1
|
Zhou L, Song C, Yang H, Zhao L, Li X, Sun X, Gao K, Guo J. Behavioral and multiomics analysis of 3D clinostat simulated microgravity effect in mice focusing on the central nervous system. Sci Rep 2025; 15:5731. [PMID: 39962314 PMCID: PMC11833055 DOI: 10.1038/s41598-025-90212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
A study was conducted to evaluate the three-dimensional clinostat simulated microgravity effect on mouse models, focusing on the central nervous system. Eighteen mice were divided into three groups: control, survival box, and clinostat + survival box. Behavioral tests, femur micro-CT, brain transcriptomics, serum metabolomics, and fecal microbiomics were performed. Results showed decreased activity, altered gait, enhanced fear memory, bone loss, immune/endocrine changes in brain transcriptome, and altered metabolic pathways in serum and gut microbiota in clinostat-treated mice. The model closely mimics spaceflight-induced transcriptome changes, suggesting its value in studying microgravity-related neurological alterations and highlighting the need for attention to emotional changes in space.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chenchen Song
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hu Yang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lianlian Zhao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xianglei Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xiuping Sun
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Guo
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Bosco G, Landolfi A, Giacon TA, Vezzoli A, Paolocci N, Mrakic-Sposta S. Short-term suborbital space flight curtails astronauts' dopamine levels increasing cortisol/BDNF and prompting pro-oxidative/inflammatory milieu. Mil Med Res 2025; 12:2. [PMID: 39828724 PMCID: PMC11744899 DOI: 10.1186/s40779-025-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35129, Padua, Italy
| | | | | | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162, Milan, Italy
| | - Nazareno Paolocci
- Department of Biomedical Sciences, University of Padova, 35129, Padua, Italy
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162, Milan, Italy.
| |
Collapse
|
3
|
Ali N, Beheshti A, Hampikian G. Space exploration and risk of Parkinson's disease: a perspective review. NPJ Microgravity 2025; 11:1. [PMID: 39753605 PMCID: PMC11698718 DOI: 10.1038/s41526-024-00457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
Systemic mitochondrial dysfunction, dopamine loss, sustained structural changes in the basal ganglia including reduced tyrosine hydroxylase, and altered gait- these effects observed in space-flown animals and astronauts mirrors Parkinson's disease (PD). Evidence of mitochondrial changes in space-flown human cells, examined through the lens of PD, suggests that spaceflight-induced PD-like molecular changes are important to monitor during deep space exploration. These changes, may potentially elevate the risk of PD in astronauts.
Collapse
Affiliation(s)
- Nilufar Ali
- Department of Biological Science, Boise State University, Boise, ID, 83725, USA.
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Greg Hampikian
- Department of Biological Science, Boise State University, Boise, ID, 83725, USA
| |
Collapse
|
4
|
Britten RA, Fesshaye AS, Tidmore A, Tamgue EN, Alvarado-Arriaga PA. Different spectrum of space radiation induced cognitive impairments in radiation-naïve and adapted rats. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:68-74. [PMID: 39521496 DOI: 10.1016/j.lssr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
NASA's decision to resume manned deep space mission, first to the Moon and then Mars, necessitated a detailed assessment of the potential health effects that astronauts may experience on long-duration missions. Multiple studies suggest that there may be significant space radiation (SR)-induced impairment of neurocognitive processes, including advanced executive functions. However, given the multitude of SR-induced changes in the CNS, it is possible that completely different SR-induced sequelae will be induced in previously exposed individuals. Thus, current risk estimates are likely to be pertinent only for the early stages of a deep space mission, and even then only for astronauts that have no previous experience in space. In this study, rats that maintained high attentional set shifting (ATSET) performance after an initial exposure to 10 cGy of SR (either 250 MeV/n He or GCRsim), were exposed to an additional dose of 10 cGy GCRsim and their ATSET performance reassessed. The re-irradiated rats exhibited significant impairment of ATSET performance, however, the performance decrements differed in two important aspects from those typically observed after single exposures. First, the decrements were manifested when the rats were required to perform set shifting, specifically in the IDR and EDS stages of the ATSET test. Secondly, the main performance decrement was in a loss of processing speed, which in the IDR stage resulted in the re-irradiated rats taking 2-fold more time to solve the problem than did Sham rats. The functional consequence of this decrement was that compared to Sham rats, 20 % fewer SR-exposed rats solved the IDS and EDR problems within 20 s. These data suggests that prior SR exposure alters nature of ATSET impairments from that observed in radiation-naïve individuals. Risk estimates derived from studies that use radiation naïve rats may thus not fully reflect the incidence and nature of ATSET performance deficits that could occur over the entire duration of a mission to Mars, or in astronauts who return to deep space on multiple occasions. It would thus be germane to conduct in-flight monitoring for cognitive performance decrements observed in both radiation naïve and exposed rats during the mission, and ensure that the crew has sufficient overlapping skill sets to minimize the operational impact of these additional cognitive impairments.
