1
|
Nemat P, Semenova S, van der Loo RJ, Smit AB, Spijker S, van den Oever MC, Rao-Ruiz P. Structural synaptic signatures of contextual memory retrieval-reactivated hippocampal engram cells. Neurobiol Learn Mem 2025; 218:108033. [PMID: 39923960 DOI: 10.1016/j.nlm.2025.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Learning enhances hippocampal engram cell synaptic connectivity which is crucial for engram reactivation and recall to natural cues. Memory retrieval engages only a subset of the learning-activated ensemble, indicating potential differences in synaptic connectivity signatures of reactivated and non-reactivated cells. We probed these differences in structural synaptic connectivity patterns after recent memory retrieval, 72 h after either neutral Context Exploration (CE) or aversive Contextual Fear Conditioning (CFC). Using a combination of eGRASP (enhanced green fluorescent protein (GFP) reconstitution across synaptic partners) and viral-TRAP (targeted recombination in activated populations) to label CA3 synapses onto CA1 engram cells, we investigated differences in spine density, clusters, and morphology between the reactivated and non-reactivated population of the learning ensemble. In doing so, we developed a pipeline for reconstruction and analysis of dendrites and spines, taking nested data structure into account. Our data demonstrate an interplay between reactivation status, context valence or both factors on the number, distribution, and morphology of CA1 engram cell synapses. Despite a lack of differences in spine density, reactivated engram cells encoding an aversive context were characterised by a higher probability of forming spine clusters and a more dynamic spine type signature compared to their non-reactivated counterparts or engram cells encoding a neutral context. Together, our data indicate that the learning-activated ensemble undergoes different trajectories in structural synaptic connectivity during engram refinement.
Collapse
Affiliation(s)
- Panthea Nemat
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Salimat Semenova
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands.
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Jin L, Behabadi BF, Jadi MP, Ramachandra CA, Mel BW. Classical-Contextual Interactions in V1 May Rely on Dendritic Computations. Neuroscience 2022; 489:234-250. [PMID: 35272004 PMCID: PMC9049952 DOI: 10.1016/j.neuroscience.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
A signature feature of the neocortex is the dense network of horizontal connections (HCs) through which pyramidal neurons (PNs) exchange "contextual" information. In primary visual cortex (V1), HCs are thought to facilitate boundary detection, a crucial operation for object recognition, but how HCs modulate PN responses to boundary cues within their classical receptive fields (CRF) remains unknown. We began by "asking" natural images, through a structured data collection and ground truth labeling process, what function a V1 cell should use to compute boundary probability from aligned edge cues within and outside its CRF. The "answer" was an asymmetric 2-D sigmoidal function, whose nonlinear form provides the first normative account for the "multiplicative" center-flanker interactions previously reported in V1 neurons (Kapadia et al., 1995, 2000; Polat et al., 1998). Using a detailed compartmental model, we then show that this boundary-detecting classical-contextual interaction function can be computed by NMDAR-dependent spatial synaptic interactions within PN dendrites - the site where classical and contextual inputs first converge in the cortex. In additional simulations, we show that local interneuron circuitry activated by HCs can powerfully leverage the nonlinear spatial computing capabilities of PN dendrites, providing the cortex with a highly flexible substrate for integration of classical and contextual information.
Collapse
Affiliation(s)
- Lei Jin
- USC Neuroscience Graduate Program, United States
| | | | | | | | - Bartlett W Mel
- USC Neuroscience Graduate Program, United States; Department of Biomedical Engineering, University of Southern California, United States.
