1
|
Tang Z, Li R, Guo X, Wang Z, Wu J. Regulation of blood-brain barrier integrity by brain microvascular endothelial cells in ischemic stroke: A therapeutic opportunity. Eur J Pharmacol 2025; 996:177553. [PMID: 40147580 DOI: 10.1016/j.ejphar.2025.177553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Stroke is the second leading cause of death from cardiovascular diseases. Brain microvascular endothelial cells (BMECs) are crucial in the treatment of cerebral ischemic stroke, as their functional status directly affects the integrity of the blood-brain barrier (BBB). This review systematically discusses the central role of BMECs in ischemia. The mitochondrial dysfunction and activation of apoptosis/necrosis pathways in BMECs directly disrupt the integrity of the BBB and the degradation of junctional complexes (such as TJs and AJs) further exacerbates its permeability. In the neurovascular unit (NVU), astrocytes, microglia, and pericytes regulate the function of BMECs by secreting cytokines (such as TGF-β and VEGF), showing dual effects of promoting repair and damage. The dynamic changes of transporters, including those from the ATP-binding cassette and solute carrier families, as well as ion channels and exchangers, such as potassium and calcium channels, offer novel insights for the development of targeted drug delivery systems.
Collapse
Affiliation(s)
- Ziqi Tang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Ruoxi Li
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Xi Guo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
| | - Zhongyu Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 440070, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China; Beijing Tiantan Hospital, Capital Medical University, Beijing, 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 440070, China.
| |
Collapse
|
2
|
Pizzamiglio L, Capitano F, Rusina E, Fossati G, Menna E, Léna I, Antonucci F, Mantegazza M. Neurodevelopmental defects in Dravet syndrome Scn1a +/- mice: Targeting GABA-switch rescues behavioral dysfunctions but not seizures and mortality. Neurobiol Dis 2025; 207:106853. [PMID: 40021096 DOI: 10.1016/j.nbd.2025.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) caused by mutations of the SCN1A gene (NaV1.1 sodium channel) and characterized by seizures, motor disabilities and cognitive/behavioral deficits, including autistic traits. The relative role of seizures and neurodevelopmental defects in disease progression, as well as the role of the mutation in inducing early neurodevelopmental defects before symptoms' onset, are not clear yet. A delayed switch of GABAergic transmission from excitatory to inhibitory (GABA-switch) was reported in models of DS, but its effects on the phenotype have not been investigated. Using a multi-scale approach, here we show that targeting GABA-switch with the drugs KU55933 (KU) or bumetanide (which upregulate KCC2 or inhibits NKCC1 chloride transporters, respectively) rescues social interaction deficits and reduces hyperactivity observed in P21 Scn1a+/- DS mouse model. Bumetanide also improves spatial working memory defects. Importantly, neither KU nor bumetanide have effect on seizures or mortality rate. Also, we disclose early behavioral defects and delayed neurodevelopmental milestones well before seizure onset, at the beginning of NaV1.1 expression. We thus reveal that neurodevelopmental components in DS, in particular GABA switch, underlie some cognitive/behavioral defects, but not seizures. Our work provides further evidence that seizures and neuropsychiatric dysfunctions in DEEs can be uncoupled and can have differential pathological mechanisms. They could be treated separately with targeted pharmacological strategies.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Fabrizio Capitano
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Evgeniia Rusina
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | | | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Rozzano, Milan, Italy
| | - Isabelle Léna
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Flavia Antonucci
- Institute of Neuroscience - National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Rozzano, Milan, Italy; Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.
| | - Massimo Mantegazza
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm U1323, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
3
|
Specchio N, Di Micco V, Aronica E, Auvin S, Balestrini S, Brunklaus A, Gardella E, Scheper M, Taglialatela M, Trivisano M, Curatolo P. The epilepsy-autism phenotype associated with developmental and epileptic encephalopathies: New mechanism-based therapeutic options. Epilepsia 2025; 66:970-987. [PMID: 39985505 DOI: 10.1111/epi.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/24/2025]
Abstract
Epilepsy and autism often co-occur in genetic developmental and epileptic encephalopathies (DEEs), but their underlying neurobiological processes remain poorly understood, complicating treatment. Advances in molecular genetics and understanding the neurodevelopmental pathogenesis of the epilepsy-autism phenotype may lead to mechanism-based treatments for children with DEEs and autism. Several genes, including the newly reported PPFIA3, MYCBP2, DHX9, TMEM63B, and RELN, are linked to various neurodevelopmental and epileptic disorders, intellectual disabilities, and autistic features. These findings underscore the clinical heterogeneity of genetic DEEs and suggest diverse neurobiological mechanisms influenced by genetic, epigenetic, and environmental factors. Mechanisms linking epilepsy and autism include γ-aminobutyric acidergic (GABAergic) signaling dysregulation, synaptic plasticity, disrupted functional connectivity, and neuroinflammatory responses. GABA system abnormalities, critical for inhibitory neurotransmission, contribute to both conditions. Dysregulation of the mechanistic target of rapamycin (mTOR) pathway and neuroinflammation are also pivotal, affecting seizure generation, drug resistance, and neuropsychiatric comorbidities. Abnormal synaptic function and connectivity further underscore the epilepsy-autism phenotype. New treatment options targeting specific mechanisms linked to the epilepsy-autism phenotype are emerging. Genetic variants in potassium channel genes like KCNQ2 and KCNT1 are frequent causes of early onset DEEs. Personalized treatments like retigabine and quinidine have been explored with heterogeneous responses. Efforts are ongoing to develop more effective KCNQ activators and KCNT1 blockers. SCN1A genetic variants, particularly in Dravet syndrome, show potential for treatment of autistic symptoms with low-dose clonazepam, fenfluramine, and cannabidiol, although human trials have yet to consistently replicate animal model successes. Early intervention before the age of 3 years, particularly in SCN1A- and tuberous sclerosis complex-related DEEs, is crucial. Additionally, targeting the mTOR pathway shows promise for seizure control and managing epilepsy-associated comorbidities. Understanding the distinct autism spectrum disorder phenotype in DEEs and implementing early behavioral interventions are essential for improving outcomes. Despite genetic advances, significant challenges persist in diagnosing and treating DEE-associated epilepsy-autism phenotypes. Future clinical trials should adopt precision health approaches to improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
- University Hospitals KU Leuven, Belgium
| | - Valentina Di Micco
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Univeristy Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Stéphane Auvin
- Assistance publique - Hôpitaux de Paris, Service de Neurologie Pédiatrique, Centre de Référence Epilepsies Rares, membre EpiCARE, Hôpital Universitaire Robert-Debré, Université Paris-Cité, Institut national de la santé et de la recherche médicale Neuro Diderot, Institut Universitaire de France, Paris, France
| | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Andreas Brunklaus
- School of Health and Wellbeing, University of Glasgow, UK and the Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine and Department of Clinical Neurophysiology, Danish Epilepsy Center, member of EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam Univeristy Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | - Marina Trivisano
- Neurology Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, full member of EpiCARE, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
4
|
Sharma B, Torres MM, Rodriguez S, Gangwani L, Kumar S. MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons. Neural Regen Res 2024; 19:2698-2707. [PMID: 38595288 PMCID: PMC11168514 DOI: 10.4103/nrr.nrr-d-23-01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00026/figure1/v/2024-04-08T165401Z/r/image-tiff Gamma-aminobutyric acid (GABA)ergic neurons, the most abundant inhibitory neurons in the human brain, have been found to be reduced in many neurological disorders, including Alzheimer's disease and Alzheimer's disease-related dementia. Our previous study identified the upregulation of microRNA-502-3p (miR-502-3p) and downregulation of GABA type A receptor subunit α-1 in Alzheimer's disease synapses. This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function. In vitro studies were performed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs. In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunit α-1 mRNA. Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunit α-1 gene and suppresses the luciferase activity. Furthermore, quantitative reverse transcription-polymerase chain reaction, miRNA in situ hybridization, immunoblotting, and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunit α-1 level, while suppression of miR-502-3p increased the level of GABA type A receptor subunit α-1 protein. Notably, as a result of the overexpression of miR-502-3p, cell viability was found to be reduced, and the population of necrotic cells was found to be increased. The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney (HEK) recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function, suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function. Additionally, the levels of proteins associated with Alzheimer's disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression. The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p. We propose that micro-RNA, in particular miR-502-3p, could be a potential therapeutic target to modulate GABAergic synapse function in neurological disorders, including Alzheimer's disease and Alzheimer's disease-related dementia.
