. The present study indicated thirty-one EOs had different inhibition on lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Moreover, the most potent EOs against NO production in BV2 cells were chuan-xiong, schizonepeta tenuifolia, lemongrass and zedoary turmeric with IC50 values of 12.59, 23.12, 22.76 and 21.88 μg/mL, respectively. The further studies revealed that ligustilide, tributyl citrate and longifolene, the main constituents of chuan-xiong EO, schizonepeta tenuifolia EO and zedoary turmeric EO, were responsible for their activities against NO production with IC50 values of 8.75, 6.05 and 20.32 μg/mL. Above all, theses EOs were confirmed to be promising anti-inflammatory agents.
Collapse
Affiliation(s)
- Yonglian Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 China
- School of Eco-environment Technology, Guangdong Industry Polytechnic University, Guangzhou, 510300 China
| | - Yingfan Cao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020 China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078 China
| | - Min Chen
- School of Eco-environment Technology, Guangdong Industry Polytechnic University, Guangzhou, 510300 China
| | - Wenfeng Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020 China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 China
| |
Collapse
|
8
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Zhou W, Chang Y, Xiao Q, Deng Z, Zhang L, Yuan Z, Du Z. Structural optimization of naturally derived Ar-turmerone, as novel neuroinflammation suppressors effective in an Alzheimer mouse model. Bioorg Med Chem 2025; 117:118014. [PMID: 39602866 DOI: 10.1016/j.bmc.2024.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Microglia-mediated neuroinflammation plays a pivotal role in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The modulation of chronic and sustained inflammatory processes in the brain with small molecules presents a promising therapeutic strategy for these devastating conditions. Aromatic turmerone (ar-turmerone, ART), an active constituent of turmeric essential oil derived from the edible plant Curcuma longa, has shown substantial potential in mitigating neuroinflammatory responses and associated cognitive deficits. Building on our previous work, we sought to discover more potent neuroinflammation suppressors by designing and synthesizing a series of ar-turmerone derivatives to investigate their structure-activity relationships. Microglia-based cellular evaluations revealed that naphthyl-substituted (7c) and N-substituted amides (7a) demonstrated the most pronounced inhibitory effects against NO, TNF-α, and IL-1β release in vitro. Furthermore, in a lipopolysaccharide (LPS)-induced neuroinflammation model of Alzheimer's disease in mice, these two compounds significantly reduced proinflammatory cytokine release, protected neurons from damage, and ameliorated memory impairments and cognitive deficits in Morris water maze tests. This structural optimization of ar-turmerone yielded highly potent anti-neuroinflammatory compounds, which may serve as promising agents for the treatment of neuroinflammation-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yuanyuan Chang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qingwei Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
10
|
AlRuwaili R, Al-Kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2024; 479:1267-1278. [PMID: 37395897 PMCID: PMC11116240 DOI: 10.1007/s11010-023-04793-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Acute ischemic stroke (AIS) is a focal neurological disorder that accounts for 85% of all stroke types, due to occlusion of cerebral arteries by thrombosis and emboli. AIS is also developed due to cerebral hemodynamic abnormality. AIS is associated with the development of neuroinflammation which increases the severity of AIS. Phosphodiesterase enzyme (PDEs) inhibitors have neuro-restorative and neuroprotective effects against the development of AIS through modulation of the cerebral cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP)/nitric oxide (NO) pathway. PDE5 inhibitors through mitigation of neuroinflammation may decrease the risk of long-term AIS-induced complications. PDE5 inhibitors may affect the hemodynamic properties and coagulation pathway which are associated with thrombotic complications in AIS. PDE5 inhibitors reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. PDE5 inhibitors mainly tadalafil and sildenafil improve clinical outcomes in AIS patients through the regulation of cerebral perfusion and cerebral blood flow (CBF). PDE5 inhibitors reduced thrombomodulin, P-selectin, and tissue plasminogen activator. Herein, PDE5 inhibitors may reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. In conclusion, PDE5 inhibitors may have potential roles in the management of AIS through modulation of CBF, cAMP/cGMP/NO pathway, neuroinflammation, and inflammatory signaling pathways. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Kasr El-Ainy School of Medicine, Cairo University, El Manial, Cairo, 11562, Egypt
- Lecturer of Medical Pharmacology, Nahda Faculty of Medicine, Beni Suef, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
11
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Grossini E, De Marchi F, Venkatesan S, Mele A, Ferrante D, Mazzini L. Effects of Acetyl-L-Carnitine on Oxidative Stress in Amyotrophic Lateral Sclerosis Patients: Evaluation on Plasma Markers and Members of the Neurovascular Unit. Antioxidants (Basel) 2023; 12:1887. [PMID: 37891966 PMCID: PMC10604350 DOI: 10.3390/antiox12101887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress, the alteration of mitochondrial function, and the neurovascular unit (NVU), play a role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. We aimed to demonstrate the changes in the plasma redox system and nitric oxide (NO) in 32 new ALS-diagnosed patients in treatment with Acetyl-L-Carnitine (ALCAR) compared to healthy controls. We also evaluated the effects of plasma on human umbilical cord-derived endothelial vascular cells (HUVEC) and astrocytes. The analyses were performed at the baseline (T0), after three months (T1), and after six months (T2). In ALS patients at T0/T1, the plasma markers of lipid peroxidation, thiobarbituric acid reactive substances (TBARS) and 4-hydroxy nonenal (4-HNE) were higher, whereas the antioxidants, glutathione (GSH) and the glutathione peroxidase (GPx) activity were lower than in healthy controls. At T2, plasma TBARS and 4-HNE decreased, whereas plasma GSH and the GPx activity increased in ALS patients. As regards NO, the plasma levels were firmly lower at T0-T2 than those of healthy controls. Cell viability, and mitochondrial membrane potential in HUVEC/astrocytes treated with the plasma of ALS patients at T0-T2 were reduced, while the oxidant release increased. Those results, which confirmed the fundamental role of oxidative stress, mitochondrial function, and of the NVU in ALS pathogenesis, can have a double meaning, acting as disease markers at baseline and potential markers of drug effects in clinical practice and during clinical trials.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (E.G.); (S.V.)
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (E.G.); (S.V.)
