1
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:20-44. [PMID: 37669015 PMCID: PMC11720269 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M. Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l’Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M. Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T. Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
2
|
Beristain-Ruiz DM, Márquez-Chacón AK, Vital-García C, Figueroa-Millán JV, Lira-Amaya JJ, Aristizabal JF, Olivas-Sánchez MP, Gatica-Colima AB, Martínez-Calderas JM, Quezada-Casasola A, Alvarado-Robles B, Alonso-Mendoza VM. Effects of Body Condition and Ectoparasitism on Host-Pathogen Interactions of Heteromyid Rodents. Pathogens 2024; 13:1085. [PMID: 39770345 PMCID: PMC11679701 DOI: 10.3390/pathogens13121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Rodents play a significant role in the transmission of zoonotic diseases; anthropization has increased human contact with these animals, vectors of infectious agents. However, the processes driving parasitism of hosts remains poorly understood. Yersinia pestis, Rickettsia spp., and Francisella tularensis are three infectious agents transmitted to humans through ectoparasites, with rodents serving as the primary reservoirs. To explore the relationship between both intrinsic and extrinsic factors on host pathogen status, we evaluated heteromyid rodents in the Chihuahuan desert (ChD). From December 2022 to May 2023, we sampled 213 rodents at three locations with different anthropization levels. A total of 103 rodent blood samples, 84 organ samples, and 204 collected ectoparasites were analyzed for molecular detection of infectious agents (Y. pestis, Rickettsia spp., and F. tularensis) with PCR. We captured seven species of rodents (Dipodomys ordii, D. merriami, D. spectabilis, Chaetodipus hispidus, Ch. eremicus, Perognathus flavus, and P. flavescens) and identified one tick (Rhipicephalus sanguineus), two fleas (Meringis altipecten and M. dipodomys) and one louse (Fahrenholzia spp.). Molecular analyses yielded positive for Y. pestis, Rickettsia spp., and negative for F. tularensis. We then modelled the pathogen status as a function of intrinsic (body condition and sex) and extrinsic factors (locality, anthropization level, season, sample type, and parasite-infestation status). We found that non-parasite-infested individuals with better body condition have a higher probability of pathogen infection. Furthermore, we observed that blood samples had a higher probability of detecting pathogen-infected individuals, as compared to spleen or liver samples. Our results offer important insights into host-pathogen interactions and the role of body condition in the pathogen status.
Collapse
Affiliation(s)
- Diana M. Beristain-Ruiz
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico; (D.M.B.-R.); (A.K.M.-C.); (A.Q.-C.); (B.A.-R.); (V.M.A.-M.)
| | - Ana K. Márquez-Chacón
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico; (D.M.B.-R.); (A.K.M.-C.); (A.Q.-C.); (B.A.-R.); (V.M.A.-M.)
| | - Cuauhcihuatl Vital-García
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico; (D.M.B.-R.); (A.K.M.-C.); (A.Q.-C.); (B.A.-R.); (V.M.A.-M.)
| | - Julio V. Figueroa-Millán
- CENID-Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuernavaca-Cuautla 8534 Colonia Progreso, Jiutepec, Morelos CP 62574, Mexico; (J.V.F.-M.); (J.J.L.-A.)
| | - José J. Lira-Amaya
- CENID-Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuernavaca-Cuautla 8534 Colonia Progreso, Jiutepec, Morelos CP 62574, Mexico; (J.V.F.-M.); (J.J.L.-A.)
| | - John F. Aristizabal
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, Cd. Juárez, Chihuahua CP 32310, Mexico; (J.F.A.); (M.P.O.-S.); (A.B.G.-C.); (J.M.M.-C.)
| | - Martha P. Olivas-Sánchez
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, Cd. Juárez, Chihuahua CP 32310, Mexico; (J.F.A.); (M.P.O.-S.); (A.B.G.-C.); (J.M.M.-C.)
| | - Ana B. Gatica-Colima
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, Cd. Juárez, Chihuahua CP 32310, Mexico; (J.F.A.); (M.P.O.-S.); (A.B.G.-C.); (J.M.M.-C.)