Collapse
Affiliation(s)
- Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melissa M. Torres
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Sheryl Rodriguez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Laxman Gangwani
- Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
5
|
Guha A, Hunter SK, Legget KT, McHugo M, Hoffman MC, Tregellas JR. Intrinsic Infant Hippocampal Function Supports Inhibitory Processing. Dev Psychobiol 2024; 66:e22529. [PMID: 39010701 PMCID: PMC11254329 DOI: 10.1002/dev.22529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Impaired cerebral inhibition is commonly observed in neurodevelopmental disorders and may represent a vulnerability factor for their development. The hippocampus plays a key role in inhibition among adults and undergoes significant and rapid changes during early brain development. Therefore, the structure represents an important candidate region for early identification of pathology that is relevant to inhibitory dysfunction. To determine whether hippocampal function corresponds to inhibition in the early postnatal period, the present study evaluated relationships between hippocampal activity and sensory gating in infants 4-20 weeks of age (N = 18). Resting-state functional magnetic resonance imaging was used to measure hippocampal activity, including the amplitude of low-frequency fluctuations (ALFFs) and fractional ALFF. Electroencephalography during a paired-stimulus paradigm was used to measure sensory gating (P50). Higher activity of the right hippocampus was associated with better sensory gating (P50 ratio), driven by a reduction in response to the second stimulus. These findings suggest that meaningful effects of hippocampal function can be detected early in infancy. Specifically, higher intrinsic hippocampal activity in the early postnatal period may support effective inhibitory processing. Future work will benefit from longitudinal analysis to clarify the trajectory of hippocampal function, alterations of which may contribute to the risk of neurodevelopmental disorders and represent an intervention target.
Collapse
Affiliation(s)
- Anika Guha
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Sharon K. Hunter
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Kristina T. Legget
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| | - Maureen McHugo
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - M. Camille Hoffman
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Jason R. Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| |
Collapse
|
6
|
Bonthron C, Burley S, Broadhead MJ, Metodieva V, Grant SGN, Chandran S, Miles GB. Excitatory to inhibitory synaptic ratios are unchanged at presymptomatic stages in multiple models of ALS. PLoS One 2024; 19:e0306423. [PMID: 39088455 PMCID: PMC11293752 DOI: 10.1371/journal.pone.0306423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/17/2024] [Indexed: 08/03/2024] Open
Abstract
Hyperexcitability of motor neurons and spinal cord motor circuitry has been widely reported in the early stages of Amyotrophic Lateral Sclerosis (ALS). Changes in the relative amount of excitatory to inhibitory inputs onto a neuron (E:I synaptic ratio), possibly through a developmental shift in synapse formation in favour of excitatory transmission, could underlie pathological hyperexcitability. Given that astrocytes play a major role in early synaptogenesis and are implicated in ALS pathogenesis, their potential contribution to disease mechanisms involving synaptic imbalances and subsequent hyperexcitability is also of great interest. In order to assess E:I ratios in ALS, we utilised a novel primary spinal neuron / astrocyte co-culture system, derived from neonatal mice, in which synapses are formed in vitro. Using multiple ALS mouse models we found that no combination of astrocyte or neuron genotype produced alterations in E:I synaptic ratios assessed using pre- and post-synaptic anatomical markers. Similarly, we observed that ephrin-B1, a major contact-dependent astrocytic synaptogenic protein, was not differentially expressed by ALS primary astrocytes. Further to this, analysis of E:I ratios across the entire grey matter of the lumbar spinal cord in young (post-natal day 16-19) ALS mice revealed no differences versus controls. Finally, analysis in co-cultures of human iPSC-derived motor neurons and astrocytes harbouring the pathogenic C9orf72 hexanucleotide repeat expansion showed no evidence of a bias toward excitatory versus inhibitory synapse formation. We therefore conclude, utilising multiple ALS models, that we do not observe significant changes in the relative abundance of excitatory versus inhibitory synapses as would be expected if imbalances in synaptic inputs contribute to early hyperexcitability.
Collapse
Affiliation(s)
- Calum Bonthron
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Sarah Burley
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Matthew J. Broadhead
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Vanya Metodieva
- School of Biology, University of St Andrews, St Andrews, United Kingdom
- Centre of Biophotonics, University of St Andrews, St Andrews, United Kingdom
| | - Seth G. N. Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
7
|
Schill DJ, Attili D, DeLong CJ, McInnis MG, Johnson CN, Murphy GG, O’Shea KS. Human-Induced Pluripotent Stem Cell (iPSC)-Derived GABAergic Neuron Differentiation in Bipolar Disorder. Cells 2024; 13:1194. [PMID: 39056776 PMCID: PMC11275104 DOI: 10.3390/cells13141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Bipolar disorder (BP) is a recurring psychiatric condition characterized by alternating episodes of low energy (depressions) followed by manias (high energy). Cortical network activity produced by GABAergic interneurons may be critical in maintaining the balance in excitatory/inhibitory activity in the brain during development. Initially, GABAergic signaling is excitatory; with maturation, these cells undergo a functional switch that converts GABAA channels from depolarizing (excitatory) to hyperpolarizing (inhibitory), which is controlled by the intracellular concentration of two chloride transporters. The earliest, NKCC1, promotes chloride entry into the cell and depolarization, while the second (KCC2) stimulates movement of chloride from the neuron, hyperpolarizing it. Perturbations in the timing or expression of NKCC1/KCC2 may affect essential morphogenetic events including cell proliferation, migration, synaptogenesis and plasticity, and thereby the structure and function of the cortex. We derived induced pluripotent stem cells (iPSC) from BP patients and undiagnosed control (C) individuals, then modified a differentiation protocol to form GABAergic interneurons, harvesting cells at sequential stages of differentiation. qRT-PCR and RNA sequencing indicated that after six weeks of differentiation, controls transiently expressed high levels of NKCC1. Using multi-electrode array (MEA) analysis, we observed that BP neurons exhibit increased firing, network bursting and decreased synchrony compared to C. Understanding GABA signaling in differentiation may identify novel approaches and new targets for treatment of neuropsychiatric disorders such as BP.
Collapse
Affiliation(s)
- Daniel J. Schill
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Durga Attili
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Cynthia J. DeLong
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Melvin G. McInnis
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - K. Sue O’Shea
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
8
|
Barbour AJ, Gourmaud S, Lancaster E, Li X, Stewart DA, Hoag KF, Irwin DJ, Talos DM, Jensen FE. Seizures exacerbate excitatory: inhibitory imbalance in Alzheimer's disease and 5XFAD mice. Brain 2024; 147:2169-2184. [PMID: 38662500 PMCID: PMC11146435 DOI: 10.1093/brain/awae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 05/14/2024] Open
Abstract
Approximately 22% of Alzheimer's disease (AD) patients suffer from seizures, and the co-occurrence of seizures and epileptiform activity exacerbates AD pathology and related cognitive deficits, suggesting that seizures may be a targetable component of AD progression. Given that alterations in neuronal excitatory:inhibitory (E:I) balance occur in epilepsy, we hypothesized that decreased markers of inhibition relative to those of excitation would be present in AD patients. We similarly hypothesized that in 5XFAD mice, the E:I imbalance would progress from an early stage (prodromal) to later symptomatic stages and be further exacerbated by pentylenetetrazol (PTZ) kindling. Post-mortem AD temporal cortical tissues from patients with or without seizure history were examined for changes in several markers of E:I balance, including levels of the inhibitory GABAA receptor, the sodium potassium chloride cotransporter 1 (NKCC1) and potassium chloride cotransporter 2 (KCC2) and the excitatory NMDA and AMPA type glutamate receptors. We performed patch-clamp electrophysiological recordings from CA1 neurons in hippocampal slices and examined the same markers of E:I balance in prodromal 5XFAD mice. We next examined 5XFAD mice at chronic stages, after PTZ or control protocols, and in response to chronic mTORC1 inhibitor rapamycin, administered following kindled seizures, for markers of E:I balance. We found that AD patients with comorbid seizures had worsened cognitive and functional scores and decreased GABAA receptor subunit expression, as well as increased NKCC1/KCC2 ratios, indicative of depolarizing GABA responses. Patch clamp recordings of prodromal 5XFAD CA1 neurons showed increased intrinsic excitability, along with decreased GABAergic inhibitory transmission and altered glutamatergic neurotransmission, indicating that E:I imbalance may occur in early disease stages. Furthermore, seizure induction in prodromal 5XFAD mice led to later dysregulation of NKCC1/KCC2 and a reduction in GluA2 AMPA glutamate receptor subunit expression, indicative of depolarizing GABA receptors and calcium permeable AMPA receptors. Finally, we found that chronic treatment with the mTORC1 inhibitor, rapamycin, at doses we have previously shown to attenuate seizure-induced amyloid-β pathology and cognitive deficits, could also reverse elevations of the NKCC1/KCC2 ratio in these mice. Our data demonstrate novel mechanisms of interaction between AD and epilepsy and indicate that targeting E:I balance, potentially with US Food and Drug Administration-approved mTOR inhibitors, hold therapeutic promise for AD patients with a seizure history.