| | - Angelica Mele
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Daniela Ferrante
- Statistic Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| |
Collapse
|
13
|
Lu W, Chen JT, Shi YF, Chen MS, Wang PP, Zhang XJ, Xiao CJ, Li D, Cao CY, Li CH, Gao JM. Diversified cassane family diterpenoids from the leaves of Caesalpinia minax exerting anti-neuroinflammatory activity through suppressing MAPK and NF-κB pathways in BV-2 microglia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116653. [PMID: 37236383 DOI: 10.1016/j.jep.2023.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia minax Hance, whose seeds are known as "Ku-shi-lian" in China, have been used in Chinese folk medicine for treatment of rheumatism, dysentery, and skin itching. However, the anti-neuroinflammatory constituents of its leaves and their mechanism are rarely reported. AIM OF THE STUDY To search for new anti-neuro-inflammatory compounds from the leaves of C. minax and elucidate their mechanism on anti-neuroinflammatory effect. MATERIALS AND METHODS The main metabolites of the ethyl acetate fraction from C. minax were analyzed and purified via HPLC and various column chromatography techniques. Their structures were elucidated on the basis of 1D and 2D NMR, HR-ESI-MS, and single crystal X-ray diffraction analysis. Anti-neuroinflammatory activity was evaluated in BV-2 microglia cells induced by LPS. The expression levels of molecules in NF-κB and MAPK signaling pathways were analyzed through western blotting. Meanwhile, the time- and dose-dependent expression of associated proteins such as iNOS and COX-2 were detected by western blotting. Furthermore, Compounds 1 and 3 were performed on the NF-κB p65 active site using molecular docking simulation to elucidate the molecular level inhibition mechanism. RESULTS 20 cassane diterpenoids, including two novel ones (caeminaxins A and B) were isolated from the leaves of C. minax Hance. Caeminaxins A and B possessed a rare unsaturated carbonyl moiety in their structures. Most of the metabolites exhibited potent inhibition effects with IC50 values ranging from 10.86 ± 0.82 to 32.55 ± 0.47μM. Among them, caeminaxin A inhibited seriously the expression of iNOS and COX-2 proteins and restrained the phosphorylation of MAPK and the activation of NF-κB signaling pathways in BV-2 cells. The anti-neuro-inflammatory mechanism of caeminaxin A has been studied systematically for the first time. Furthermore, biosynthesis pathways for compounds 1-20 were discussed. CONCLUSIONS The new cassane diterpenoid, caeminaxin A, alleviated the expression of iNOS and COX-2 protein and down-regulated of intracellular MAPK and NF-κB signaling pathways. The results implied that cassane diterpenoids had potential to be developed into therapeutic agents for neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Wang Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jin-Ting Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Ye-Fan Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Meng-Song Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Pan-Pan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiu-Juan Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Xueren Road 22, Dali, 671000, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Chun-Huan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| |
Collapse
|
14
|
Singh L, Kaur N, Bhatti R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Mol Biol Rep 2023; 50:5369-5378. [PMID: 37039995 DOI: 10.1007/s11033-023-08397-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Biochanin-A is a naturally occurring plant phytoestrogen, which mimics specific the agonistic activity of estrogens. Biochanin-A is known to possess numerous activities, including neuroprotective, anti-diabetic, hepatoprotective, anti-inflammatory, antioxidant, and antimicrobial activities, along with the anticancer activity. Neuroinflammation is thought to play a pivotal pathological role in neurodegenerative disease. Sustained neuroinflammatory processes lead to progressive neuronal damage in Parkinson's and Alzheimer's disease. Activation of PI3K/Akt cascade and inhibition of MAPK signaling cascade have been observed to be responsible for conferring protection against neuroinflammation in neurodegenerative diseases. An increased oxidative stress promotes neuronal apoptosis via potentiating the TLR-4/NF-κB and inhibiting PI3K/Akt signaling mediated increase in pro-apoptotic and decreases in antiapoptotic proteins. Various authors have explored biochanin-A's neuroprotective effect by using various cell lines and animal models. Biochanin-A has been reported to mediate its neuroprotective via reducing the level of oxidants, inflammatory mediators, MAPK, TLR-4, NF-κB, NADPH oxidase, AchE, COX-2 and iNOS. Whereas, it has been observed to increase the level of anti-oxidants, along with phosphorylation of PI3K and Akt proteins. The current review has been designed to provide insights into the neuroprotective effect of biochanin-A and possible signaling pathways leading to protection against neuroinflammation and apoptosis in the central nervous system. This review will be helpful in guiding future researchers to further explore biochanin A at a mechanistic level to obtain useful lead molecules.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Navneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
15
|
Takamiya S, Kawabori M, Fujimura M. Stem Cell Therapies for Intracerebral Hemorrhage: Review of Preclinical and Clinical Studies. Cell Transplant 2023; 32:9636897231158153. [PMID: 36823970 PMCID: PMC9969479 DOI: 10.1177/09636897231158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Despite recent developments in the treatments for ischemic stroke, such as tissue plasminogen activator (t-PA) and thrombectomy, effective therapies for intracerebral hemorrhage (ICH) remain scarce. Stem cell therapies have attracted considerable attention owing to their potential neuro-regenerative ability; preclinical and clinical studies have been conducted to explore strategies for achieving functional recovery following ICH. In this review, we summarize the findings of preclinical studies on stem cell therapies of ICH, with a focus on different animal models, stem cell sources, transplantation methods, and their potential mechanisms of action. We also provide an overview of data from clinical trials to discuss the current status and future perspectives. Understanding the effectiveness and limitations of stem cell therapy and the future prospects could expand the applications of this novel therapeutic approach for ICH.
Collapse
Affiliation(s)
- Soichiro Takamiya
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
16
|
Hassan AHE, Kim HJ, Gee MS, Park JH, Jeon HR, Lee CJ, Choi Y, Moon S, Lee D, Lee JK, Park KD, Lee YS. Positional scanning of natural product hispidol's ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases. J Enzyme Inhib Med Chem 2022; 37:768-780. [PMID: 35196956 PMCID: PMC8881063 DOI: 10.1080/14756366.2022.2036737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/03/2022] Open
Abstract
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Rim Jeon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Cheol Jung Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yeonwoo Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Suyeon Moon
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Apam-Castillejos DJ, Tendilla-Beltrán H, Vázquez-Roque RA, Vázquez-Hernández AJ, Fuentes-Medel E, García-Dolores F, Díaz A, Flores G. Second-generation antipsychotic olanzapine attenuates behavioral and prefrontal cortex synaptic plasticity deficits in a neurodevelopmental schizophrenia-related rat model. J Chem Neuroanat 2022; 125:102166. [PMID: 36156295 DOI: 10.1016/j.jchemneu.2022.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Second-generation antipsychotics are the drugs of choice for the treatment of neurodevelopmental-related mental diseases such as schizophrenia. Despite the effectiveness of these drugs to ameliorate some of the symptoms of schizophrenia, specifically the positive ones, the mechanisms beyond their antipsychotic effect are still poorly understood. Specifically, second-generation antipsychotics are reported to have anti-inflammatory, antioxidant and neuroplastic properties. Using the neonatal ventral hippocampus lesion (nVHL) in the rat, an accepted schizophrenia-related model, we evaluated the effect of the second-generation antipsychotic olanzapine (OLZ) in the behavioral, neuroplastic, and neuroinflammatory alterations exhibited in the nVHL animals. OLZ corrected the hyperlocomotion and impaired working memory of the nVHL animals but failed to enhance social disturbances of these animals. In the prefrontal cortex (PFC), OLZ restored the pyramidal cell structural plasticity in the nVHL rats, enhancing the dendritic arbor length, the spinogenesis and the proportion of mature spines. Moreover, OLZ attenuated astrogliosis as well as some pro-inflammatory, oxidative stress, and apoptosis-related molecules in the PFC. These findings reinforce the evidence of anti-inflammatory, antioxidant, and neurotrophic mechanisms of second-generation antipsychotics in the nVHL schizophrenia-related model, which allows for the possibility of developing more specific drugs for this disorder and thus avoiding the side effects of current schizophrenia treatments.
Collapse
Affiliation(s)
| | | | | | | | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Mexico.