| | - Jesús M. Martínez-Calderas
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Av. Plutarco Elías Calles 1210, Fovissste Chamizal, Cd. Juárez, Chihuahua CP 32310, Mexico; (J.F.A.); (M.P.O.-S.); (A.B.G.-C.); (J.M.M.-C.)
| | - Andrés Quezada-Casasola
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico; (D.M.B.-R.); (A.K.M.-C.); (A.Q.-C.); (B.A.-R.); (V.M.A.-M.)
| | - Beatriz Alvarado-Robles
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico; (D.M.B.-R.); (A.K.M.-C.); (A.Q.-C.); (B.A.-R.); (V.M.A.-M.)
| | - Víctor M. Alonso-Mendoza
- Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico; (D.M.B.-R.); (A.K.M.-C.); (A.Q.-C.); (B.A.-R.); (V.M.A.-M.)
| |
Collapse
|
3
|
Gouzerh F, Dormont L, Buatois B, Hervé MR, Mancini M, Maraver A, Thomas F, Ganem G. Partial role of volatile organic compounds in behavioural responses of mice to bedding from cancer-affected congeners. Biol Open 2024; 13:bio060324. [PMID: 39351636 PMCID: PMC11552615 DOI: 10.1242/bio.060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 11/13/2024] Open
Abstract
Tumours induce changes in body odours. We compared volatile organic compounds (VOCs) in soiled bedding of a lung adenocarcinoma male mouse model in which cancer had (CC) versus had not (NC) been induced by doxycycline at three conditions: before (T0), after 2 weeks (T2; early tumour development), after 12 weeks (T12; late tumour development) of the induction. In an earlier study, wild-derived mice behaviourally discriminated between CC and NC soiled bedding at T2 and T12. Here, we sought to identify VOCs present in the same soiled bedding that could have triggered the behavioural discrimination. Solid phase micro-extraction was performed to extract VOCs from 3 g-sample stimuli. While wild-derived mice could discriminate the odour of cancerous mice at a very early stage of tumour development (T2), the present study did not identify VOCs that could explain this behaviour. However, consistent with the earlier behavioural study, four VOCs, including two well-known male mouse sex pheromones, were found to be present in significantly different proportions in soiled bedding of CC as compared to NC at T12. We discuss the potential involvement of non-volatile molecules such as proteins and peptides in behavioural discrimination of early tumour development (T2), and point-out VOCs that could help diagnose cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/ MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Laurent Dormont
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Bruno Buatois
- CEFE, Centre d’écologie fonctionnelle et évolutive, Université Montpellier, CNRS, EPHE, IRD, University of Paul Valery Montpellier 3, Montpellier, France
| | - Maxime R. Hervé
- IGEPP, Institut de génétique, environnement et protection des plantes, INRAE, Institut Agro, University of Rennes, Rennes, France
| | - Maicol Mancini
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Antonio Maraver
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194-ICM-Université Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC/ MIVEGEC, Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| | - Guila Ganem
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
4
|
Weiss J, Vacher H, Trouillet AC, Leinders-Zufall T, Zufall F, Chamero P. Sensing and avoiding sick conspecifics requires Gαi2 + vomeronasal neurons. BMC Biol 2023; 21:152. [PMID: 37424020 DOI: 10.1186/s12915-023-01653-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.
Collapse
Affiliation(s)
- Jan Weiss
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| | - Hélène Vacher
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Anne-Charlotte Trouillet
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France.
| |
Collapse
|
5
|
Fear generalization and behavioral responses to multiple dangers. Trends Ecol Evol 2023; 38:369-380. [PMID: 36428124 DOI: 10.1016/j.tree.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022]
Abstract
Animals often exhibit consistent-individual differences (CIDs) in boldness/fearfulness, typically studied in the context of predation risk. We focus here on fear generalization, where fear of one danger (e.g., predators) is correlated with fear of other dangers (e.g., humans, pathogens, moving vehicles, or fire). We discuss why fear generalization should be ecologically important, and why we expect fear to correlate across disparate dangers. CIDs in fear are well studied for some dangers in some taxa (e.g., human fear of pathogens), but not well studied for most dangers. Fear of some dangers has been found to correlate with general fearfulness, but some cases where we might expect correlated fears (e.g., between fear of humans, familiar predators, and exotic predators) are surprisingly understudied.