Collapse
Affiliation(s)
- Aaron J Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunjoo Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Stewart
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Duke University School of Medicine, Durham, NC 27708, USA
| | - Keegan F Hoag
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Löscher W, Gramer M, Römermann K. Heterogeneous brain distribution of bumetanide following systemic administration in rats. Biopharm Drug Dispos 2024; 45:138-148. [PMID: 38823029 DOI: 10.1002/bdd.2390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Bumetanide is used widely as a tool and off-label treatment to inhibit the Na-K-2Cl cotransporter NKCC1 in the brain and thereby to normalize intra-neuronal chloride levels in several brain disorders. However, following systemic administration, bumetanide only poorly penetrates into the brain parenchyma and does not reach levels sufficient to inhibit NKCC1. The low brain penetration is a consequence of both the high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, and of brain efflux transport. In previous studies, bumetanide was determined in the whole brain or a few brain regions, such as the hippocampus. However, the blood-brain barrier and its efflux transporters are heterogeneous across brain regions, so it cannot be excluded that bumetanide reaches sufficiently high brain levels for NKCC1 inhibition in some discrete brain areas. Here, bumetanide was determined in 14 brain regions following i.v. administration of 10 mg/kg in rats. Because bumetanide is much more rapidly eliminated by rats than humans, its metabolism was reduced by pretreatment with piperonyl butoxide. Significant, up to 5-fold differences in regional bumetanide levels were determined with the highest levels in the midbrain and olfactory bulb and the lowest levels in the striatum and amygdala. Brain:plasma ratios ranged between 0.004 (amygdala) and 0.022 (olfactory bulb). Regional brain levels were significantly correlated with local cerebral blood flow. However, regional bumetanide levels were far below the IC50 (2.4 μM) determined previously for rat NKCC1. Thus, these data further substantiate that the reported effects of bumetanide in rodent models of brain disorders are not related to NKCC1 inhibition in the brain.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Laboratory, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Nascimento AA, Pereira-Figueiredo D, Borges-Martins VP, Kubrusly RC, Calaza KC. GABAergic system and chloride cotransporters as potential therapeutic targets to mitigate cell death in ischemia. J Neurosci Res 2024; 102:e25355. [PMID: 38808645 DOI: 10.1002/jnr.25355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Gamma aminobutyric acid (GABA) is a critical inhibitory neurotransmitter in the central nervous system that plays a vital role in modulating neuronal excitability. Dysregulation of GABAergic signaling, particularly involving the cotransporters NKCC1 and KCC2, has been implicated in various pathologies, including epilepsy, schizophrenia, autism spectrum disorder, Down syndrome, and ischemia. NKCC1 facilitates chloride influx, whereas KCC2 mediates chloride efflux via potassium gradient. Altered expression and function of these cotransporters have been associated with excitotoxicity, inflammation, and cellular death in ischemic events characterized by reduced cerebral blood flow, leading to compromised tissue metabolism and subsequent cell death. NKCC1 inhibition has emerged as a potential therapeutic approach to attenuate intracellular chloride accumulation and mitigate neuronal damage during ischemic events. Similarly, targeting KCC2, which regulates chloride efflux, holds promise for improving outcomes and reducing neuronal damage under ischemic conditions. This review emphasizes the critical roles of GABA, NKCC1, and KCC2 in ischemic pathologies and their potential as therapeutic targets. Inhibiting or modulating the activity of these cotransporters represents a promising strategy for reducing neuronal damage, preventing excitotoxicity, and improving neurological outcomes following ischemic events. Furthermore, exploring the interactions between natural compounds and NKCC1/KCC2 provides additional avenues for potential therapeutic interventions for ischemic injury.
Collapse
Affiliation(s)
- A A Nascimento
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Graduate Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - D Pereira-Figueiredo
- Graduate Program in Biomedical Sciences (Physiology and Pharmacology), Fluminense Federal University, Niterói, Brazil
| | - V P Borges-Martins
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - R C Kubrusly
- Laboratory of Neuropharmacology, Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Department of Neurobiology and Graduate Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
- Graduate Program in Biomedical Sciences (Physiology and Pharmacology), Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
12
|
Ju YH, Cho J, Park JY, Kim H, Hong EB, Park KD, Lee CJ, Chung E, Kim HI, Nam MH. Tonic excitation by astrocytic GABA causes neuropathic pain by augmenting neuronal activity and glucose metabolism. Exp Mol Med 2024; 56:1193-1205. [PMID: 38760512 PMCID: PMC11148027 DOI: 10.1038/s12276-024-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neuropathic pain is a debilitating condition caused by the hyperexcitability of spinal dorsal horn neurons and is often characterized by allodynia. Although neuron-independent mechanisms of hyperexcitability have been investigated, the contribution of astrocyte-neuron interactions remains unclear. Here, we show evidence of reactive astrocytes and their excessive GABA release in the spinal dorsal horn, which paradoxically leads to the tonic excitation of neighboring neurons in a neuropathic pain model. Using multiple electrophysiological methods, we demonstrated that neuronal hyperexcitability is attributed to both increased astrocytic GABA synthesis via monoamine oxidase B (MAOB) and the depolarized reversal potential of GABA-mediated currents (EGABA) via the downregulation of the neuronal K+/Cl- cotransporter KCC2. Furthermore, longitudinal 2-deoxy-2-[18F]-fluoro-D-glucose microPET imaging demonstrated increased regional glucose metabolism in the ipsilateral dorsal horn, reflecting neuronal hyperexcitability. Importantly, inhibiting MAOB restored the entire astrocytic GABA-mediated cascade and abrogated the increased glucose metabolism and mechanical allodynia. Overall, astrocytic GABA-mediated tonic excitation is critical for neuronal hyperexcitability, leading to mechanical allodynia and neuropathic pain.
Collapse
Affiliation(s)
- Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jongwook Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ji-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun-Bin Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ki Duk Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyoung-Ihl Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Department of Neurosurgery, Presbyterian Medical Center, Jeonju, 54987, Republic of Korea.
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
14
|
Mucciolo S, Desiderato A, Mastrodonato M, Lana P, Arruda Freire C, Prodocimo V. First Insights into Body Localization of an Osmoregulation-Related Cotransporter in Estuarine Annelids. BIOLOGY 2024; 13:235. [PMID: 38666847 PMCID: PMC11048583 DOI: 10.3390/biology13040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The expression of the Na+-K+-2Cl- cotransporter (NKCC), widely associated with cell volume regulation, has never been directly demonstrated in annelids. Its putative presence was firstly recovered in silico, and then using immunofluorescence, its signal was retrieved for the first time in different tissues of four species of estuarine annelids from southern Brazil that are regularly subjected to salinity fluctuations. We tested two euryhaline species (wide salinity tolerance), the nereidids Alitta yarae and Laeonereis acuta (habitat salinity: ~10-28 psu), and two stenohaline species (restricted salinity tolerance), the nephtyid Nephtys fluviatilis (habitat salinity: ~6-10 psu), and the melinnid Isolda pulchella (habitat salinity: ~28-35 psu). All four species showed specific immunofluorescent labelling for NKCC-like expression. However, the expression of an NKCC-like protein was not homogeneous among them. The free-living/burrowers (both euryhaline nereidids and the stenohaline nephtyid) displayed a widespread signal for an NKCC-like protein along their bodies, in contrast to the stenohaline sedentary melinnid, in which the signal was restricted to the branchiae and the internal tissues of the body. The results are compatible with NKCC involvement in cell volume, especially in annelids that face wide variations in salinity in their habitats.
Collapse
Affiliation(s)
- Serena Mucciolo
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira Mar s/n, Pontal do Paraná 83255-976, Paraná, Brazil;
| | - Andrea Desiderato
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Maria Mastrodonato
- Dipartimento di Bioscienze Biotecnologie e Ambiente, Campus Universitario “E. Quagliariello”, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy;
| | - Paulo Lana
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira Mar s/n, Pontal do Paraná 83255-976, Paraná, Brazil;
| | - Carolina Arruda Freire
- Laboratório de Fisiologia Comparativa de Osmorregulação, Departamento de Fisiologia, Setor de Ciências Biológicas, Campus Politécnico, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba 81530-000, Paraná, Brazil; (C.A.F.); (V.P.)
| | - Viviane Prodocimo
- Laboratório de Fisiologia Comparativa de Osmorregulação, Departamento de Fisiologia, Setor de Ciências Biológicas, Campus Politécnico, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Curitiba 81530-000, Paraná, Brazil; (C.A.F.); (V.P.)
| |
Collapse
|
15
|
van Andel DM, Sprengers JJ, Königs M, de Jonge MV, Bruining H. Effects of Bumetanide on Neurocognitive Functioning in Children with Autism Spectrum Disorder: Secondary Analysis of a Randomized Placebo-Controlled Trial. J Autism Dev Disord 2024; 54:894-904. [PMID: 36626004 PMCID: PMC10907457 DOI: 10.1007/s10803-022-05841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/11/2023]
Abstract
We present the secondary-analysis of neurocognitive tests in the 'Bumetanide in Autism Medication and Biomarker' (BAMBI;EUDRA-CT-2014-001560-35) study, a randomized double-blind placebo-controlled (1:1) trial testing 3-months bumetanide treatment (≤ 1 mg twice-daily) in unmedicated children 7-15 years with ASD. Children with IQ ≥ 70 were analyzed for baseline deficits and treatment-effects on the intention-to-treat-population with generalized-linear-models, principal component analysis and network analysis. Ninety-two children were allocated to treatment and 83 eligible for analyses. Heterogeneous neurocognitive impairments were found that were unaffected by bumetanide treatment. Network analysis showed higher modularity after treatment (mean difference:-0.165, 95%CI:-0.317 to - 0.013,p = .034) and changes in the relative importance of response inhibition in the neurocognitive network (mean difference:-0.037, 95%CI:-0.073 to - 0.001,p = .042). This study offers perspectives to include neurocognitive tests in ASD trials.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marsh Königs
- Department of Paediatrics, Emma Neuroscience Group, Amsterdam UMC Emma Children's Hospital, Amsterdam, The Netherlands
| | - Maretha V de Jonge
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department Education and Child Studies, Faculty of Social and Behavioral Sciences, Leiden University, Leiden, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands.
- Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands.
- Levvel, Center for Child and Adolescent Psychiatry, Amsterdam, Netherlands.
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Benarroch E. What Is the Role of the "GABA Tone" in Normal and Pathological Conditions? Neurology 2024; 102:e209152. [PMID: 38252909 DOI: 10.1212/wnl.0000000000209152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
|
17
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
18
|
Fu N, Wang Y, Zhu R, Li N, Zeng S, Miao M, Yang Y, Sun M, Zhang J. Bicuculline and Bumetanide Attenuate Sevoflurane-Induced Impairment of Myelination and Cognition in Young Mice. ACS Chem Neurosci 2023; 14:1146-1155. [PMID: 36802490 DOI: 10.1021/acschemneuro.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Sevoflurane (Sevo) is one of the most commonly used general anesthetics for infants and young children. We investigated whether Sevo impairs neurological functions, myelination, and cognition via the γ-aminobutyric acid A receptor (GABAAR) and Na+-K+-2Cl- cotransporter (NKCC1) in neonatal mice. On postnatal days 5-7, mice were exposed to 3% Sevo for 2 h. On postnatal day 14, mouse brains were dissected, and oligodendrocyte precursor cell line level lentivirus knockdown of GABRB3, immunofluorescence, and transwell migration assays were performed. Finally, behavioral tests were conducted. Multiple Sevo exposure groups exhibited increased neuronal apoptosis levels and decreased neurofilament protein levels in the mouse cortex compared with the control group. Sevo exposure inhibited the proliferation, differentiation, and migration of the oligodendrocyte precursor cells, thereby affecting their maturation process. Electron microscopy revealed that Sevo exposure reduced myelin sheath thickness. The behavioral tests showed that multiple Sevo exposures induced cognitive impairment. GABAAR and NKCC1 inhibition provided protection against Sevo-induced neurotoxicity and cognitive dysfunction. Thus, bicuculline and bumetanide can protect against Sevo-induced neuronal injury, myelination impairment, and cognitive dysfunction in neonatal mice. Furthermore, GABAAR and NKCC1 may be mediators of Sevo-induced myelination impairment and cognitive dysfunction.
Collapse
Affiliation(s)
- Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengrong Miao
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
19
|
Lam P, Newland J, Faull RLM, Kwakowsky A. Cation-Chloride Cotransporters KCC2 and NKCC1 as Therapeutic Targets in Neurological and Neuropsychiatric Disorders. Molecules 2023; 28:1344. [PMID: 36771011 PMCID: PMC9920462 DOI: 10.3390/molecules28031344] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Neurological diseases including Alzheimer's, Huntington's disease, Parkinson's disease, Down syndrome and epilepsy, and neuropsychiatric disorders such as schizophrenia, are conditions that affect not only individuals but societies on a global scale. Current therapies offer a means for small symptomatic relief, but recently there has been increasing demand for therapeutic alternatives. The γ-aminobutyric acid (GABA)ergic signaling system has been investigated for developing new therapies as it has been noted that any dysfunction or changes to this system can contribute to disease progression. Expression of the K-Cl-2 (KCC2) and N-K-C1-1 (NKCC1) cation-chloride cotransporters (CCCs) has recently been linked to the disruption of GABAergic activity by affecting the polarity of GABAA receptor signaling. KCC2 and NKCC1 play a part in multiple neurological and neuropsychiatric disorders, making them a target of interest for potential therapies. This review explores current research suggesting the pathophysiological role and therapeutic importance of KCC2 and NKCC1 in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
20
|
Savardi A, Patricelli Malizia A, De Vivo M, Cancedda L, Borgogno M. Preclinical Development of the Na-K-2Cl Co-transporter-1 (NKCC1) Inhibitor ARN23746 for the Treatment of Neurodevelopmental Disorders. ACS Pharmacol Transl Sci 2023; 6:1-11. [PMID: 36654749 PMCID: PMC9841778 DOI: 10.1021/acsptsci.2c00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 01/06/2023]
Abstract
Alterations in the expression of the Cl- importer Na-K-2Cl co-transporter-1 (NKCC1) and the exporter K-Cl co-transporter 2 (KCC2) lead to impaired intracellular chloride concentration in neurons and imbalanced excitation/inhibition in the brain. These alterations have been observed in several neurological disorders (e.g., Down syndrome and autism). Recently, we have reported the discovery of the selective NKCC1 inhibitor "compound ARN23746" for the treatment of Down syndrome and autism in mouse models. Here, we report on an extensive preclinical characterization of ARN23746 toward its development as a clinical candidate. ARN23746 shows an overall excellent metabolism profile and good brain penetration. Moreover, ARN23746 is effective in rescuing cognitive impairment in Down syndrome mice upon per os administration, in line with oral treatment of neurodevelopmental disorders. Notably, ARN23746 does not present signs of toxicity or diuresis even if administered up to 50 times the effective dose. These results further support ARN23746 as a solid candidate for clinical trial-enabling studies.
Collapse
Affiliation(s)
| | | | - Marco De Vivo
- IAMA
Therapeutics, via Filippo
Turati 2/9, 16128 Genoa, Italy
- Molecular
Modeling & Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Laura Cancedda
- IAMA
Therapeutics, via Filippo
Turati 2/9, 16128 Genoa, Italy
- Brain
Development & Disease Laboratory, Istituto
Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- IAMA
Therapeutics, via Filippo
Turati 2/9, 16128 Genoa, Italy
| |
Collapse
|
21
|
Talifu Z, Pan Y, Gong H, Xu X, Zhang C, Yang D, Gao F, Yu Y, Du L, Li J. The role of KCC2 and NKCC1 in spinal cord injury: From physiology to pathology. Front Physiol 2022; 13:1045520. [PMID: 36589461 PMCID: PMC9799334 DOI: 10.3389/fphys.2022.1045520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The balance of ion concentrations inside and outside the cell is an essential homeostatic mechanism in neurons and serves as the basis for a variety of physiological activities. In the central nervous system, NKCC1 and KCC2, members of the SLC12 cation-chloride co-transporter (CCC) family, participate in physiological and pathophysiological processes by regulating intracellular and extracellular chloride ion concentrations, which can further regulate the GABAergic system. Over recent years, studies have shown that NKCC1 and KCC2 are essential for the maintenance of Cl- homeostasis in neural cells. NKCC1 transports Cl- into cells while KCC2 transports Cl- out of cells, thereby regulating chloride balance and neuronal excitability. An imbalance of NKCC1 and KCC2 after spinal cord injury will disrupt CI- homeostasis, resulting in the transformation of GABA neurons from an inhibitory state into an excitatory state, which subsequently alters the spinal cord neural network and leads to conditions such as spasticity and neuropathic pain, among others. Meanwhile, studies have shown that KCC2 is also an essential target for motor function reconstruction after spinal cord injury. This review mainly introduces the physiological structure and function of NKCC1 and KCC2 and discusses their pathophysiological roles after spinal cord injury.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| |
Collapse
|
22
|
Janoš P, Magistrato A. Role of Monovalent Ions in the NKCC1 Inhibition Mechanism Revealed through Molecular Simulations. Int J Mol Sci 2022; 23:ijms232315439. [PMID: 36499764 PMCID: PMC9741434 DOI: 10.3390/ijms232315439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The secondary active Na-K-Cl cotransporter 1 (NKCC1) promotes electroneutral uptake of two chloride ions, one sodium ion and one potassium ion. NKCC1 regulates Cl- homeostasis, thus being implicated in transepithelial water transport and in neuronal excitability. Aberrant NKCC1 transport is linked to a variety of human diseases. The loop diuretic drugs bumetanide, furosemide, azosemide and ethacrynic acid target NKCC1, but are characterized by poor selectivity leading to severe side effects. Despite its therapeutic importance, the molecular details of the NKCC1 inhibition mechanism remain unclear. Using all-atom simulations, we predict a putative binding mode of these drugs to the zebrafish (z) and human (h) NKCC1 orthologs. Although differing in their specific interactions with NKCC1 and/or monovalent ions, all drugs can fit within the same cavity and engage in hydrophobic interactions with M304/M382 in z/hNKCC1, a proposed ion gating residue demonstrated to be key for bumetanide binding. Consistent with experimental evidence, all drugs take advantage of the K+/Na+ ions, which plastically respond to their binding. This study not only provides atomic-level insights useful for drug discovery campaigns of more selective/potent NKCC1 inhibitors aimed to tackle diseases related to deregulated Cl- homeostasis, but it also supplies a paradigmatic example of the key importance of dynamical effects when drug binding is mediated by monovalent ions.