| |
Collapse
|
18
|
Moradi F, Eslami F, Rahimi N, Koohfar A, Shayan M, Maadani M, Ghasemi M, Dehpour AR. Modafinil exerts anticonvulsive effects against lithium-pilocarpine-induced status epilepticus in rats: A role for tumor necrosis factor-α and nitric oxide signaling. Epilepsy Behav 2022; 130:108649. [PMID: 35344809 DOI: 10.1016/j.yebeh.2022.108649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Status epilepticus (SE) is a continuous episode of seizures which leads to hippocampal neurodegeneration, severe systemic inflammation, and extreme damage to the brain. Modafinil, a psychostimulant and wake-promoting agent, has exerted neuroprotective and anti-inflammatory effects in previous preclinical studies. The aim of this study was to assess effects of modafinil on the lithium-pilocarpine-induced SE rat model and to explore possible involvement of tumor necrosis factor-α (TNF-α) and nitric oxide (NO) pathways in this regard. METHODS Status epilepticus was provoked by injection of lithium chloride (127 mg/kg, intraperitoneally [i.p]) and pilocarpine (60 mg/kg, i.p.) in rats. Animals received different modafinil doses (50, 75, 100, and 150 mg/kg, i.p.) and SE scores were documented over 3 hours of duration. Moreover, the role of the nitrergic pathway in the effects of modafinil was evaluated by injection of the non-selective NO synthase (NOS) inhibitor L-NG-Nitro arginine methyl ester (L-NAME, 10 mg/kg, i.p.), the selective neuronal NOS inhibitor 7-nitroindazole (30 mg/kg, i.p.), and the selective inducible NOS inhibitor aminoguanidine (100 mg/kg, i.p.) 15 min before saline/vehicle or modafinil. The ELISA method was used to quantify TNF-α and NO metabolite levels in the isolated hippocampus. RESULTS Modafinil at 100 mg/kg significantly decreased SE scores (P < 0.01). Pre-treatment with L-NAME, 7-nitroindazole, and aminoguanidine significantly reversed the anticonvulsive effects of modafinil. Status epilepticus-induced animals showed significantly higher NO metabolite and TNF-α levels in their hippocampal tissues, an effect that was reversed by modafinil (100 mg/kg, i.p.) treatment. Administration of NOS inhibitors resulted in excessive NO level reduction but an escalation of TNF-α level in modafinil-treated SE-animals. CONCLUSION Our study revealed anticonvulsive effects of modafinil in the lithium-pilocarpine-induced SE rat model via possible involvement of TNF-α and nitrergic pathways.
Collapse
Affiliation(s)
- Farid Moradi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Koohfar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Maadani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Qu W, Cheng Y, Peng W, Wu Y, Rui T, Luo C, Zhang J. Targeting iNOS Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation. Mol Neurobiol 2022; 59:3124-3139. [PMID: 35262869 DOI: 10.1007/s12035-022-02788-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 01/01/2023]
Abstract
Numerous studies have demonstrated the role of neuroinflammation in mediating acute pathophysiological events of early brain injury after subarachnoid hemorrhage (SAH). However, it is not clear how to target this inflammatory cascade after SAH. M1 activation of microglia is an important pathological mechanism driving neuroinflammation in SAH, which is considered aggressive, leading to cytotoxicity and robust inflammation related to the release of proinflammatory cytokines and chemokines after SAH. Thus, reducing the number of M1 microglia represents a potential target for therapies to improve outcomes after SAH. Previous studies have found that inducible nitric oxide synthase (iNOS/NO•) plays an essential role in promoting the survival of M1 microglia by blocking ferroptosis. Ferroptosis is a new type of iron-dependent cellular procedural death associated with pathological cell death related to mammalian degenerative diseases, cerebral hemorrhage, and traumatic brain injury. Here, we investigated the effect of L-NIL, an inhibitor of iNOS, on M1 microglia, neuroinflammation, neuronal cell death, brain edema, and neurological function in an experimental SAH model in vivo and in vitro. We found that L-NIL reduced the number of M1 microglia and alleviated neuroinflammation following SAH. Notably, treatment with L-NIL relieves brain edema and neuronal injury and improves outcomes of neurological function after SAH in rats. Mechanistically, we found that L-NIL inhibited the expression of iNOS and promoted ferroptosis of M1 microglia by increasing the expression of ferroptosis-related proteins and lipid peroxidation in an in vitro model of SAH, which was reversed by a ferroptosis inhibitor, liproxstatin-1. In addition, inhibiting iNOS had no significant effect on ferroptosis of neurons after oxyhemoglobin stimulation in vitro. Thus, our research demonstrated that inhibition of iNOS might represent a potential therapeutic strategy to improve outcomes after SAH by promoting ferroptosis of M1 microglia and reducing neuroinflammation.
Collapse
Affiliation(s)
- Wenhao Qu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Ying Cheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Wei Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Yan Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China.
| |
Collapse
|
20
|
Isoorientin Inhibits Amyloid β 25-35-Induced Neuronal Inflammation in BV2 Cells by Blocking the NF-κB Signaling Pathway. Molecules 2021; 26:molecules26227056. [PMID: 34834150 PMCID: PMC8623752 DOI: 10.3390/molecules26227056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aβ) peptides. Aβ induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aβ-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3′,4′,5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aβ-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aβ-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aβ25–35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aβ25–35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aβ25–35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.
Collapse
|
21
|
Marballi K, MacDonald JL. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem Int 2021; 148:105076. [PMID: 34048843 PMCID: PMC8286335 DOI: 10.1016/j.neuint.2021.105076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder predominantly impacting females. MECP2 is an epigenetic transcriptional regulator acting mainly to repress gene expression, though it plays multiple gene regulatory roles and has distinct molecular targets across different cell types and specific developmental stages. In this review, we summarize MECP2 loss-of-function associated transcriptome and proteome disruptions, delving deeper into the latter which have been comparatively severely understudied. These disruptions converge on multiple biochemical and cellular pathways, including those involved in synaptic function and neurodevelopment, NF-κB signaling and inflammation, and the vitamin D pathway. RTT is a complex neurological disorder characterized by myriad physiological disruptions, in both the central nervous system and peripheral systems. Thus, treating RTT will likely require a combinatorial approach, targeting multiple nodes within the interactomes of these cellular pathways. To this end, we discuss the use of dietary supplements and factors, namely, vitamin D and polyunsaturated fatty acids (PUFAs), as possible partial therapeutic agents given their demonstrated benefit in RTT and their ability to restore homeostasis to multiple disrupted cellular pathways simultaneously. Further unravelling the complex molecular alterations induced by MECP2 loss-of-function, and contextualizing them at the level of proteome homeostasis, will identify new therapeutic avenues for this complex disorder.
Collapse
Affiliation(s)
- Ketan Marballi
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
22
|
Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?-A Systematic Review. Int J Mol Sci 2021; 22:ijms22168413. [PMID: 34445117 PMCID: PMC8395098 DOI: 10.3390/ijms22168413] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Neonicotinoids are a class of insecticides that exert their effect through a specific action on neuronal nicotinic acetylcholine receptors (nAChRs). The success of these insecticides is due to this mechanism of action, since they act as potent agonists of insect nAChRs, presenting low affinity for vertebrate nAChRs, which reduces potential toxic risk and increases safety for non-target species. However, although neonicotinoids are considered safe, their presence in the environment could increase the risk of exposure and toxicity. On the other hand, although neonicotinoids have low affinity for mammalian nAChRs, the large quantity, variety, and ubiquity of these receptors, combined with its diversity of functions, raises the question of what effects these insecticides can produce in non-target species. In the present systematic review, we investigate the available evidence on the biochemical and behavioral effects of neonicotinoids on the mammalian nervous system. In general, exposure to neonicotinoids at an early age alters the correct neuronal development, with decreases in neurogenesis and alterations in migration, and induces neuroinflammation. In adulthood, neonicotinoids induce neurobehavioral toxicity, these effects being associated with their modulating action on nAChRs, with consequent neurochemical alterations. These alterations include decreased expression of nAChRs, modifications in acetylcholinesterase activity, and significant changes in the function of the nigrostriatal dopaminergic system. All these effects can lead to the activation of a series of intracellular signaling pathways that generate oxidative stress, neuroinflammation and, finally, neuronal death. Neonicotinoid-induced changes in nAChR function could be responsible for most of the effects observed in the different studies.