Collapse
|
6
|
Napora P, Kobrzycka A, Pierzchała-Koziec K, Wieczorek M. Effect of selective cyclooxygenase inhibitors on animal behaviour and monoaminergic systems of the rat brain. Behav Brain Res 2023; 438:114143. [PMID: 36206821 DOI: 10.1016/j.bbr.2022.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
Abstract
The long-term effects of cyclooxygenase 1 and 2 (COX-1/2) inhibitors are usually tested in terms of the periphery of the organism. Therefore, we studied the effects of SC560 (selective COX-1 inhibitor) and celecoxib (selective COX-2 inhibitor) on the activity of brain monoaminergic systems and animal behaviour. Additionally, we tested the effect of these inhibitors during inflammation. We have observed that long-term administration of celecoxib reduces the activity of the noradrenergic system, increases the activity of dopaminergic and serotonergic systems, increases locomotor activity, and enhances the exploratory behaviour of rats. Administration of SC560 also increases the activity of dopaminergic and serotonergic systems but reduces locomotor activity and impairs the exploratory behaviour of rats. The mechanism responsible for decreased activity of the noradrenergic system may be related to the weakening of activity of the positive feedback loop between the paraventricular nucleus and coeruleus locus. We suggest that the effect of used inhibitors on the dopaminergic system is associated with a possible increase in anandamide concentration and its effect on dopamine reuptake in synaptic clefts. It also appears that cyclooxygenase peroxidase activity may play a role in this process. In turn, changes in the activity of the serotonergic system may be related to the activity of indoleamine-2,3-dioxygenase, which decreases because of the decreased concentration of pro-inflammatory compounds. We believe that behavioural changes induced by COX inhibitors are the result of the modified activity of monoaminergic CNS systems in the brainstem, hypothalamus, and medial prefrontal cortex.
Collapse
Affiliation(s)
- Paweł Napora
- Department of Neurobiology, University of Łódź, Faculty of Biology and Environmental Protection, 141/143 Pomorska Street, 90-236 Łódź, Poland.
| | - Anna Kobrzycka
- Department of Neurobiology, University of Łódź, Faculty of Biology and Environmental Protection, 141/143 Pomorska Street, 90-236 Łódź, Poland
| | - Krystyna Pierzchała-Koziec
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, 24/28 Adam Mickiewicz Avenue, 30-059 Łódź, Poland
| | - Marek Wieczorek
- Department of Neurobiology, University of Łódź, Faculty of Biology and Environmental Protection, 141/143 Pomorska Street, 90-236 Łódź, Poland.