Collapse
Affiliation(s)
- Richard A Britten
- Radiation Oncology, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA. 23507, USA.
| | | | | | | | | |
Collapse
|
5
|
Rappaport MB, Corbally CJ. Toward an Etiology of Spaceflight Neuroplastic Syndrome: Evolutionary Science Leads to New Hypotheses and Program Priorities. NEUROSCI 2023; 4:247-262. [PMID: 39484176 PMCID: PMC11523727 DOI: 10.3390/neurosci4040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2024] Open
Abstract
Evolutionary theory is applied to recent neuroscientific findings on factors associated with risk-and-reward systems, and consequently, aspects of human decision making in spaceflight. Factors include enzymes aiding metabolic pathways of dopamine and serotonin; neurotrophic factors supporting neuronal functioning and plasticity; and genes associated with serotonin and dopamine systems. Not all factors are at risk in spaceflight. Some remain stable. It is hypothesized that neural deconditioning in spaceflight arises from faulty signals sent to the brain and gut in attempting to adapt phenotypically to a novel space environment. There is a mismatch between terrestrial selection pressures during human evolution and conditions of cosmic radiation, microgravity, and higher CO2, which together cause scattered results. A contrary question is broached: Given these findings, why are human sequelae not worse? Discussion of programmatic issues then focuses on methodologies to determine the suitability of civilians for spaceflight, an issue that grows more pressing while more varied populations prepare for spaceflight in LEO and on, and in orbit around the Moon.
Collapse
|
6
|
Desai RI, Kangas BD, Luc OT, Solakidou E, Smith EC, Dawes MH, Ma X, Makriyannis A, Chatterjee S, Dayeh MA, Muñoz-Jaramillo A, Desai MI, Limoli CL. Complex 33-beam simulated galactic cosmic radiation exposure impacts cognitive function and prefrontal cortex neurotransmitter networks in male mice. Nat Commun 2023; 14:7779. [PMID: 38012180 PMCID: PMC10682413 DOI: 10.1038/s41467-023-42173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023] Open
Abstract
Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.
Collapse
Affiliation(s)
- Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA.
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA.
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Oanh T Luc
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Eleana Solakidou
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
- Medical School, University of Crete, Heraklion, Greece
| | - Evan C Smith
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Monica H Dawes
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Xiaoyu Ma
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | | | - Maher A Dayeh
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | | | - Mihir I Desai
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Orange, CA, 92697, USA
| |
Collapse
|
7
|
Naumova AA, Oleynik EA, Khramtsova AV, Nikolaeva SD, Chernigovskaya EV, Glazova MV. Short-term hindlimb unloading negatively affects dopaminergic transmission in the nigrostriatal system of mice. Dev Neurobiol 2023; 83:205-218. [PMID: 37489016 DOI: 10.1002/dneu.22924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
The nigrostriatal system composed of the dorsal striatum and the substantia nigra (SN) is highly involved in the control of motor behavior. Various extremal and pathological conditions as well as social isolation (SI) may cause an impairment of locomotor function; however, corresponding alterations in the nigrostriatal dopaminergic pathway are far from full understanding. Here, we analyzed the effect of 3-day hindlimb unloading (HU) and SI on the key players of dopamine transmission in the nigrostriatal system of CD1 mice. Three groups of mice were analyzed: group-housed (GH), SI, and HU animals. Our data showed a significant decrease in the expression and phosphorylation of tyrosine hydroxylase (TH) in the SN and dorsal striatum of HU mice that suggested attenuation of dopamine synthesis in response to HU. In the dorsal striatum of HU mice, the downregulation of TH expression was also observed indicating the effect of unloading; however, TH phosphorylation at Ser40 was mainly affected by SI pointing on an impact of isolation too. Expression of dopamine receptors D1 in the dorsal striatum of HU mice was increased suggesting a compensatory response, but the activity of downstream signaling pathways involving protein kinase A and cAMP response element-binding protein was inhibited. At the same time, SI alone did not affect expression of DA receptors and activity of downstream signaling in the dorsal striatum. Obtained data let us to conclude that HU was the main factor which impaired dopamine transmission in the nigrostriatal system but SI made some contribution to its negative effects.