Collapse
|
23
|
Gholizadeh R, Abdolmaleki Z, Bahremand T, Ghasemi M, Gharghabi M, Dehpour AR. Involvement of N-Methyl-D-Aspartate Receptors in the Anticonvulsive Effects of Licofelone on Pentylenetetrazole-Induced Clonic Seizure in Mice. J Epilepsy Res 2021; 11:14-21. [PMID: 34395219 PMCID: PMC8357553 DOI: 10.14581/jer.21003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Licofelone is a dual 5-lipoxygenase/cyclooxygenase inhibitor, with well-documented anti-inflammatory and analgesic effects, which is used for treatment of osteoarthritis. Recent preclinical studies have also suggested neuroprotective and anti-oxidative properties of this drug in some neurological conditions such as seizure and epilepsy. We have recently demonstrated a role for nitric oxide (NO) signaling in the anti-epileptic activity of licofelone in two seizure models in rodents. Given the important role of N-methyl-D-aspartate receptors (NMDARs) activation in the NO production and its function in the nervous system, in the present study, we further investigated the involvement of NMDAR in the effects of licofelone (1, 3, 5, 10, and 20 mg/kg, intraperitoneal [i.p.]) in an in vivo model of seizure in mice. METHODS Clonic seizures were induced in male NMRI mice by intravenous administration of pentylenetetrazol (PTZ). RESULTS Acute administration of licofelone exerted anticonvulsant effects at 10 (p<0.01) and 20 mg/kg (p<0.001). A combined treatment with sub-effective doses of the selective NMDAR antagonist MK-801 (0.05 mg/kg, i.p.) and licofelone (5 mg/kg, i.p.) significantly (p<0.001) exerted an anticonvulsant effect on the PTZ-induced clonic seizures in mice. Notably, pre-treatment with the NMDAR co-agonist D-serine (30 mg/kg, i.p.) partially hindered the anticonvulsant effects of licofelone (20 mg/kg). CONCLUSIONS Our data suggest a possible role for the NMDAR in the anticonvulsant effects of licofelone on the clonic seizures induced by PTZ in mice.
Collapse
Affiliation(s)
- Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Astrocytes in Multiple Sclerosis-Essential Constituents with Diverse Multifaceted Functions. Int J Mol Sci 2021; 22:ijms22115904. [PMID: 34072790 PMCID: PMC8198285 DOI: 10.3390/ijms22115904] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
In multiple sclerosis (MS), astrocytes respond to the inflammatory stimulation with an early robust process of morphological, transcriptional, biochemical, and functional remodeling. Recent studies utilizing novel technologies in samples from MS patients, and in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), exposed the detrimental and the beneficial, in part contradictory, functions of this heterogeneous cell population. In this review, we summarize the various roles of astrocytes in recruiting immune cells to lesion sites, engendering the inflammatory loop, and inflicting tissue damage. The roles of astrocytes in suppressing excessive inflammation and promoting neuroprotection and repair processes is also discussed. The pivotal roles played by astrocytes make them an attractive therapeutic target. Improved understanding of astrocyte function and diversity, and the mechanisms by which they are regulated may lead to the development of novel approaches to selectively block astrocytic detrimental responses and/or enhance their protective properties.
Collapse
|
25
|
A Novel 1,8-Naphthyridine-2-Carboxamide Derivative Attenuates Inflammatory Responses and Cell Migration in LPS-Treated BV2 Cells via the Suppression of ROS Generation and TLR4/Myd88/NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms22052527. [PMID: 33802409 PMCID: PMC7959294 DOI: 10.3390/ijms22052527] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Novel 1,8-naphthyridine-2-carboxamide derivatives with various substituents (HSR2101-HSR2113) were synthesized and evaluated for their effects on the production of pro-inflammatory mediators and cell migration in lipopolysaccharide (LPS)-treated BV2 microglial cells. Among the tested compounds, HSR2104 exhibited the most potent inhibitory effects on the LPS-stimulated production of inflammatory mediators, including nitric oxide (NO), tumor necrosis factor-α, and interleukin-6. Therefore, this compound was chosen for further investigation. We found that HSR2104 attenuated levels of inducible NO synthase and cyclooxygenase 2 in LPS-treated BV2 cells. In addition, it markedly suppressed LPS-induced cell migration as well as the generation of intracellular reactive oxygen species (ROS). Moreover, HSR2104 abated the LPS-triggered nuclear translocation of nuclear factor-κB (NF-κB) through inhibition of inhibitor kappa Bα phosphorylation. Furthermore, it reduced the expressions of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) in LPS-treated BV2 cells. Similar results were observed with TAK242, a specific inhibitor of TLR4, suggesting that TLR4 is an upstream regulator of NF-κB signaling in BV2 cells. Collectively, our findings demonstrate that HSR2104 exhibits anti-inflammatory and anti-migratory activities in LPS-treated BV2 cells via the suppression of ROS and TLR4/MyD88/NF-κB signaling pathway. Based on our observations, HSR2104 may have a beneficial impact on inflammatory responses and microglial cell migration involved in the pathogenesis of various neurodegenerative disorders.
Collapse
|
26
|
Ghasemi M, Keyhanian K, Douthwright C. Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2021; 10:cells10020249. [PMID: 33525344 PMCID: PMC7912327 DOI: 10.3390/cells10020249] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested-(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Correspondence: ; Tel.: +1-774-441-7726; Fax: +1-508-856-4485
| | | | | |
Collapse
|
27
|
Onmaz DE, Isık SMT, Abusoglu S, Ekmekci AH, Sivrikaya A, Abusoglu G, Ozturk S, Aydemir HY, Unlu A. Serum ADMA levels were positively correlated with EDSS scores in patients with multiple sclerosis. J Neuroimmunol 2021; 353:577497. [PMID: 33549941 DOI: 10.1016/j.jneuroim.2021.577497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is an autoinflammatory, chronic central nervous system disease. In the pathogenesis of the disease increased nitric oxide (NO) levels play an important role. Nitric oxide (NO) has neuroprotective effects in physiological conditions, however, it is thought that excessive NO formation in MS may lead to demyelination and axonal damage. Derivatives of methylarginine including asymmetric dimethyl arginine (ADMA), L-N monomethyl arginine (L-NMMA), symmetric dimethyl arginine (SDMA) directly or indirectly reduce NO production. Our aim was to measure the levels of methylarginine derivatives and citrulline, ornithine, arginine, homoarginine levels, which are metabolites associated with NO metabolism, in MS subgroups.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey.
| | | | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ahmet Hakan Ekmekci
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques, Selcuk University Vocational School of Health, Konya, Turkey
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | | | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
28
|
Singh S. Updates on Versatile Role of Putative Gasotransmitter Nitric Oxide: Culprit in Neurodegenerative Disease Pathology. ACS Chem Neurosci 2020; 11:2407-2415. [PMID: 32564594 DOI: 10.1021/acschemneuro.0c00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a versatile gasotransmitter that contributes in a range of physiological and pathological mechanims depending on its cellular levels. An appropriate concentration of NO is essentially required for cellular physiology; however, its increased level triggers pathological mechanisms like altered cellular redox regulation, functional impairment of mitochondrion, and modifications in cellular proteins and DNA. Its increased levels also exhibit post-translational modifications in protein through S-nitrosylation of their thiol amino acids, which critically affect the cellular physiology. Along with such modifications, NO could also nitrosylate the endoplasmic reticulum (ER)-membrane located sensors of ER stress, which subsequently affect the cellular protein degradation capacity and lead to aggregation of misfolded/unfolded proteins. Since protein aggregation is one of the pathological hallmarks of neurodegenerative disease, NO should be taken into account during development of disease therapies. In this Review, we shed light on the diverse role of NO in both cellular physiology and pathology and discussed its involvement in various pathological events in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarika Singh
- Department of Neurosciences and Ageing Biology and Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
29
|
Pourshadi N, Rahimi N, Ghasemi M, Faghir-Ghanesefat H, Sharifzadeh M, Dehpour AR. Anticonvulsant Effects of Thalidomide on Pentylenetetrazole-Induced Seizure in Mice: A Role for Opioidergic and Nitrergic Transmissions. Epilepsy Res 2020; 164:106362. [PMID: 32447240 DOI: 10.1016/j.eplepsyres.2020.106362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
Although accumulating evidence indicates that the immunomodulatory medication thalidomide exerts anticonvulsant properties, the mechanisms underlying such effects of thalidomide are still unknown. Our previous preclinical study suggested that nitric oxide (NO) signaling may be involved in the anticonvulsant effects of thalidomide in a mouse model of clonic seizure. Additionally, several studies have shown a modulatory interaction between thalidomide and opioids in opioids intolerance, nociception and neuropathic pain. However, it is unclear whether opioidergic transmission or its interaction with NO signaling is involved in the anticonvulsant effects of thalidomide. Given the fact that both opioidergic and nitrergic transmissions have bimodal modulatory effects on seizure thresholds, in the present study we explored the involvement of these signaling pathways in the possible anticonvulsant effects of thalidomide on the pentylenetetrazole (PTZ)-induced clonic seizure in mice. Our data showed that acute administration of thalidomide (5-50 mg/kg, i.p., 30 min prior PTZ injection) dose-dependently elevated PTZ-induced clonic seizure thresholds. Acute administration of low doses (0.5-3 mg/kg, i.p., 60 min prior PTZ) of morphine exerted anticonvulsant effects (P < 0.001), whereas higher doses (15-60 mg/kg, 60 min prior PTZ) had proconvulsant effects (P < 0.01). Acute administration of a non-effective anticonvulsant dose of morphine (0.25 mg/kg) prior non-effective dose of thalidomide (5 mg/kg) exerted a robust (P < 0.01) anticonvulsant effect. Administration of a non-effective proconvulsant dose of morphine (7.5 mg/kg) prior thalidomide (5 mg/kg) didn't affect clonic seizure thresholds. Acute administration of a non-effective dose of the opioid receptor antagonist naltrexone (1 mg/kg, i.p.) significantly prevented anticonvulsant effects of thalidomide (10 mg/kg, i.p.). Pretreatment with non-effective dose of the NO precursor L-arginine (60 mg/kg, i.p.) significantly (P < 0.01) reduced the anticonvulsant effects of combined low doses of morphine (0.25 mg/kg) and thalidomide (5 mg/kg). Conversely, pretreatment with non-effective doses of either non-selective (L-NAME, 5 mg/kg, i.p.) or selective neuronal (7-nitroindazole, 30 mg/kg, i.p.) NO synthase (NOS) inhibitors significantly augmented the anticonvulsant effects of combined low doses of thalidomide and morphine, whereas the inducible NOS inhibitor aminoguanidine (100 mg/kg, i.p.) did not exert such effect. Our results indicate that opioidergic transmission and its interaction with neuronal NO signaling may contribute to the anti-seizure activity of thalidomide in the mice PTZ model of clonic seizure.
Collapse
Affiliation(s)
- Nastaran Pourshadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Hedyeh Faghir-Ghanesefat
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Acetamidine-Based iNOS Inhibitors as Molecular Tools to Counteract Inflammation in BV2 Microglial Cells. Molecules 2020; 25:molecules25112646. [PMID: 32517272 PMCID: PMC7321217 DOI: 10.3390/molecules25112646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.
Collapse
|
31
|
Esshili A, Manitz MP, Freund N, Juckel G. Induction of inducible nitric oxide synthase expression in activated microglia and astrocytes following pre- and postnatal immune challenge in an animal model of schizophrenia. Eur Neuropsychopharmacol 2020; 35:100-110. [PMID: 32439226 DOI: 10.1016/j.euroneuro.2020.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/24/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
In the central nervous system, activated microglia and astrocytes produce proinflammatory mediators such as inducible nitric oxide (iNOS) and cytokines. Uncontrolled release of these mediators induced by immune challenge can lead to increased vulnerability to complex brain disorders such as schizophrenia. In this study, BALB/c mice were injected intraperitoneally (i.p) with the viral mimetic polyriboinosinic-polyribocytidilic acid (poly(I:C)) or saline. At postnatal day 30 (PND0), the animals were sacrificed and the hippocampus, corpus callosum, striatum, cortex, fimbria and ventricle were immunostained for Iba-1, a microglial marker, glial fibrillary acidic protein (GFAP), an astrocyte marker, and iNOS, an activation marker for NO. Additionally, serum cytokine profiling (Interleukin-2 (IL-2), IL- 4, IL-6, interferon gamma (IFN-γ), tumour necrosis factor (TNF), IL-17A and IL-10) was determined using serum samples from poly(I:C)-treated and control mice. Our results demonstrated that poly(I:C) induced overactivation of differential proinflammatory responses in microglia and astrocytes, which could be strongly enhanced by a postnatal poly(I:C) administration before PND 30 in one part of the animals investigated. Specifically, there was significant iNOS upregulation in hippocampus, cortex and corpus callosum of poly(I:C)-affected off-springs. These inflammatory alterations were accompanied by increased circulating levels of the proinflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). This study provides insight into the role of microglia and astrocytes in an animal model of schizophrenia and an understanding of the regulation of iNOS expression in glial cells and cytokine networks. This knowledge could help identify novel targets for anti-oxidative and anti-inflammatory therapeutic schizophrenia intervention.
Collapse
Affiliation(s)
- Awatef Esshili
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany; Laboratoire de génétique, biodiversité et valorisation des bioressources, Institut supérieur de biotechnologie de Monastir, Université de Monastir, Tunisie
| | - Marie-Pierre Manitz
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nadja Freund
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Georg Juckel
- Laboratory of Psychoneuroimmunology, Department of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
32
|
Berköz M, Krośniak M, Özkan-Yılmaz F, Özlüer-Hunt A. Prophylactic effect of Biochanin A in lipopolysaccharide-stimulated BV2 microglial cells. Immunopharmacol Immunotoxicol 2020; 42:330-339. [PMID: 32482108 DOI: 10.1080/08923973.2020.1769128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aim/Purpose of the study:Inhibition of microglial activation using phytochemicals may be a potential candidate for the prevention of neurodegenerative diseases caused by neuroinflammation and oxidative stress. The goal of this study was to investigate the protective role of Biochanin A on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. BV2 microglial cells were treated with LPS in the presence and absence of Biochanin A. Materials and methods: For this aim, nitric oxide production, nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, Prostaglandin E2 (PGE2), and reactive oxygen species (ROS) levels, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), myeloid differentiation factor-88 (MyD88), and toll like receptor-4 (TLR-4) protein expressions, Akt and ERK1/2 phosphorylation levels were measured. Results:Biochanin A pretreatment resulted in significant and concentration-dependently reduced the LPS-induced production of nitric oxide, NF-κB p65, TNF-α, IL-1β, IL-6, PGE2, and ROS compared to the untreated group. Biochanin A prophylaxis exerted an anti-inflammatory effect by suppressing iNOS, COX-2, MyD88, and TLR-4 protein expressions and Akt and ERK1/2 pathway activation. Conclusion:Taken together, these results show that Biochanin A exerts antioxidant and anti-inflammatory activities, thus may be beneficial for preventing neurodegenerative diseases mediated by microglial cells.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Ferbal Özkan-Yılmaz
- Department of Basic Sciences, Faculty of Fisheries, Mersin University, Mersin, Turkey
| | - Arzu Özlüer-Hunt
- Department of Aquaculture, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
33
|
Li F, Gong S, Zhang H, Ding S. Learning and memory impairment of mice caused by gaseous formaldehyde. ENVIRONMENTAL RESEARCH 2020; 184:109318. [PMID: 32151841 DOI: 10.1016/j.envres.2020.109318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
In order to study the e of formaldehyde exposure on learning and memory ability of mice. We used Kun Ming (KM) mice to demonstrate the neurotoxic effects of FA, and Balb/c mice to explore the neurobiological mechanism. The Morris water maze (MWM) test showed that the exposure of gaseous formaldehyde could cause spatial learning and memory impairment in mice. H & E staining showed that in the 3.0 mg/m3 formaldehyde exposed group, the arrangement of pyramidal cells in CA1 area of mouse hippocampus was loose and disordered, the cell morphology was swollen and deformed, and the apical dendrites were shortened or even disappeared. Biochemical indicators revealed high doses of FA exposure could cause oxidative damage in brain. Compared with the control group, there were significant differences in the levels of ROS, MDA, GSH and 8-OHDG in the 3.0 mg/m3 group (P < 0.01), also the monoamine neurotransmitters content and the content of TNF-α, IL-1β and Caspase-3 (P < 0.01). Furthermore, the concentrations of cAMP, cGMP, NO and the activity of NOS in the cerebral cortex, hippocampus and brain stem after high doses of FA exposure were significantly different from those in the control group, indicating that FA exposure could interfere with the transduction of NO/cGMP signaling pathway. The results showed that FA could induce cognitive deficits and this extended investigation found that the toxicity of FA to the mouse nervous system is related to the NO/cGMP and cAMP signaling pathways.