| |
Collapse
|
7
|
Jacobs LF. The PROUST hypothesis: the embodiment of olfactory cognition. Anim Cogn 2023; 26:59-72. [PMID: 36542172 PMCID: PMC9877075 DOI: 10.1007/s10071-022-01734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The extension of cognition beyond the brain to the body and beyond the body to the environment is an area of debate in philosophy and the cognitive sciences. Yet, these debates largely overlook olfaction, a sensory modality used by most animals. Here, I use the philosopher's framework to explore the implications of embodiment for olfactory cognition. The philosopher's 4E framework comprises embodied cognition, emerging from a nervous system characterized by its interactions with its body. The necessity of action for perception adds enacted cognition. Cognition is further embedded in the sensory inputs of the individual and is extended beyond the individual to information stored in its physical and social environments. Further, embodiment must fulfill the criterion of mutual manipulability, where an agent's cognitive state is involved in continual, reciprocal influences with its environment. Cognition cannot be understood divorced from evolutionary history, however, and I propose adding evolved, as a fifth term to the 4E framework. We must, therefore, begin at the beginning, with chemosensation, a sensory modality that underlies purposive behavior, from bacteria to humans. The PROUST hypothesis (perceiving and reconstructing odor utility in space and time) describers how olfaction, this ancient scaffold and common denominator of animal cognition, fulfills the criteria of embodied cognition. Olfactory cognition, with its near universal taxonomic distribution as well as the near absence of conscious representation in humans, may offer us the best sensorimotor system for the study of embodiment.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650 USA
| |
Collapse
|
8
|
Masuzzo A, Manière G, Grosjean Y, Kurz L, Royet J. Bacteria-Derived Peptidoglycan Triggers a Noncanonical Nuclear Factor-κB-Dependent Response in Drosophila Gustatory Neurons. J Neurosci 2022; 42:7809-7823. [PMID: 36414007 PMCID: PMC9581565 DOI: 10.1523/jneurosci.2437-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
Probing the external world is essential for eukaryotes to distinguish beneficial from pathogenic micro-organisms. If it is clear that the main part of this task falls to the immune cells, recent work shows that neurons can also detect microbes, although the molecules and mechanisms involved are less characterized. In Drosophila, detection of bacteria-derived peptidoglycan by pattern recognition receptors of the peptidoglycan recognition protein (PGRP) family expressed in immune cells triggers nuclear factor-κB (NF-κB)/immune deficiency (IMD)-dependent signaling. We show here that one PGRP protein, called PGRP-LB, is expressed in bitter gustatory neurons of proboscises. In vivo calcium imaging in female flies reveals that the PGRP/IMD pathway is cell-autonomously required in these neurons to transduce the peptidoglycan signal. We finally show that NF-κB/IMD pathway activation in bitter-sensing gustatory neurons influences fly behavior. This demonstrates that a major immune response elicitor and signaling module are required in the peripheral nervous system to sense the presence of bacteria in the environment.SIGNIFICANCE STATEMENT In addition to the classical immune response, eukaryotes rely on neuronally controlled mechanisms to detect microbes and engage in adapted behaviors. However, the mechanisms of microbe detection by the nervous system are poorly understood. Using genetic analysis and calcium imaging, we demonstrate here that bacteria-derived peptidoglycan can activate bitter gustatory neurons. We further show that this response is mediated by the PGRP-LC membrane receptor and downstream components of a noncanonical NF-κB signaling cascade. Activation of this signaling cascade triggers behavior changes. These data demonstrate that bitter-sensing neurons and immune cells share a common detection and signaling module to either trigger the production of antibacterial effectors or to modulate the behavior of flies that are in contact with bacteria. Because peptidoglycan detection doesn't mobilize the known gustatory receptors, it also demonstrates that taste perception is much more complex than anticipated.
Collapse
Affiliation(s)
- Ambra Masuzzo
- Centre National de la Recherche Scientifique, Aix-Marseille Université, Institut de Biologie du Developpement de Marseille, 13009 Marseille, France
| | - Gérard Manière
- Centre National de la Recherche Scientifique; Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement; Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, L'Institut Agro Dijon, Dijon 21000, France
| | - Yaël Grosjean
- Centre National de la Recherche Scientifique; Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement; Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, L'Institut Agro Dijon, Dijon 21000, France
| | - Léopold Kurz
- Centre National de la Recherche Scientifique, Aix-Marseille Université, Institut de Biologie du Developpement de Marseille, 13009 Marseille, France