Collapse
Affiliation(s)
- Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Oleynik
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna V Khramtsova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Oreshko AS, Rodnyy AY, Bazovkina DV, Naumenko VS. Effects of central administration of the human Tau protein on the Bdnf, Trkb, p75, Mapt, Bax and Bcl-2 genes expression in the mouse brain. Vavilovskii Zhurnal Genet Selektsii 2023; 27:342-348. [PMID: 37465194 PMCID: PMC10350857 DOI: 10.18699/vjgb-23-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 07/20/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia, affecting millions of people worldwide. Despite intensive work by many researchers, the mechanisms underlying Alzheimer's disease development have not yet been elucidated. Recently, more studies have been directed to the investigation of the processes leading to the formation of neurofibrillary tangles consisting of hyperphosphorylated microtubule-associated Tau proteins. Pathological aggregation of this protein leads to the development of neurodegeneration associated with impaired neurogenesis and apoptosis. In the present study, the effects of central administration of aggregating human Tau protein on the expression of the Bdnf, Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the brain of C57Bl/6J mice were explored. It was found that five days after administration of the protein into the fourth lateral ventricle, significant changes occurred in the expression of the genes involved in apoptosis and neurogenesis regulation, e. g., a notable decrease in the mRNA level of the gene encoding the most important neurotrophic factor BDNF (brain-derived neurotrophic factor) was observed in the frontal cortex which could play an important role in neurodegeneration caused by pathological Tau protein aggregation. Central administration of the Tau protein did not affect the expression of the Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the frontal cortex and hippocampus. Concurrently, a significant decrease in the expression of the Mapt gene encoding endogenous mouse Tau protein was found in the cerebellum. However, no changes in the level or phosphorylation of the endogenous Tau protein were observed. Thus, central administration of aggregating human Tau protein decreases the expression of the Bdnf gene in the frontal cortex and the Mapt gene encoding endogenous mouse Tau protein in the cerebellum of C57Bl/6J mice.
Collapse
Affiliation(s)
- A S Oreshko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Ya Rodnyy
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Bazovkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Naumenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Striebel J, Kalinski L, Sturm M, Drouvé N, Peters S, Lichterfeld Y, Habibey R, Hauslage J, El Sheikh S, Busskamp V, Liemersdorf C. Human neural network activity reacts to gravity changes in vitro. Front Neurosci 2023; 17:1085282. [PMID: 36968488 PMCID: PMC10030604 DOI: 10.3389/fnins.2023.1085282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
During spaceflight, humans experience a variety of physiological changes due to deviations from familiar earth conditions. Specifically, the lack of gravity is responsible for many effects observed in returning astronauts. These impairments can include structural as well as functional changes of the brain and a decline in cognitive performance. However, the underlying physiological mechanisms remain elusive. Alterations in neuronal activity play a central role in mental disorders and altered neuronal transmission may also lead to diminished human performance in space. Thus, understanding the influence of altered gravity at the cellular and network level is of high importance. Previous electrophysiological experiments using patch clamp techniques and calcium indicators have shown that neuronal activity is influenced by altered gravity. By using multi-electrode array (MEA) technology, we advanced the electrophysiological investigation covering single-cell to network level responses during exposure to decreased (micro-) or increased (hyper-) gravity conditions. We continuously recorded in real-time the spontaneous activity of human induced pluripotent stem cell (hiPSC)-derived neural networks in vitro. The MEA device was integrated into a custom-built environmental chamber to expose the system with neuronal cultures to up to 6 g of hypergravity on the Short-Arm Human Centrifuge at the DLR Cologne, Germany. The flexibility of the experimental hardware set-up facilitated additional MEA electrophysiology experiments under 4.7 s of high-quality microgravity (10–6 to 10–5 g) in the Bremen drop tower, Germany. Hypergravity led to significant changes in activity. During the microgravity phase, the mean action potential frequency across the neural networks was significantly enhanced, whereas different subgroups of neurons showed distinct behaviors, such as increased or decreased firing activity. Our data clearly demonstrate that gravity as an environmental stimulus triggers changes in neuronal activity. Neuronal networks especially reacted to acute changes in mechanical loading (hypergravity) or de-loading (microgravity). The current study clearly shows the gravity-dependent response of neuronal networks endorsing the importance of further investigations of neuronal activity and its adaptive responses to micro- and hypergravity. Our approach provided the basis for the identification of responsible mechanisms and the development of countermeasures with potential implications on manned space missions.