Collapse
Affiliation(s)
- Fuhong Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| | - Siying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
34
|
Silva T, Fragoso YD, Destro Rodrigues MFS, Gomes AO, da Silva FC, Andreo L, Viana A, Teixeira da Silva DDF, Chavantes MC, Tempestini Horliana ACR, De Angelis K, Deana AM, Branco LP, Santos Fernandes KP, Motta LJ, Mesquita-Ferrari RA, Bussadori SK. Effects of photobiomodulation on interleukin-10 and nitrites in individuals with relapsing-remitting multiple sclerosis - Randomized clinical trial. PLoS One 2020; 15:e0230551. [PMID: 32255785 PMCID: PMC7138327 DOI: 10.1371/journal.pone.0230551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Investigate the effects of photobiomodulation (PBM) on the expression of IL-10 and nitrites in individuals with Relapsing-Remitting multiple sclerosis (MS), as these biomarkers play a fundamental role in the physiopathology of the disease. The modulation of IL-10 and nitrites through treatment with PBM may be a novel treatment modality for MS. Methods A randomized, uncontrolled, clinical trial was conducted involving 14 individuals with a diagnosis of Relapsing-Remitting MS and a score of up to 6.0 on the Expanded Disability Status Scale (EDSS). The participants were randomized to two groups Group 1 –PBM in the sublingual region; Group 2 –PBM over the radial artery. Irradiation was administered with a wavelength of 808 nm and output power of 100 mW for 360 seconds twice a week, totaling 24 sessions. Peripheral blood was analyzed for the determination of serum levels of IL-10 and nitrites. Results After treatment with PBM, the expression of IL-10 increased in both the sublingual group (pre-treatment: 2.8 ± 1.4 pg/ml; post-treatment: 8.3 ± 2.4 pg/ml) and the radial artery group (pre-treatment: 2.7 pg/ml ± 1.4; post-treatment: 11.7 ± 3.8 pg/ml). In contrast, nitrite levels were not modulated in the sublingual group (pre-treatment: 65 ± 50 nmol/mg protein; post-treatment: 51 ± 42 nmol/mg protein) or the radial artery group (pre-treatment: 51 ± 16 nmol/mg protein; post-treatment: 42 ± 7 nmol/mg protein). Conclusion Treatment with PBM positively modulated the expression of IL-10 but had no effect on nitrite levels. Further studies should be conducted with a larger sample and a control group, as PBM may be a promising complementary treatment for the management of MS. This trial is registered at ClinicalTrials.gov. Identifier: NCT03360487.
Collapse
Affiliation(s)
- Tamiris Silva
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | | | | | | | | | - Lucas Andreo
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | - Ariane Viana
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
| | | | | | | | - Kátia De Angelis
- Universidade Nove de Julho, UNINOVE, São Paulo, SP, Brazil
- Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
35
|
Papaefthymiou A, Doulberis M, Katsinelos P, Liatsos C, Polyzos SA, Kotronis G, Papanikolaou K, Kountouras J. Impact of nitric oxide's bidirectional role on glaucoma: focus onHelicobacter pylori–related nitrosative stress. Ann N Y Acad Sci 2020; 1465:10-28. [DOI: 10.1111/nyas.14253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Michael Doulberis
- Department of Gastroenterology and HepatologyUniversity of Zurich Zurich Switzerland
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Christos Liatsos
- Department of Gastroenterology401 General Military Hospital of Athens Athens Greece
| | - Stergios A. Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
- First Department of Pharmacology, School of MedicineAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Georgios Kotronis
- Department of Internal MedicineAgios Pavlos General Hospital Thessaloniki Macedonia Greece
| | - Katerina Papanikolaou
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| |
Collapse
|
36
|
Yan JJ, Du GH, Qin XM, Gao L. Baicalein attenuates the neuroinflammation in LPS-activated BV-2 microglial cells through suppression of pro-inflammatory cytokines, COX2/NF-κB expressions and regulation of metabolic abnormality. Int Immunopharmacol 2019; 79:106092. [PMID: 31863920 DOI: 10.1016/j.intimp.2019.106092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
Baicalein (5,6,7-trihydroxyflavone), isolated from the root of traditional Chinese herb Scutellaria baicalensis Georgi, has anti-inflammatory and anti-oxidative activities. This study explored the protective and modulatory mechanisms of baicalein on neuroinflammation, oxidative stress and metabolic abnormality in lipopolysaccharide (LPS)-activated BV-2 cells. Our results demonstrated that treatment with baicalein remarkably restrained the production of pro-inflammatory factors including nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in LPS-activated BV-2 cells. Moreover, baicalein significantly inhibited reactive oxygen species (ROS) production, decreased cyclooxygenase-2 (COX-2) and nuclear factor-b (NF-κB)/p65 expression. 1H NMR metabolomics analysis revealed that 12 differential metabolites were regulated by baicalein, implicated in alanine, aspartate and glutamate metabolism, glutathione metabolism, arginine and proline metabolism, D-glutamine and D-glutamate metabolism. In conclusion, these results indicated that baicalein has protective and modulatory effects on neuroinflammation and oxidative stress in LPS-activated BV-2 cells.
Collapse
Affiliation(s)
- Jiao-Jiao Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
37
|
Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflammation 2019; 16:268. [PMID: 31847868 PMCID: PMC6918709 DOI: 10.1186/s12974-019-1656-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Background Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. Methods A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. Results We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1β), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1β, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. Conclusions Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.