| | - Julien Royet
- Centre National de la Recherche Scientifique, Aix-Marseille Université, Institut de Biologie du Developpement de Marseille, 13009 Marseille, France
| |
Collapse
|
9
|
Lopes PC. Anticipating infection: how parasitism risk changes animal physiology. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Patricia C. Lopes
- Schmid College of Science and Technology Chapman University Orange CA USA
| |
Collapse
|
10
|
Wang Z, Zheng R, Wang X, Huang X, Huang J, Gu C, He Y, Wu S, Chen J, Yang Q, Qiu P. Aerobic Exercise Improves Methamphetamine-Induced Olfactory Dysfunction Through α-Synuclein Intervention in Male Mice. Front Mol Neurosci 2022; 15:884790. [PMID: 35586307 PMCID: PMC9108672 DOI: 10.3389/fnmol.2022.884790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Methamphetamine (Meth) is a predominantly abused neurostimulant, and its abuse is often associated with multiple neurological symptoms. Olfaction, the sense of smell, is a highly neurotransmission-dependent physiological process; however, the effect of Meth on olfactory function and its underlying mechanisms remain largely unknown. This study aimed to explore the impact of Meth abuse on the olfactory system and the potential mechanisms. Chronic Meth abuse was induced by daily administration of Meth in male mice for 4 weeks, and we then systematically examined olfactory performance. Behavioral tests found that Meth-treated animals showed increased olfactory threshold, decreased olfactory sensitivity, reduced olfactory-dependent discrimination, and difficulty in seeking buried food. Notably, the increased deposition of α-synuclein (α-syn) in the olfactory bulb was detected. Adeno-associated virus (AAV)-mediated α-syn intervention therapy in the olfactory bulb significantly alleviated Meth-induced olfactory function impairment, and 8 weeks of aerobic exercise showed similar effects through the same principle of α-syn intervention. Notably, exercise-mediated reduction of α-syn inhibited abnormal firing activity and restored the inhibitory synaptic regulation of mitral cells in the olfactory bulb. These findings suggest the involvement of α-syn in the pathogenic mechanisms of Meth-induced olfactory dysfunction and shed light on the possible therapeutic applications of aerobic exercise in Meth-induced olfactory dysfunction.
Collapse
|
11
|
Jacobs LF. How the evolution of air breathing shaped hippocampal function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200532. [PMID: 34957846 PMCID: PMC8710879 DOI: 10.1098/rstb.2020.0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
12
|
Carter CS. Oxytocin and love: Myths, metaphors and mysteries. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100107. [PMID: 35755926 PMCID: PMC9216351 DOI: 10.1016/j.cpnec.2021.100107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Oxytocin is a peptide molecule with a multitude of physiological and behavioral functions. Based on its association with reproduction - including social bonding, sexual behavior, birth and maternal behavior - oxytocin also has been called "the love hormone." This essay specifically examines association and parallels between oxytocin and love. However, many myths and gaps in knowledge remain concerning both. A few of these are described here and we hypothesize that the potential benefits of both love and oxytocin may be better understood in light of interactions with more ancient systems, including specifically vasopressin and the immune system. Oxytocin is anti-inflammatory and is associated with recently evolved, social solutions to a variety of challenges necessary for mammalian survival and reproduction. The shared functions of oxytocin and love have profound implications for health and longevity, including the prevention and treatment of excess inflammation and related disorders, especially those occurring in early life and during periods of chronic threat or disease.
Collapse
Affiliation(s)
- C. Sue Carter
- Kinsey Institute, Indiana University, Bloomington, USA
- Department of Psychology, University of Virginia, Charlottesville, USA
| |
Collapse
|
13
|
Abstract
In the phase between ovulation and potential implantation of the egg, and especially during pregnancy, females downregulate their immune system to prevent it from attacking the (future) embryo, which is after all a half-foreign organism. Yet this adaptive mechanism, that is set off by rising progesterone, makes females more vulnerable to pathogens at those critical times. It has been proposed that, to compensate this depression of physiological immunity, progesterone reinforces behavioral immunity-by increasing proneness to disgust and hence active avoidance of infection-but evidence is inconclusive and indirect. Manipulating progesterone directly, a recent, crucial study on female mice's disgust for infected males came up empty handed. Here, reanalyzing these data in a more statistically sensitive manner, we show that progesterone not only raises disgust but does so in a way that is both significant and substantial.