Collapse
Affiliation(s)
- Johannes Striebel
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Kalinski
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Maximilian Sturm
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Nils Drouvé
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Stefan Peters
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Yannick Lichterfeld
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Rouhollah Habibey
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens Hauslage
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Sherif El Sheikh
- Department of Applied Sciences, Cologne University of Applied Sciences, Leverkusen, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- *Correspondence: Christian Liemersdorf,
| |
Collapse
|
10
|
Zhang Y, Huang H, Yao C, Sun X, He Q, Choudharyc MI, Chen S, Liu X, Jiang N. Fresh Gastrodia elata Blume alleviates simulated weightlessness-induced cognitive impairment by regulating inflammatory and apoptosis-related pathways. Front Pharmacol 2023; 14:1173920. [PMID: 37205911 PMCID: PMC10188943 DOI: 10.3389/fphar.2023.1173920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
In aerospace medicine, the influence of microgravity on cognition has always been a risk factor threatening astronauts' health. The traditional medicinal plant and food material Gastrodia elata Blume has been used as a therapeutic drug for neurological diseases for a long time due to its unique neuroprotective effect. To study the effect of fresh Gastrodia elata Blume (FG) on cognitive impairment caused by microgravity, hindlimb unloading (HU) was used to stimulate weightlessness in mice. The fresh Gastrodia elata Blume (0.5 g/kg or 1.0 g/kg) was intragastrically administered daily to mice exposed to HU and behavioral tests were conducted after four weeks to detect the cognitive status of animals. The behavioral tests results showed that fresh Gastrodia elata Blume therapy significantly improved the performance of mice in the object location recognition test, Step-Down test, and Morris Water Maze test, including short-term and long-term spatial memory. According to the biochemical test results, fresh Gastrodia elata Blume administration not only reduced serum factor levels of oxidative stress but also maintained the balance of pro-inflammatory and anti-inflammatory factors in the hippocampus, reversing the abnormal increase of NLRP3 and NF-κB. The apoptosis-related proteins were downregulated which may be related to the activation of the PI3K/AKT/mTOR pathway by fresh Gastrodia elata Blume therapy, and the abnormal changes of synapse-related protein and glutamate neurotransmitter were corrected. These results identify the improvement effect of fresh Gastrodia elata Blume as a new application form of Gastrodia elata Blume on cognitive impairment caused by simulated weightlessness and advance our understanding of the mechanism of fresh Gastrodia elata Blume on the neuroprotective effect.