| |
Collapse
|
5
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
6
|
van Bommel B, Konietzny A, Kobler O, Bär J, Mikhaylova M. F-actin patches associated with glutamatergic synapses control positioning of dendritic lysosomes. EMBO J 2019; 38:e101183. [PMID: 31267565 PMCID: PMC6669925 DOI: 10.15252/embj.2018101183] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Organelle positioning within neurites is required for proper neuronal function. In dendrites, with their complex cytoskeletal organization, transport of organelles is guided by local specializations of the microtubule and actin cytoskeleton, and by coordinated activity of different motor proteins. Here, we focus on the actin cytoskeleton in the dendritic shaft and describe dense structures consisting of longitudinal and branched actin filaments. These actin patches are devoid of microtubules and are frequently located at the base of spines, or form an actin mesh around excitatory shaft synapses. Using lysosomes as an example, we demonstrate that the presence of actin patches has a strong impact on dendritic organelle transport, as lysosomes frequently stall at these locations. We provide mechanistic insights on this pausing behavior, demonstrating that actin patches form a physical barrier for kinesin-driven cargo. In addition, we identify myosin Va as an active tether which mediates long-term stalling. This correlation between the presence of actin meshes and halting of organelles could be a generalized principle by which synapses control organelle trafficking.
Collapse
Affiliation(s)
- Bas van Bommel
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Konietzny
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia Bär
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Paternoster V, Svanborg M, Edhager AV, Rajkumar AP, Eickhardt EA, Pallesen J, Grove J, Qvist P, Fryland T, Wegener G, Nyengaard JR, Mors O, Palmfeldt J, Børglum AD, Christensen JH. Brain proteome changes in female Brd1 +/- mice unmask dendritic spine pathology and show enrichment for schizophrenia risk. Neurobiol Dis 2018; 124:479-488. [PMID: 30590179 DOI: 10.1016/j.nbd.2018.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic and molecular studies have implicated the Bromodomain containing 1 (BRD1) gene in the pathogenesis of schizophrenia and bipolar disorder. Accordingly, mice heterozygous for a targeted deletion of Brd1 (Brd1+/- mice) show behavioral phenotypes with broad translational relevance to psychiatric disorders. BRD1 encodes a scaffold protein that affects the expression of many genes through modulation of histone acetylation. BRD1 target genes have been identified in cell lines; however the impact of reduced Brd1 levels on the brain proteome is largely unknown. In this study, we applied label-based quantitative mass spectrometry to profile the frontal cortex, hippocampus and striatum proteome and synaptosomal proteome of female Brd1+/- mice. We successfully quantified between 1537 and 2196 proteins and show widespread changes in protein abundancies and compartmentalization. By integrative analysis of human genetic data, we find that the differentially abundant proteins in frontal cortex and hippocampus are enriched for schizophrenia risk further linking the actions of BRD1 to psychiatric disorders. Affected proteins were further enriched for proteins involved in processes known to influence neuronal and dendritic spine morphology e.g. regulation of cytoskeleton dynamics and mitochondrial function. Directly prompted in these findings, we investigated dendritic spine morphology of pyramidal neurons in anterior cingulate cortex and found them significantly altered, including reduced size of small dendritic spines and decreased number of the mature mushroom type. Collectively, our study describes known as well as new mechanisms related to BRD1 dysfunction and its role in psychiatric disorders, and provides evidence for the molecular and cellular dysfunctions underlying altered neurosignalling and cognition in Brd1+/- mice.
Collapse
Affiliation(s)
- Veerle Paternoster
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.
| | - Maria Svanborg
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Anto P Rajkumar
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Mental Health of Older Adults and Dementia Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK; Department of Old Age Psychiatry, Psychology, & Neuroscience, King's College London, Institute of Psychiatry, London, UK
| | - Esben Ahlburg Eickhardt
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonatan Pallesen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Bioinformatics Research Centre, BiRC, Aarhus University, Aarhus, Denmark
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tue Fryland
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Dupont Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jane Hvarregaard Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Konietzny A, Bär J, Mikhaylova M. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Front Cell Neurosci 2017; 11:147. [PMID: 28572759 PMCID: PMC5435805 DOI: 10.3389/fncel.2017.00147] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin) that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.
Collapse
Affiliation(s)
- Anja Konietzny
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Julia Bär
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group 'Neuronal Protein Transport,' Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfHamburg, Germany
| |
Collapse
|