Collapse
Affiliation(s)
- Paola Bressan
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy.
| | - Peter Kramer
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy.
| |
Collapse
|
14
|
Schaller M, Murray DR, Hofer MK. The behavioural immune system and pandemic psychology: the evolved psychology of disease-avoidance and its implications for attitudes, behaviour, and public health during epidemic outbreaks. EUROPEAN REVIEW OF SOCIAL PSYCHOLOGY 2021. [DOI: 10.1080/10463283.2021.1988404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mark Schaller
- Department of Psychology, University of British Columbia, Vancouver, V6T1Z4, Canada
| | - Damian R. Murray
- Department of Psychology, Tulane University, New Orleans, LA, 70188, United States
| | - Marlise K. Hofer
- Department of Psychology, University of Victoria, Victoria, V8W2Y2, Canada
| |
Collapse
|
15
|
Kavaliers M, Bishnoi IR, Ossenkopp KP, Choleris E. Odor-based mate choice copying in deer mice is not affected by familiarity or kinship. Anim Cogn 2021; 25:241-248. [PMID: 34398314 DOI: 10.1007/s10071-021-01550-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Individuals pay attention to the social and mate decisions of others and use these to determine their own choices, displaying mate choice copying. The present study with deer mice, Peromyscus maniculatus, showed that females copied the odor preferences and appetitive components of the mate choice of other females. It was found that an association between male and female odors, which is indicative of the apparent interest expressed by a female in a male, enhanced the preference of another female for the odors of that male. This socially learned odor preference lasted for at least 24 h and extended to a preference for the actual male that was the odor source. Neither kinship nor prior familiarity with the female whose odor was presented had a significant influence on the degree of odor-based mate choice copying displayed. These findings show that female deer mice can engage in mate choice copying using the odor-based social interest and mate choice of other females.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Graduate Program in Neuroscience, University of Western Ontario, London, Canada. .,Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
16
|
Understanding potential implications for non-trophic parasite transmission based on vertebrate behavior at mesocarnivore carcass sites. Vet Res Commun 2021; 45:261-275. [PMID: 34176034 PMCID: PMC8235911 DOI: 10.1007/s11259-021-09806-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023]
Abstract
High infection risk is often associated with aggregations of animals around attractive resources. Here, we explore the behavior of potential hosts of non-trophically transmitted parasites at mesocarnivore carcass sites. We used videos recorded by camera traps at 56 red fox (Vulpes vulpes) carcasses and 10 carcasses of other wild carnivore species in three areas of southeastern Spain. Scavenging species, especially wild canids, mustelids and viverrids, showed more frequent rubbing behavior at carcass sites than non-scavenging and domestic species, suggesting that they could be exposed to a higher potential infection risk. The red fox was the species that most frequently contacted carcasses and marked and rubbed carcass sites. Foxes contacted heterospecific carcasses more frequently and earlier than conspecific ones and, when close contact occurred, it was more likely to be observed at heterospecific carcasses. This suggests that foxes avoid contact with the type of carcass and time period that have the greatest risk as a source of parasites. Overall, non-trophic behaviors of higher infection risk were mainly associated with visitor-carcass contact and visitor contact with feces and urine, rather than direct contact between visitors. Moreover, contact events between scavengers and carnivore carcasses were far more frequent than consumption events, which suggests that scavenger behavior is more constrained by the risk of acquiring meat-borne parasites than non-trophically transmitted parasites. This study contributes to filling key gaps in understanding the role of carrion in the landscape of disgust, which may be especially relevant in the current global context of emerging and re-emerging pathogens.
Collapse
|
17
|
Koprivnikar J, Rochette A, Forbes MR. Risk-Induced Trait Responses and Non-consumptive Effects in Plants and Animals in Response to Their Invertebrate Herbivore and Parasite Natural Enemies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predators kill and consume prey, but also scare living prey. Fitness of prey can be reduced by direct killing and consumption, but also by non-consumptive effects (NCEs) if prey show costly risk-induced trait responses (RITRs) to predators, which are meant to reduce predation risk. Recently, similarities between predators and parasites as natural enemies have been recognized, including their potential to cause victim RITRs and NCEs. However, plant-herbivore and animal host-parasite associations might be more comparable as victim-enemy systems in this context than either is to prey-predator systems. This is because plant herbivores and animal parasites are often invertebrate species that are typically smaller than their victims, generally cause lower lethality, and allow for further defensive responses by victims after consumption begins. Invertebrate herbivores can cause diverse RITRs in plants through various means, and animals also exhibit assorted RITRs to increased parasitism risk. This synthesis aims to broadly compare these two enemy-victim systems by highlighting the ways in which plants and animals perceive threat and respond with a range of induced victim trait responses that can provide pre-emptive defense against invertebrate enemies. We also review evidence that RITRs are costly in terms of reducing victim fitness or abundance, demonstrating how work with one victim-enemy system can inform the other with respect to the frequency and magnitude of RITRs and possible NCEs. We particularly highlight gaps in our knowledge about plant and animal host responses to their invertebrate enemies that may guide directions for future research. Comparing how potential plant and animal victims respond pre-emptively to the threat of consumption via RITRs will help to advance our understanding of natural enemy ecology and may have utility for pest and disease control.