Collapse
|
23
|
Miles KD, Doll CA. Chloride imbalance in Fragile X syndrome. Front Neurosci 2022; 16:1008393. [PMID: 36312023 PMCID: PMC9596984 DOI: 10.3389/fnins.2022.1008393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Developmental changes in ionic balance are associated with crucial hallmarks in neural circuit formation, including changes in excitation and inhibition, neurogenesis, and synaptogenesis. Neuronal excitability is largely mediated by ionic concentrations inside and outside of the cell, and chloride (Cl-) ions are highly influential in early neurodevelopmental events. For example, γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the mature central nervous system (CNS). However, during early development GABA can depolarize target neurons, and GABAergic depolarization is implicated in crucial neurodevelopmental processes. This developmental shift of GABAergic neurotransmission from depolarizing to hyperpolarizing output is induced by changes in Cl- gradients, which are generated by the relative expression of Cl- transporters Nkcc1 and Kcc2. Interestingly, the GABA polarity shift is delayed in Fragile X syndrome (FXS) models; FXS is one of the most common heritable neurodevelopmental disorders. The RNA binding protein FMRP, encoded by the gene Fragile X Messenger Ribonucleoprotein-1 (Fmr1) and absent in FXS, appears to regulate chloride transporter expression. This could dramatically influence FXS phenotypes, as the syndrome is hypothesized to be rooted in defects in neural circuit development and imbalanced excitatory/inhibitory (E/I) neurotransmission. In this perspective, we summarize canonical Cl- transporter expression and investigate altered gene and protein expression of Nkcc1 and Kcc2 in FXS models. We then discuss interactions between Cl- transporters and neurotransmission complexes, and how these links could cause imbalances in inhibitory neurotransmission that may alter mature circuits. Finally, we highlight current therapeutic strategies and promising new directions in targeting Cl- transporter expression in FXS patients.
Collapse
Affiliation(s)
| | - Caleb Andrew Doll
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
24
|
Arenas YM, Martínez-García M, Llansola M, Felipo V. Enhanced BDNF and TrkB Activation Enhance GABA Neurotransmission in Cerebellum in Hyperammonemia. Int J Mol Sci 2022; 23:ijms231911770. [PMID: 36233065 PMCID: PMC9570361 DOI: 10.3390/ijms231911770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Hyperammonemia is a main contributor to minimal hepatic encephalopathy (MHE) in cirrhotic patients. Hyperammonemic rats reproduce the motor incoordination of MHE patients, which is due to enhanced GABAergic neurotransmission in the cerebellum as a consequence of neuroinflammation. In hyperammonemic rats, neuroinflammation increases BDNF by activating the TNFR1–S1PR2–CCR2 pathway. (1) Identify mechanisms enhancing GABAergic neurotransmission in hyperammonemia; (2) assess the role of enhanced activation of TrkB; and (3) assess the role of the TNFR1–S1PR2–CCR2–BDNF pathway. In the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons, leading to increased GAD65, GAD67 and GABA levels. Enhanced TrkB activation also increases the membrane expression of the γ2, α2 and β3 subunits of GABAA receptors and of KCC2. Moreover, enhanced TrkB activation in activated astrocytes increases the membrane expression of GAT3 and NKCC1. These changes are reversed by blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway. Hyperammonemia-induced neuroinflammation increases BDNF and TrkB activation, leading to increased synthesis and extracellular GABA, and the amount of GABAA receptors in the membrane and chloride gradient. These factors enhance GABAergic neurotransmission in the cerebellum. Blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway would improve motor function in patients with hepatic encephalopathy and likely with other pathologies associated with neuroinflammation.
Collapse
|
25
|
The role of depolarizing activation of Na +-Ca 2+ exchanger by oligodendrocyte progenitor cells in the effect of sevoflurane on myelination. Life Sci 2022; 308:120951. [PMID: 36103958 DOI: 10.1016/j.lfs.2022.120951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
AIMS The aim of this study was to investigate the role of depolarizing activation of Na+-Ca2+ exchanger (NCX) by oligodendrocyte progenitor cells (OPC) in the effect of sevoflurane on myelination. MAIN METHODS On postnatal days 7, 8, and 9, mice were exposed to 3 % sevoflurane for 2 h per day. The proliferation, differentiation, and myelin sheath of OPC were observed with immunofluorescence, quantitative real-time polymerase chain reaction (QRT-PCR), and transmission electron microscopy (TEM) at various time points. The open field, Y maze, and new object recognition tests were used to measure spatial learning and memory. siRNA was used for the knockdown NCX1 in human OPC (HOPC) before sevoflurane exposure; the Transwell migration assay was used to measure cell migration ability and Fluo 4-AM was used to measure intracellular Ca2+ concentration. KEY FINDINGS Pretreatment with an NCX inhibitor attenuated the proliferation and differentiation of OPC induced by sevoflurane and induced a remarkable increase in platelet-derived growth factor receptor-alpha (PDGFRα), 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase), oligodendrocyte transcription factor 2 (Olig2), and homeodomain protein NK2 homeobox 2 (NKX2.2) levels. Pretreatment with an NCX inhibitor alleviated the sevoflurane-induced myelination disorder and cognitive impairment. The decreased cell migration and increased intracellular Ca2+ concentration observed in the siRNA-negative control group was reversed in the sevoflurane plus siRNA-NCX1 group. SIGNIFICANCE This study suggests that repeated sevoflurane exposure in newborn mice leads to depolarization of OPC, which leads to Ca2+ influx through NCX and affects OPC proliferation, migration, differentiation, and myelination, ultimately leading to cognitive impairment.
Collapse
|
26
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Perucca P, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia 2022; 63:2883-2910. [PMID: 35950617 DOI: 10.1111/epi.17376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI) was held in Madrid, Spain on May 22-25, 2022 and was attended by 157 delegates from 26 countries representing basic and clinical science, regulatory agencies, and pharmaceutical industries. One day of the conference was dedicated to sessions presenting and discussing investigational compounds under development for the treatment of seizures and epilepsy. The current progress report summarizes recent findings and current knowledge for seven of these compounds in more advanced clinical development for which either novel preclinical or patient data are available. These compounds include bumetanide and its derivatives, darigabat, ganaxolone, lorcaserin, soticlestat, STK-001, and XEN1101. Of these, ganaxolone was approved by the US Food and Drug Administration in March 2022 for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder in patients 2 years of age and older.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, Faculty of Medicine, School of Pharmacy, and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia.,Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Altered Development of Prefrontal GABAergic Functions and Anxiety-like Behavior in Adolescent Offspring Induced by Prenatal Stress. Brain Sci 2022; 12:brainsci12081015. [PMID: 36009078 PMCID: PMC9406165 DOI: 10.3390/brainsci12081015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Maternal stress can afflict fetal brain development, putting the offspring at risk of cognitive deficits, including anxiety. The prefrontal cortex (PFC), a protracted maturing region, is notably affected by prenatal stress (PS). However, it remains unclear how PS interferes with the maturation of the GABAergic system, considering its functional adjustment in the PFC during adolescence. The present study thus investigated the long-lasting consequences of PS on the prefrontal GABAergic functions of adolescent offspring. Pregnant Sprague–Dawley rats were divided into controls and the PS group, which underwent restraint stress during the last week of gestation. Male pups from postnatal days (PND) 40–42 were submitted to the elevated plus maze (EPM) test. Proteins essentially involved in GABAergic signaling were then examined in PFC tissues, including the K+-Cl− cotransporter (KCC2), Na+-K+-Cl− cotransporter (NKCC1), α1 and α5 subunits of GABA type A receptors (GABAA receptors), and parvalbumin (PV), along with cAMP response element-binding protein phosphorylation (pCREB), which reacts in the plasticity regulation of PV-positive interneurons. The results revealed that the higher anxiety-like behavior of PS adolescent rats concurred with the significant decreases of the KCC2 and α1 subunits, with PV- and pCREB-lowered levels. The findings suggested that PS disrupts the continuance of PFC maturity by reducing the essential elements of GABAergic functions. These changes likely underlie the anxiety emerging in adolescence, possibly progressing to mental disorders.
Collapse
|
28
|
Single-case experimental designs for bumetanide across neurodevelopmental disorders: BUDDI protocol. BMC Psychiatry 2022; 22:452. [PMID: 35799144 PMCID: PMC9260985 DOI: 10.1186/s12888-022-04033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bumetanide is a selective NKCC1 chloride importer antagonist which is being repurposed as a mechanism-based treatment for neurodevelopmental disorders (NDDs). Due to their specific actions, these kinds of interventions will only be effective in particular subsets of patients. To anticipate stratified application, we recently completed three bumetanide trials each focusing on different stratification strategies with the additional objective of deriving the most optimal endpoints. Here we publish the protocol of the post-trial access combined cohort study to confirm previous effects and stratification strategies in the trial cohorts and in new participants. METHOD/DESIGN Participants of the three previous cohorts and a new cohort will be subjected to 6 months bumetanide treatment using multiple baseline Single Case Experimental Designs. The primary outcome is the change, relative to baseline, in a set of patient reported outcome measures focused on direct and indirect effects of sensory processing difficulties. Secondary outcome measures include the conventional questionnaires 'social responsiveness scale', 'repetitive behavior scale', 'sensory profile' and 'aberrant behavior scale'. Resting-state EEG measurements will be performed at several time-points including at Tmax after the first administration. Assessment of cognitive endpoints will be conducted using the novel Emma Tool box, an in-house designed battery of computerized tests to measure neurocognitive functions in children. DISCUSSION This study aims to replicate previously shown effects of bumetanide in NDD subpopulations, validate a recently proposed treatment prediction effect methodology and refine endpoint measurements. TRIAL REGISTRATION EudraCT: 2020-002196-35, registered 16 November 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002196-35/NL.