Collapse
|
38
|
Ghasemi M. Nitric oxide: Antidepressant mechanisms and inflammation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:121-152. [PMID: 31378250 DOI: 10.1016/bs.apha.2019.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Millions of individuals worldwide suffers from mood disorders, especially major depressive disorder (MDD), which has a high rate of disease burden in society. Although targeting the biogenic amines including serotonin, and norepinephrine have provided invaluable links with the pharmacological treatment of MDD over the last four decades, a growing body of evidence suggest that other biologic systems could contribute to the pathophysiology and treatment of MDD. In this chapter, we highlight the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby treatment of MDD. This has been investigated over the last four decades by showing that (i) levels of NO are altered in patients with major depression; (ii) modulators of NO signaling exert antidepressant effects in patients with MDD or in the animal studies; (iii) NO signaling could be targeted by a variety of antidepressants in animal models of depression; and (iv) NO signaling can potentially modulate the inflammatory pathways that underlie the pathophysiology of MDD. These findings, which hypothesize an NO involvement in MDD, can provide a new insight into novel therapeutic approaches for patients with MDD in the future.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States; Department of Neurology, Massachusetts and General Hospital, Boston, MA, United States.
| |
Collapse
|
39
|
Sonar SA, Lal G. The iNOS Activity During an Immune Response Controls the CNS Pathology in Experimental Autoimmune Encephalomyelitis. Front Immunol 2019; 10:710. [PMID: 31019516 PMCID: PMC6458273 DOI: 10.3389/fimmu.2019.00710] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) plays a critical role in the regulation of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Previous studies have shown that iNOS plays pathogenic as well as regulatory roles in MS and EAE. However, how does iNOS alters the pathophysiology of the central nervous system (CNS) in neuronal autoimmunity is not clearly understood. In the present work, we show that treatment of mice with L-NAME, an iNOS inhibitor, during the antigen-priming phase primarily alters brain pathology, while in the subsequent effector phase of the immune response, the spinal cord is involved. Inhibition of iNOS during the priming phase of the immune response promotes the infiltration of pathogenic CD11b+F4/80-Gr-1+ cells, but there is low recruitment of regulatory CD11b+F4/80+ cells in the brain. Inhibition of iNOS during the effector phase shows similar pathogenic alterations in the spinal cord, instead of in the brain. Treatment of wild-type mice with L-NAME or mice having genetic deficiency of iNOS show lower MHC-II expression on the dendritic cells, but not on macrophages. Our data suggest that iNOS has a critical regulatory role during antigen-priming as well as in the effector phase of EAE, and inhibition iNOS at different stages of the immune response can differentially alter either the brain or spinal cord pathology. Understanding the cellular and molecular mechanisms through which iNOS functions could help to design a better strategies for the clinical management of neuroinflammation and neuronal autoimmunity.
Collapse
|
40
|
Woo KW, Park JE, Cha JM, Subedi L, Kim SY, Lee KR. Three New Lignan Glycosides from the Firmiana simplex. Chem Pharm Bull (Tokyo) 2019; 67:18-22. [PMID: 30606947 DOI: 10.1248/cpb.c18-00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our quest for structurally intriguing compounds from Korean medicinal plant sources, chromatographic separation of the 80% MeOH extract from Firmiana simplex resulted in the isolation and identification of three new lignan glycosides (1-3), together with six known lignan glycosides (4-9). The structures of 1-3 were determined on the basis of spectroscopic analyses, including extensive 2D-NMR and enzyme hydrolysis. Nitric oxide (NO) production was evaluated in the lipopolysaccharide-activated microglial cell line, BV-2 to investigate the anti-neuroinflammatory effects of the isolated compounds (1-9). Compound 7 marginally inhibited NO levels with IC50 values of 59.83 µM.
Collapse
Affiliation(s)
- Kyeong Wan Woo
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Jong Eel Park
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Joon Min Cha
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| | - Lalita Subedi
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University
| | - Sun Yeou Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University
| |
Collapse
|
41
|
Palikhe S, Ohashi W, Sakamoto T, Hattori K, Kawakami M, Andoh T, Yamazaki H, Hattori Y. Regulatory Role of GRK2 in the TLR Signaling-Mediated iNOS Induction Pathway in Microglial Cells. Front Pharmacol 2019; 10:59. [PMID: 30778300 PMCID: PMC6369205 DOI: 10.3389/fphar.2019.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous member of the GRK family that restrains cellular activation by G protein-coupled receptor (GPCR) phosphorylation leading to receptor desensitization and internalization, but has been identified to regulate a variety of signaling molecules, among which may be associated with inflammation. In this study, we attempted to establish the regulatory role of GRK2 in the Toll-like receptor (TLR) signaling pathway for inducible nitric oxide synthase (iNOS) expression in microglial cells. When mouse MG6 cells were stimulated with the TLR4 ligands lipopolysaccharide (LPS) and paclitaxel, we found that interferon regulatory factor 1 (IRF1) protein expression and activation was upregulated, transcription of interferon-β (IFN-β) was accelerated, induction/activation of STAT1 and activation of STAT3 were promoted, and subsequently iNOS expression was upregulated. The ablation of GRK2 by small interfering RNAs (siRNAs) not only eliminated TLR4-mediated upregulation of IRF1 protein expression and nuclear translocation but also suppressed the activation of the STAT pathway, resulting in negating the iNOS upregulation. The TLR3-mediated changes in IRF1 and STAT1/3, leading to iNOS induction, were also abrogated by siRNA knockdown of GRK2. Furthermore, transfection of GRK2 siRNA blocked the exogenous IFN-β supplementation-induced increases in phosphorylation of STAT1 as well as STAT3 and abrogated the augmentation of iNOS expression in the presence of exogenous IFN-β. Taken together, our results show that GRK2 regulates the activation of IRF1 as well as the activation of the STAT pathway, leading to upregulated transcription of iNOS in activated microglial cells. Modulation of the TLR signaling pathway via GRK2 in microglia may be a novel therapeutic target for treatment of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Ohashi
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuya Sakamoto
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaaki Kawakami
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiromi Yamazaki
- Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- The Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
42
|
Gong H, Su WJ, Cao ZY, Lian YJ, Peng W, Liu YZ, Zhang Y, Liu LL, Wu R, Wang B, Zhang T, Wang YX, Jiang CL. Hippocampal Mrp8/14 signaling plays a critical role in the manifestation of depressive-like behaviors in mice. J Neuroinflammation 2018; 15:252. [PMID: 30180864 PMCID: PMC6122683 DOI: 10.1186/s12974-018-1296-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Depression is one of the most common mental disorders characterized mainly by low mood and loss of interest or pleasure. About a third of patients with depression do not respond to classic antidepressant treatments. Recent evidence suggests that Mrp8/14 (myeloid-related protein 8/14) plays a crucial role in cognitive dysfunction and neuroinflammatory diseases, yet its role in mood regulation remains largely uninvestigated. In the present work, we explored the potential role of Mrp8/14 in the progression of depression. METHODS After 4 weeks of chronic unpredictable mild stress (CUMS), depressive-like symptoms and Mrp8/14 were determined. To verify the effects of Mrp8/14 on depressive-like behaviors, the inhibitor TAK-242 and recombinant Mrp8/14 were used. Furthermore, the molecular mechanisms in Mrp8/14-induced behavioral and biological changes were examined in vivo and ex vivo. RESULTS Four-week CUMS contributed to the development of depressive symptoms. Mrp8 and Mrp14 were upregulated in the hippocampus and serum after exposure to CUMS. Pharmacological inhibition of Mrp14 attenuated CUMS-induced TLR4/NF-κB signaling activation and depressive-like behaviors. Furthermore, central administration of recombinant Mrp8, Mrp14, and Mrp8/14 resulted in neuroinflammation and depressive-like behaviors. Mrp8/14-provoked proinflammatory effects and depressive-like behaviors were improved by pretreatment with a TLR4 inhibitor. Moreover, pharmacological inhibition of TLR4 reduced the release of nitric oxide and reactive oxygen species in Mrp8/14-activated BV2 microglia. CONCLUSIONS These data suggest that the hippocampal Mrp8/14-TLR4-mediated neuroinflammation contributes to the development of depressive-like behaviors. Targeting the Mrp8/14 may be a novel promising antidepressant approach.