Collapse
|
18
|
Abstract
Sickness induced by gastrointestinal malaise or by microbial pathogens is more than a private experience. Sick individuals share their illness within their social environment by communicating their sickness to others. In turn, recipients of the communication respond with appropriate behavioral adaptations. Avoidance of sick individuals and the events associated with their sickness is advantageous for members of the group. However, these responses can conflict with the need for comfort or social support expressed by sick individuals. There is evidence that the relationship between the sick individual and its social environment involves neurobiological mechanisms that are similar to those that mediate social bonding. Despite their commonality the feelings of love and fear/disgust that are associated with the sociality of sickness have thus far been neglected by mainstream affective neuroscience.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Infection threat shapes our social instincts. Behav Ecol Sociobiol 2021; 75:47. [PMID: 33583997 PMCID: PMC7873116 DOI: 10.1007/s00265-021-02975-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
We social animals must balance the need to avoid infections with the need to interact with conspecifics. To that end we have evolved, alongside our physiological immune system, a suite of behaviors devised to deal with potentially contagious individuals. Focusing mostly on humans, the current review describes the design and biological innards of this behavioral immune system, laying out how infection threat shapes sociality and sociality shapes infection threat. The paper shows how the danger of contagion is detected and posted to the brain; how it affects individuals’ mate choice and sex life; why it strengthens ties within groups but severs those between them, leading to hostility toward anyone who looks, smells, or behaves unusually; and how it permeates the foundation of our moral and political views. This system was already in place when agriculture and animal domestication set off a massive increase in our population density, personal connections, and interaction with other species, amplifying enormously the spread of disease. Alas, pandemics such as COVID-19 not only are a disaster for public health, but, by rousing millions of behavioral immune systems, could prove a threat to harmonious cohabitation too.
Collapse
|
20
|
Kavaliers M, Bishnoi IR, Ossenkopp KP, Choleris E. Differential effects of progesterone on social recognition and the avoidance of pathogen threat by female mice. Horm Behav 2021; 127:104873. [PMID: 33069752 DOI: 10.1016/j.yhbeh.2020.104873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Although pathogen threat affects social and sexual responses across species, relatively little is known about the underlying neuroendocrine mechanisms. Progesterone has been speculated to be involved in the mediation of pathogen disgust in women, though with mixed experimental support. Here we considered the effects of acute progesterone on the disgust-like avoidance responses of female mice to pathogen threat. Estrous female mice discriminated and avoided the urinary and associated odors of males subclinically infected with the murine nematode parasite, Heligmosomoides polygyrus. These avoidance responses were not significantly affected by pre-treatment with progesterone. Likewise, brief (1 min) exposure to the odors of infected males attenuated the subsequent responses of females to the odors of the normally preferred unfamiliar males and enhanced their preferences for familiar males. Neither progesterone nor allopregnanolone, a central neurosteroid metabolite of progesterone, had any significant effects on the avoidance of unfamiliar males elicited by pre-exposure to a parasitized male. Progesterone and allopregnanolone, did, however, significantly attenuate the typical preferences of estrous females for unfamiliar uninfected males, suggestive of effects on social recognition. These findings with mice indicate that progesterone may have minimal effects on the responses to specific parasite threat and the expression of pathogen disgust but may influence more general social recognition and preferences.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|