Collapse
|
29
|
Prael III FJ, Kim K, Du Y, Spitznagel BD, Sulikowski GA, Delpire E, Weaver CD. Discovery of Small Molecule KCC2 Potentiators Which Attenuate In Vitro Seizure-Like Activity in Cultured Neurons. Front Cell Dev Biol 2022; 10:912812. [PMID: 35813195 PMCID: PMC9263442 DOI: 10.3389/fcell.2022.912812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 01/14/2023] Open
Abstract
KCC2 is a K+-Cl- cotransporter that is expressed in neurons throughout the central nervous system. Deficits in KCC2 activity have been implicated in a variety of neurological disorders, including epilepsy, chronic pain, autism spectrum disorders, and Rett syndrome. Therefore, it has been hypothesized that pharmacological potentiation of KCC2 activity could provide a treatment for these disorders. To evaluate the therapeutic potential of pharmacological KCC2 potentiation, drug-like, selective KCC2 potentiators are required. Unfortunately, the lack of such tools has greatly hampered the investigation of the KCC2 potentiation hypothesis. Herein, we describe the discovery and characterization of a new class of small-molecule KCC2 potentiator. This newly discovered class exhibits KCC2-dependent activity and a unique mechanistic profile relative to previously reported small molecules. Furthermore, we demonstrate that KCC2 potentiation by this new class of KCC2 potentiator attenuates seizure-like activity in neuronal-glial co-cultures. Together, our results provide evidence that pharmacological KCC2 potentiation, by itself, is sufficient to attenuate neuronal excitability in an in vitro model that is sensitive to anti-epileptic drugs. Our findings and chemical tools are important for evaluating the promise of KCC2 as a therapeutic target and could lay a foundation for the development of KCC2-directed therapeutics for multiple neurological disorders.
Collapse
Affiliation(s)
- Francis J. Prael III
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | | | - Gary A. Sulikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States,*Correspondence: C. David Weaver,
| |
Collapse
|
30
|
Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat Commun 2022; 13:2747. [PMID: 35585053 PMCID: PMC9117670 DOI: 10.1038/s41467-022-30407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cation-chloride cotransporters (CCCs) NKCC1 and NKCC2 catalyze electroneutral symport of 1 Na+, 1 K+, and 2 Cl− across cell membranes. NKCC1 mediates trans-epithelial Cl− secretion and regulates excitability of some neurons and NKCC2 is critical to renal salt reabsorption. Both transporters are inhibited by the so-called loop diuretics including bumetanide, and these drugs are a mainstay for treating edema and hypertension. Here, our single-particle electron cryo-microscopy structures supported by functional studies reveal an outward-facing conformation of NKCC1, showing bumetanide wedged into a pocket in the extracellular ion translocation pathway. Based on these and the previously published inward-facing structures, we define the translocation pathway and the conformational changes necessary for ion translocation. We also identify an NKCC1 dimer with separated transmembrane domains and extensive transmembrane and C-terminal domain interactions. We further define an N-terminal phosphoregulatory domain that interacts with the C-terminal domain, suggesting a mechanism whereby (de)phosphorylation regulates NKCC1 by tuning the strength of this domain association. Loop diuretics including bumetanide inhibit Na+-K+-Cl−-cotransporters (NKCCs) and are used for the treatment of edema and hypertension. Here, Zhao et. al. report structures of NKCC1 with bumetanide bound, revealing its mechanism of action that would facilitate design of novel diuretics.
Collapse
|
31
|
Liedtke W. Long March Toward Safe and Effective Analgesia by Enhancing Gene Expression of Kcc2: First Steps Taken. Front Mol Neurosci 2022; 15:865600. [PMID: 35645734 PMCID: PMC9137411 DOI: 10.3389/fnmol.2022.865600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Low intraneuronal chloride in spinal cord dorsal horn pain relay neurons is critical for physiologic transmission of primary pain afferents because low intraneuronal chloride dictates whether GABA-ergic and glycin-ergic neurotransmission is inhibitory. If the neuronal chloride elevates to pathologic levels, then spinal cord primary pain relay becomes leaky and exhibits the behavioral hallmarks of pathologic pain, namely hypersensitivity and allodynia. Low chloride in spinal cord dorsal horn neurons is maintained by proper gene expression of Kcc2 and sustained physiologic function of the KCC2 chloride extruding electroneutral transporter. Peripheral nerve injury and other forms of neural injury evoke greatly diminished Kcc2 gene expression and subsequent corruption of inhibitory neurotransmission in the spinal cord dorsal horn, thus causing derailment of the gate function for pain. Here I review key discoveries that have helped us understand these fundamentals, and focus on recent insights relating to the discovery of Kcc2 gene expression enhancing compounds via compound screens in neurons. One such study characterized the kinase inhibitor, kenpaullone, more in-depth, revealing its function as a robust and long-lasting analgesic in preclinical models of nerve injury and cancer bone pain, also elucidating its mechanism of action via GSK3β inhibition, diminishing delta-catenin phosphorylation, and facilitating its nuclear transfer and subsequent enhancement of Kcc2 gene expression by de-repressing Kaiso epigenetic transcriptional regulator. Future directions re Kcc2 gene expression enhancement are discussed, namely combination with other analgesics and analgesic methods, such as spinal cord stimulation and electroacupuncture, gene therapy, and leveraging Kcc2 gene expression-enhancing nanomaterials.
Collapse
|
32
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Scaramuzzino L, Cifelli P, D’Andrea T, Martinello K, Fucile S, Palma E, Gambardella A, Ruffolo G, Cuda G, Parrotta EI. Human iPSC Modeling of Genetic Febrile Seizure Reveals Aberrant Molecular and Physiological Features Underlying an Impaired Neuronal Activity. Biomedicines 2022; 10:biomedicines10051075. [PMID: 35625812 PMCID: PMC9138645 DOI: 10.3390/biomedicines10051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) NaV1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na+ current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1AM145T). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1AM145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1AM145T, suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular “dysmaturity” of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1/KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant NaV1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
| | - Pierangelo Cifelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of Aquila, 67100 Aquila, Italy;
| | - Tiziano D’Andrea
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | | | - Sergio Fucile
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS Neuromed, Via Atinense, 86077 Pozzilli, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy; (T.D.); (S.F.); (E.P.)
- IRCCS San Raffaele Roma, Via della Pisana, 00163 Rome, Italy
- Correspondence: (G.R.); (G.C.)
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (S.S.); (C.Z.); (V.L.); (M.L.C.); (L.S.)
- Correspondence: (G.R.); (G.C.)
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (E.I.P.)
| |
Collapse
|
33
|
Mohammadian F, Golitabari N, Abedi A, Saadati H, Milan HS, Salari AA, Amani M. Early life GABA A blockade alters the synaptic plasticity and cognitive functions in male and female rats. Eur J Pharmacol 2022; 925:174992. [PMID: 35513017 DOI: 10.1016/j.ejphar.2022.174992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adults, has a critical contribution to balanced excitatory-inhibitory networks in the brain. Alteration in depolarizing action of GABA during early life is connected to a wide variety of neurodevelopmental disorders. Additionally, the effects of postnatal GABA blockade on neuronal synaptic plasticity are not known and therefore, we set out to determine whether postnatal exposure to bicuculline, a competitive antagonist of GABAA receptors, affects electrophysiologic changes in hippocampal CA1 neurons later on. To this end, male and female Wistar rats received vehicle or bicuculline (300 μg/kg) on postnatal days (PNDs) 7, 9 and 11, and then underwent different behavioral and electrophysiological examinations in adulthood. Postnatal exposure to bicuculline did not affect basic synaptic transmission but led to a pronounced decrease in paired-pulse facilitation (PPF) in CA1 pyramidal neurons. Bicuculline treatment also attenuated the long-term potentiation (LTP) and long-term depression (LTD) of CA1 neurons accompanied by decreased theta-burst responses in male and female adult rats. These electrophysiology findings together with the reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampus and prefrontal cortex reliably explain the disturbance in spatial reference and working memories of bicuculline-treated animals. This study suggests that postnatal GABAA blockade deteriorates short- and long-term synaptic plasticity of hippocampal CA1 neurons and related encoding of spatial memory in adulthood.