Collapse
Affiliation(s)
- Hong Gong
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
- Hainan Branch of Chinese PLA General Hospital, Sanya, 572013 People’s Republic of China
| | - Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Zhi-Yong Cao
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
- Department of Psychiatry, The 102nd Hospital of PLA, Changzhou, 213003 People’s Republic of China
| | - Yong-Jie Lian
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Wei Peng
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Yun-Zi Liu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Yi Zhang
- Department of Psychiatry, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Lin-Lin Liu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Ran Wu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Bo Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Yun-Xia Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
43
|
Ren SZ, Wang ZC, Zhu D, Zhu XH, Shen FQ, Wu SY, Chen JJ, Xu C, Zhu HL. Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. Eur J Med Chem 2018; 157:909-924. [PMID: 30149323 DOI: 10.1016/j.ejmech.2018.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/20/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
A series of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy were designed, synthesized and biologically evaluated. Among them, compound 7l displayed the most potent inhibitory against COX-2 (IC50 = 0.82 μM) and antiproliferative activities against Hela cells (IC50 = 0.34 μM) compared with Celecoxib (IC50 = 0.38 and 7.91 μM). The further mechanistic studies revealed that 7l could induce apoptosis of Hela cells by mitochondrial depolarization and the antiproliferative activities of 7l were positively correlated with the levels of intracellular NO release in Hela cells. Most notably, 7l could dramatically suppress tumor growth in Hela cells xenografted mouse model. In summary, compound 7l may be promising candidates for cancer therapy.
Collapse
Affiliation(s)
- Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China.
| | - Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Fa-Qian Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Song-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Jin-Jin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
44
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
45
|
Shao QH, Zhang XL, Chen Y, Zhu CG, Shi JG, Yuan YH, Chen NH. Anti-neuroinflammatory effects of 20C from Gastrodia elata via regulating autophagy in LPS-activated BV-2 cells through MAPKs and TLR4/Akt/mTOR signaling pathways. Mol Immunol 2018; 99:115-123. [PMID: 29763880 DOI: 10.1016/j.molimm.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/21/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022]
Abstract
20C, a novel bibenzyl compound, is isolated from Gastrodia elata. In our previous study, 20C showed protective effects on tunicamycin-induced endoplasmic reticulum stress, rotenone-induced apoptosis and rotenone-induced oxidative damage. However, the anti-neuroinflammatory effect of 20C is still with limited acquaintance. The objective of this study was to confirm the anti-neuroinflammatory effect of 20C on Lipopolysaccharide (LPS)-activated BV-2 cells and further elucidated the underlying molecular mechanisms. In this study, 20C significantly attenuated the protein levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin (IL)-1β, and secretion of nitric oxide (NO) and tumor necrosis factor (TNF)-α induced by Lipopolysaccharide (LPS) in BV-2 cells. Moreover, 20C up-regulated the levels of autophagy-related proteins in LPS-activated BV-2 cells. The requirement of mitogen-activated protein kinases (MAPKs) has been well documented for regulating the process of autophagy. Both 20C and rapamycin enhanced autophagy by suppressing the phosphorylation of MAPKs signaling pathway. Furthermore, 20C treatment significantly inhibited the levels of toll like receptor 4 (TLR4), phosphorylated-protein kinase B (Akt) and phosphorylated-mechanistic target of rapamycin (mTOR), indicating blocking TLR4/Akt/mTOR might be an underlying basis for the anti-inflammatory effect of 20C. These findings suggest that 20C has therapeutic potential for treating neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Ling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng-Gen Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Gong Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
46
|
Porter A, Leckie R, Verstynen T. White matter pathways as both a target and mediator of health behaviors. Ann N Y Acad Sci 2018; 1428:71-88. [PMID: 29749627 DOI: 10.1111/nyas.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023]
Abstract
Health behaviors arise from the dynamics of highly interconnected networks in the brain and variability in these networks drives individual differences in behavior. In this review, we show how many factors that predict the physical health of the body also correlate with variability of the myelinated fascicles, called white matter, that connect brain regions together. The general pattern present in the literature is that as predictors of physical health decline, there is often a coincident reduction in the integrity of major white matter pathways. We also highlight a plausible mechanism, inflammatory pathways, whereby health-related activation of the immune system can impact the myelin sheath, a protective tissue that facilitates long range communication in the brain. The growing body of evidence supports the hypothesis that degrading health in the periphery may disrupt the communication efficiency of the macroscopic neural circuits that mediate complex behaviors, which can in turn contribute to poorer physical health.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Regina Leckie
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Li Q, Chen L, Liu X, Li X, Cao Y, Bai Y, Qi F. Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway. J Cell Biochem 2018; 119:7053-7062. [PMID: 29737568 DOI: 10.1002/jcb.27023] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
Neuroinflammation has been known as an important pathogenetic contributor of Alzheimer's disease (AD). Pterostilbene is a natural compound which has neuroprotective activity. However, the effect of pterostilbene on amyloid-β (Aβ)-induced neuroinflammation has not been clarified. The aim of the present study was to investigate the effect of pterostilbene on Aβ-induced neuroinflammation in microglia. The results indicated that pterostilbene attenuated Aβ1-42 -induced cytotoxicity of BV-2 cells. Aβ1-42 induced NO production and iNOS mRNA and protein expression, while pterostilbene inhibited the induction. The expression and secretion levels of IL-6, IL-1β, and TNF-α were enhanced by Aβ1-42 treatment, whereas pterostilbene decreased them. Aβ1-42 activated NLRP3/caspase-1 inflammasome, which was inactivated by pterostilbene. In addition, the inhibitor of caspase-1 Z-YVAD-FMK attenuated the Aβ1-42 -induced neuroinflammation in BV-2 cells. In conclusion, pterostilbene attenuated the neuroinflammatory response induced by Aβ1-42 in microglia through inhibiting the NLRP3/caspase-1 inflammasome pathway, indicating that pterostilbene might be an effective therapy for AD.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Long Chen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xuewen Liu
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xidong Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Yue Cao
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Yang Bai
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Fengjiao Qi
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
48
|
da Silva T, da Silva FC, Gomes AO, Viana AO, Gonçalves MLL, Rodrigues MFSD, Horliana ACRT, da Silva DDFT, Chavantes MC, Fragoso YD, Branco LP, Motta LJ, Fernandes KPS, Mesquita-Ferrari RA, Bussadori SK. Effect of photobiomodulation treatment in the sublingual, radial artery region, and along the spinal column in individuals with multiple sclerosis: Protocol for a randomized, controlled, double-blind, clinical trial. Medicine (Baltimore) 2018; 97:e0627. [PMID: 29742699 PMCID: PMC5959421 DOI: 10.1097/md.0000000000010627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease, for which the forms of treatment are medication and rehabilitation. However, in vitro and in vivo studies have demonstrated that photobiomodulation can be an effective treatment modality for inflammatory diseases, including MS. Photobiomodulation has a broad range of benefits, such as the avoidance of cell and tissue death, the stimulation of healing and injury repair, reductions in pain, edema and inflammation, cell proliferation, and even apoptosis. The outcomes of photobiomodulation include the regeneration of cells, the stimulation of the growth of Schwann cells, a reduction in spasticity, functional improvements, a reduction in nitric oxide levels, and the upregulation of the cytokine IL10, demonstrating that this therapeutic modality can offer neuroprotection. METHODS A randomized, controlled, double-blind, clinical trial is proposed. The patients will be divided into 6 groups. Groups 1 and 2 will receive sham and active photobiomodulation in the sublingual region, respectively. Groups 3 and 4 will receive sham and active photobiomodulation along the spinal cord, respectively. Group 5 will receive placebo treatment with photobiomodulation on the skin in the region of the radial artery with a specific bracelet. Group 6 will be treated with photobiomodulation on the skin in the region of the radial artery. DISCUSSION Treatment for MS is directed at the immune response and slowing the progression of the disease. This is one of the first clinical trials involving photobiomodulation in the sublingual region and along the spinal cord, which could help establish a promising new form of nonpharmacological treatment for autoimmune diseases. This is one of the first clinical trials with sublingual photobiomodulation and along the spinal cord that could help establish a new form of promising treatment of the disease associated with pharmacological treatment.
Collapse
|
49
|
Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018; 376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
50
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 772] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|