Collapse
Affiliation(s)
- Forouzan Mohammadian
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Golitabari
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Abedi
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
34
|
Postnatal GABAA Receptor Activation Alters Synaptic Plasticity and Cognition in Adult Wistar Rats. Mol Neurobiol 2022; 59:3585-3599. [DOI: 10.1007/s12035-022-02805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
35
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
36
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
37
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
38
|
Mu JD, Ma LX, Zhang Z, Yu WY, Sun TY, Qian X, Tian Y, Wang JX. Acupuncture alleviates spinal hyperreflexia and motor dysfunction in post-ischemic stroke rats with spastic hypertonia via KCC2-mediated spinal GABA A activation. Exp Neurol 2022; 354:114027. [PMID: 35245503 DOI: 10.1016/j.expneurol.2022.114027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The majority of patients simultaneously develop motor dysfunction and spastic hypertonia after ischemic strokes, which can be associated with an increasing trend in motor impairments, seriously impeding the rehabilitation process. Evidence suggests that some deficits in the KCC2 expression in the spinal cord along with maladaptive endogenous plasticity via GABAA receptors are often involved in the pathology of spastic hypertonia after a stroke. In this respect, acupuncture has been commonly used in clinical settings for post-stroke patients' rehabilitation. Nevertheless, the mechanism of the modulating activity of this alternative medicine in the spinal pathways to relieve spasticity and improve functional recovery after a stroke has still remained unclear. Utilizing laser speckle imaging, functional assessments (viz. neurologic function scale, muscular tension scale, foot balance test, and gait analysis), H-reflex recording, TTC, Western blotting, RT-qPCR, ELISA, and immunofluorescence molecular assay, the study results illustrated that acupuncture could significantly alleviate the spinal hyperreflexia, decrease muscle tone, and enhance locomotor function by elevating the GABA, KCC2, and GABAAγ2 expressions in the lumbar spine of a rat model of post-ischemic stroke with spastic hypertonia. Furthermore, the KCC2 antagonist DIOA abolished the benefits induced by this practice. Overall, the data revealed that acupuncture is a promising therapeutic approach for spastic hypertonia after a stroke, and the positive outcomes in this sense could be achieved via activating the KCC2-mediated spinal GABAA signaling pathway.
Collapse
Affiliation(s)
- Jie-Dan Mu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liang-Xiao Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China; The Key Unit of State Administration of Traditional Chinese Medicine, Evaluation of Characteristic Acupuncture Therapy, Beijing 100029, China.
| | - Zhou Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Yan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tian-Yi Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Qian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Tian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun-Xiang Wang
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
39
|
Lodovichi C, Ratto GM, Trevelyan AJ, Arosio D. Genetically encoded sensors for Chloride concentration. J Neurosci Methods 2022; 368:109455. [PMID: 34952088 DOI: 10.1016/j.jneumeth.2021.109455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Insights into chloride regulation in neurons have come slowly, but they are likely to be critical for our understanding of how the brain works. The reason is that the intracellular Cl- level ([Cl-]i) is the key determinant of synaptic inhibitory function, and this in turn dictates all manner of neuronal network function. The true impact on the network will only be apparent, however, if Cl- is measured at many locations at once (multiple neurons, and also across the subcellular compartments of single neurons), which realistically, can only be achieved using imaging. The development of genetically-encoded anion biosensors (GABs) brings the additional benefit that Cl- imaging may be done in identified cell-classes and hopefully in subcellular compartments. Here, we describe the historical background and motivation behind the development of these sensors and how they have been used so far. There are, however, still major limitations for their use, the most important being the fact that all GABs are sensitive to both pH and Cl-. Disambiguating the two signals has proved a major challenge, but there are potential solutions; notable among these is ClopHensor, which has now been developed for in vivo measurements of both ion species. We also speculate on how these biosensors may yet be improved, and how this could advance our understanding of Cl- regulation and its impact on brain function.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute-CNR, Depart. Biomedical Sciences, Unipd, Padova, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| | - Gian Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniele Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biofisica, 38123 Trento, Italy.
| |
Collapse
|
40
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
41
|
van Andel DM, Sprengers JJ, Keijzer-Veen MG, Schulp AJA, Lillien MR, Scheepers FE, Bruining H. Bumetanide for Irritability in Children With Sensory Processing Problems Across Neurodevelopmental Disorders: A Pilot Randomized Controlled Trial. Front Psychiatry 2022; 13:780281. [PMID: 35211042 PMCID: PMC8861379 DOI: 10.3389/fpsyt.2022.780281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment development for neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) is impeded by heterogeneity in clinical manifestation and underlying etiologies. Symptom traits such as aberrant sensory reactivity are present across NDDs and might reflect common mechanistic pathways. Here, we test the effectiveness of repurposing a drug candidate, bumetanide, on irritable behavior in a cross-disorder neurodevelopmental cohort defined by the presence of sensory reactivity problems. METHODS Participants, aged 5-15 years and IQ ≥ 55, with ASD, ADHD, and/or epilepsy and proven aberrant sensory reactivity according to deviant Sensory Profile scores were included. Participants were randomly allocated (1:1) to bumetanide (max 1 mg twice daily) or placebo tablets for 91 days followed by a 28-day wash-out period using permuted block design and minimization. Participants, parents, healthcare providers, and outcome assessors were blinded for treatment allocation. Primary outcome was the differences in ABC-irritability at day 91. Secondary outcomes were differences in SRS-2, RBS-R, SP-NL, BRIEF parent, BRIEF teacher at D91. Differences were analyzed in a modified intention-to-treat sample with linear mixed models and side effects in the intention-to-treat population. RESULTS A total of 38 participants (10.1 [SD 3.1] years) were enrolled between June 2017 and June 2019 in the Netherlands. Nineteen children were allocated to bumetanide and nineteen to placebo. Five patients discontinued (n = 3 bumetanide). Bumetanide was superior to placebo on the ABC-irritability [mean difference (MD) -4.78, 95%CI: -8.43 to -1.13, p = 0.0125]. No effects were found on secondary endpoints. No wash-out effects were found. Side effects were as expected: hypokalemia (p = 0.046) and increased diuresis (p = 0.020). CONCLUSION Despite the results being underpowered, this study raises important recommendations for future cross-diagnostic trial designs.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan J Sprengers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mandy G Keijzer-Veen
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annelien J A Schulp
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc R Lillien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floortje E Scheepers
- Department of Psychiatry, University Medical Center Utrecht Brain Centre, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hilgo Bruining
- N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
42
|
Li YX, Li JH, Guo Y, Tao ZY, Qin SH, Traub RJ, An H, Cao DY. Oxytocin inhibits hindpaw hyperalgesia induced by orofacial inflammation combined with stress. Mol Pain 2022; 18:17448069221089591. [PMID: 35266833 PMCID: PMC9047792 DOI: 10.1177/17448069221089591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oxytocin (OT) is recognized as a critical neuropeptide in pain-related disorders. Chronic pain caused by the comorbidity of temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS) is common, but whether OT plays an analgesic role in the comorbidity of TMD and FMS is unknown. Female rats with masseter muscle inflammation combined with 3-day forced swim (FS) stress developed somatic hypersensitivity, which modeled the comorbidity of TMD and FMS. Using this model, the effects of spinal OT administration on mechanical allodynia and thermal hyperalgesia in hindpaws were examined. Furthermore, the protein levels of OT receptors and 5-HT2A receptors in the L4-L5 spinal dorsal horn were analyzed by Western blot. The OT receptor antagonist atosiban and 5-HT2A receptor antagonist ritanserin were intrathecally injected prior to OT injection in the separate groups. Intrathecal injection of 0.125 μg and 0.5 μg OT attenuated the hindpaw hyperalgesia. The expression of OT receptors and 5-HT2A receptors in the L4-L5 spinal dorsal horn significantly increased following intrathecal injection of 0.5 μg OT. Intrathecal administration of either the OT receptor antagonist atosiban or 5-HT2A receptor antagonist ritanserin blocked the analgesic effect of OT. These results suggest that OT may inhibit hindpaw hyperalgesia evoked by orofacial inflammation combined with stress through OT receptors and/or 5-HT2A receptors, thus providing a therapeutic prospect for drugs targeting the OT system and for patients with comorbidity of TMD and FMS.
Collapse
Affiliation(s)
- Yue-Xin Li
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
- Department of Special Dental Care, Xi’an Jiaotong University College of
Stomatology, China
| | - Jia-Heng Li
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| | - Zhuo-Ying Tao
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| | - Shi-Hao Qin
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
- Department of Special Dental Care, Xi’an Jiaotong University College of
Stomatology, China
| | - Richard J Traub
- Department of Neural and Pain
Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland
Baltimore, Baltimore, MD, USA
| | - Hong An
- Department of Special Dental Care, Xi’an Jiaotong University College of
Stomatology, China
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province
for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi’an Jiaotong University College of
Stomatology, China
| |
Collapse
|
43
|
Tóth K, Lénárt N, Berki P, Fekete R, Szabadits E, Pósfai B, Cserép C, Alatshan A, Benkő S, Kiss D, Hübner CA, Gulyás A, Kaila K, Környei Z, Dénes Á. The NKCC1 ion transporter modulates microglial phenotype and inflammatory response to brain injury in a cell-autonomous manner. PLoS Biol 2022; 20:e3001526. [PMID: 35085235 PMCID: PMC8856735 DOI: 10.1371/journal.pbio.3001526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2022] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1β (IL-1β), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.
Collapse
Affiliation(s)
- Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Péter Berki
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ahmad Alatshan
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Kiss
- Software Engineering Institute, John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary
| | | | - Attila Gulyás
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- * E-mail:
| |
Collapse
|
44
|
Nasirinezhad F, Zarepour L, Hadjighassem M, Gharaylou Z, Majedi H, Ramezani F. Analgesic Effect of Bumetanide on Neuropathic Pain in Patients With Spinal Cord Injury. Basic Clin Neurosci 2021; 12:409-420. [PMID: 34917299 PMCID: PMC8666921 DOI: 10.32598/bcn.12.3.2049.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction The current study evaluated the analgesic effects of bumetanide as an adjunctive in the management of neuropathic pain following Spinal Cord Injury (SCI). The peripheral expression of Na-K-Cl Cotransporter-1 (NKCC1) and K-Cl Cotransporter-2 (KCC2) genes in polymorphonuclear lymphocytes (PMLs) was assessed as a possible biomarker indicating central mechanisms underlying the observed response. Methods Through an open-label, single-arm, pilot trial of bumetanide (2 mg/d), an add-on treatment was conducted on 14 SCI patients for 19 weeks. This study consisted of 3 phases: pre-treatment (1 month), titration (3 weeks), and active treatment (4 months). Ultimately, 9 patients completed the study. The primary outcome variables were the endpoint pain score using the Numeric Rating Scale (NRS), and also the short-form of the McGill pain questionnaire. Secondary endpoints included the short-form of the health survey that assesses the quality of life. Blood samples were collected and used for determining the expression of NKCC1 and KCC2 genes in transcription and translation levels. Results Bumetanide treatment significantly decreased average pain intensity according to the NRS and the short-form of the McGill pain questionnaire scores. Baseline expression of KCC2 protein was low between groups and increased significantly following treatment (P<0.05). In the current study, pain improvement was accompanied by the greater mean change from the baseline (improvement) for the overall quality of life. Conclusion These data highlighted the analgesic effect of bumetanide on neuropathic pain and indicated the potential role of the upregulation of KCC2 protein and involvement of GABAergic disinhibition in producing neuropathic pain.
Collapse
Affiliation(s)
- Farinaz Nasirinezhad
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Zarepour
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gharaylou
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossin Majedi
- Brain and Spinal cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Department of Physiology, Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2021; 205:108910. [PMID: 34883135 DOI: 10.1016/j.neuropharm.2021.108910] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
The Na-K-2Cl cotransporter NKCC1 and the neuron-specific K-Cl cotransporter KCC2 are considered attractive CNS drug targets because altered neuronal chloride regulation and consequent effects on GABAergic signaling have been implicated in numerous CNS disorders. While KCC2 modulators are not yet clinically available, the loop diuretic bumetanide has been used off-label in attempts to treat brain disorders and as a tool for NKCC1 inhibition in preclinical models. Bumetanide is known to have anticonvulsant and neuroprotective effects under some pathophysiological conditions. However, as shown in several species from neonates to adults (mice, rats, dogs, and by extrapolation in humans), at the low clinical doses of bumetanide approved for diuresis, this drug has negligible access into the CNS, reaching levels that are much lower than what is needed to inhibit NKCC1 in cells within the brain parenchyma. Several drug discovery strategies have been initiated over the last ∼15 years to develop brain-permeant compounds that, ideally, should be selective for NKCC1 to eliminate the diuresis mediated by inhibition of renal NKCC2. The strategies employed to improve the pharmacokinetic and pharmacodynamic properties of NKCC1 blockers include evaluation of other clinically approved loop diuretics; development of lipophilic prodrugs of bumetanide; development of side-chain derivatives of bumetanide; and unbiased high-throughput screening approaches of drug discovery based on large chemical compound libraries. The main outcomes are that (1), non-acidic loop diuretics such as azosemide and torasemide may have advantages as NKCC1 inhibitors vs. bumetanide; (2), bumetanide prodrugs lead to significantly higher brain levels than the parent drug and have lower diuretic activity; (3), the novel bumetanide side-chain derivatives do not exhibit any functionally relevant improvement of CNS accessibility or NKCC1 selectivity vs. bumetanide; (4) novel compounds discovered by high-throughput screening may resolve some of the inherent problems of bumetanide, but as yet this has not been achieved. Thus, further research is needed to optimize the design of brain-permeant NKCC1 inhibitors. In parallel, a major challenge is to identify the mechanisms whereby various NKCC1-expressing cellular targets of these drugs within (e.g., neurons, oligodendrocytes or astrocytes) and outside the brain parenchyma (e.g., the blood-brain barrier, the choroid plexus, and the endocrine system), as well as molecular off-target effects, might contribute to their reported therapeutic and adverse effects.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| |
Collapse
|
46
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
47
|
Vallés AS, Barrantes FJ. Dysregulation of Neuronal Nicotinic Acetylcholine Receptor-Cholesterol Crosstalk in Autism Spectrum Disorder. Front Mol Neurosci 2021; 14:744597. [PMID: 34803605 PMCID: PMC8604044 DOI: 10.3389/fnmol.2021.744597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
Wang T, Shan L, Miao C, Xu Z, Jia F. Treatment Effect of Bumetanide in Children With Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front Psychiatry 2021; 12:751575. [PMID: 34867539 PMCID: PMC8634163 DOI: 10.3389/fpsyt.2021.751575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The therapeutic effect of bumetanide on autism spectrum disorder (ASD) seems to be controversial. To obtain better evidence on the efficacy of bumetanide, a systematic review and meta-analysis were performed. Methods: Randomized, placebo-controlled trials (RCTs) of bumetanide treatment in children with ASD were identified through systematic review from database inception to January 17, 2021. Subsequently, a meta-analysis was carried out to examine the effect of bumetanide on the severity of symptoms of ASD as assessed by the Childhood Autism Rating Scale (CARS) and Social Responsive Scale (SRS); core symptoms according to criteria of the Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 of the American Psychiatric Association [social affect (SA), restricted, repetitive patterns of behavior, interests, or activities (RRB) and sensory symptoms]; and the therapeutic effect as assessed by Clinical Global Impressions-Efficacy (CGI-E). Results: In total, six RCTs involving 496 participants with ASD were identified in our study. The results showed that bumetanide could significantly improve the severity of the ASD symptoms measured by CARS and SRS. There was also evidence that bumetanide had positive effect on the core symptoms of ASD such as the SA and RRB, but there was no statistically significant effect on sensory symptoms. A significant positive effect on CGI-E scores in ASD patients was also observed. Conclusion: Our meta-analysis provided some support that bumetanide could improve the symptoms of children with ASD. However, additional large-scale longitudinal studies that provide clearer information and better control for confounding factors are needed to confirm our findings.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ling Shan
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chunyue Miao
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhida Xu
- Department of Psychiatry, GGz Centraal, Amersfoort, Netherlands
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
49
|
Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021; 42:1009-1034. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The chloride importer NKCC1 and the chloride exporter KCC2 are key regulators of neuronal chloride concentration. A defective NKCC1/KCC2 expression ratio is associated with several brain disorders. Preclinical/clinical studies have shown that NKCC1 inhibition by the United States FDA-approved diuretic bumetanide is a potential therapeutic strategy in preclinical/clinical studies of multiple neurological conditions. However, bumetanide has poor brain penetration and causes unwanted diuresis by inhibiting NKCC2 in the kidney. To overcome these issues, a growing number of studies have reported more brain-penetrating and/or selective bumetanide prodrugs, analogs, and new molecular entities. Here, we review the evidence for NKCC1 pharmacological inhibition as an effective strategy to manage neurological disorders. We also discuss the advantages and limitations of bumetanide repurposing and the benefits and risks of new NKCC1 inhibitors as therapeutic agents for brain disorders.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy; Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy; Dulbecco Telethon Institute, 00185 Rome, Italy.
| |
Collapse
|
50
|
Salihu S, Meor Azlan NF, Josiah SS, Wu Z, Wang Y, Zhang J. Role of the cation-chloride-cotransporters in the circadian system. Asian J Pharm Sci 2021; 16:589-597. [PMID: 34849164 PMCID: PMC8609385 DOI: 10.1016/j.ajps.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023] Open
Abstract
The circadian system plays an immense role in controlling physiological processes in our body. The suprachiasmatic nucleus (SCN) supervises this system, regulating and harmonising the circadian rhythms in our body. Most neurons present in the SCN are GABAergic neurons. Although GABA is considered the main inhibitory neurotransmitter of the CNS, recent studies have shown that excitatory responses were recorded in this area. These responses are enabled by an increase in intracellular chloride ions [Cl-]i levels. The chloride (Cl-) levels in GABAergic neurons are controlled by two solute carrier 12 (SLC12) cation-chloride-cotransporters (CCCs): Na+/K+/Cl- co-transporter (NKCC1) and K+/Cl- co-transporter (KCC2), that respectively cause an influx and efflux of Cl-. Recent works have found altered expression and/or activity of either of these co-transporters in SCN neurons and have been associated with circadian rhythms. In this review, we summarize and discuss the role of CCCs in circadian rhythms, and highlight these recent advances which attest to CCC's growing potential as strong research and therapeutic targets.
Collapse
Affiliation(s)
- Shihan Salihu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Zhijuan Wu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|