Collapse
Affiliation(s)
- Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Muhammad Iqbal Choudharyc
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shanguang Chen
- National Laboratory of Human Factors Engineering, The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinmin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Zhejiang, China
- *Correspondence: Xinmin Liu, ; Ning Jiang,
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xinmin Liu, ; Ning Jiang,
| |
Collapse
|
11
|
Zhang P, Yan J, Liu Z, Yu H, Zhao R, Zhou Q. Extreme conditions affect neuronal oscillations of cerebral cortices in humans in the China Space Station and on Earth. Commun Biol 2022; 5:1041. [PMID: 36180522 PMCID: PMC9525319 DOI: 10.1038/s42003-022-04018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
Rhythmical oscillations of neural populations can reflect working memory performance. However, whether neuronal oscillations of the cerebral cortex change in extreme environments, especially in a space station, remains unclear. Here, we recorded electroencephalography (EEG) signals when volunteers and astronauts were executing a memory task in extreme working conditions. Our experiments showed that two extreme conditions affect neuronal oscillations of the cerebral cortex and manifest in different ways. Lengthy periods of mental work impairs the gating mechanism formed by theta-gamma phase-amplitude coupling of two cortical areas, and sleep deprivation disrupts synaptic homeostasis, as reflected by the substantial increase in theta wave activity in the cortical frontal-central area. In addition, we excluded the possibility that nutritional supply or psychological situations caused decoupled theta-gamma phase-amplitude coupling or an imbalance in theta wave activity increase. Therefore, we speculate that the decoupled theta-gamma phase-amplitude coupling detected in astronauts results from their lengthy periods of mental work in the China Space Station. Furthermore, comparing preflight and inflight experiments, we find that long-term spaceflight and other hazards in the space station could worsen this decoupling evolution. This particular neuronal oscillation mechanism in the cerebral cortex could guide countermeasures for the inadaptability of humans working in spaceflight.
Collapse
Affiliation(s)
- Peng Zhang
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Juan Yan
- grid.198530.60000 0000 8803 2373China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088 China
| | - Zhongqi Liu
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Hongqiang Yu
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100193 China
| | - Rui Zhao
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100193 China
| | - Qianxiang Zhou
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
| |
Collapse
|
12
|
Rappaport MB, Corbally CJ. Neuroplasticity as a Foundation for Decision-Making in Space. NEUROSCI 2022; 3:457-475. [PMID: 39483427 PMCID: PMC11523684 DOI: 10.3390/neurosci3030033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2024] Open
Abstract
This is an exploratory review of two very recent, intersecting segments of space science: neuroplasticity in space, and decision-making in space. The high level of neuroplasticity in humans leads to unfortunate neurological and physical deconditioning while the body adjusts to the new space environment. However, neuroplasticity may also allow recovery and continued functioning of decision-making at a level necessary for mission completion. Cosmic radiation, microgravity, heightened levels of carbon dioxide in spacecraft, and other factors are being explored as root causes of neurological and physical deconditioning in space. The goal of this paper is to explore some of the lines of causation that show how these factors affect the capacity of humans to make decisions in space. Either alone or in groups, it remains essential that humans retain an ability to make decisions that will save lives, protect equipment, complete missions, and return safely to Earth. A final section addresses healthcare, medical intervention, and remediation that could help to "harness" neuroplasticity before, during, and after spaceflight. The dual nature of human neuroplasticity renders it both a cause of problems and also potentially the foundation of remediation. The future of research on both neuroplasticity and human decision-making promises to be full of surprises, both welcome and otherwise. It is an exciting time in research on space medicine.
Collapse
|
13
|
Mammarella N, Gatti M, Ceccato I, Di Crosta A, Di Domenico A, Palumbo R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081176. [PMID: 36013355 PMCID: PMC9410359 DOI: 10.3390/life12081176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Fighting stress-related effects during spaceflight is crucial for a successful mission. Emotional, motivational, and cognitive mechanisms have already been shown to be involved in the decrease of negative emotions. However, emerging evidence is pointing to a neurogenetic profile that may render some individuals more prone than others to focusing on positive information in memory and increasing affective health. The relevance for adaptation to the space environment and the interaction with other stressors such as ionizing radiations is discussed. In particular, to clarify this approach better, we will draw from the psychology and aging literature data. Subsequently, we report on studies on candidate genes for sensitivity to positive memories. We review work on the following candidate genes that may be crucial in adaptation mechanisms: ADRA2B, COMT, 5HTTLPR, CB1, and TOMM40. The final aim is to show how the study of genetics and cell biology of positive memory can help us to reveal the underlying bottom-up pathways to also increasing positive effects during a space mission.
Collapse
Affiliation(s)
- Nicola Mammarella
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
- Correspondence:
| | - Matteo Gatti
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Irene Ceccato
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adolfo Di Crosta
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Alberto Di Domenico
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Rocco Palumbo
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| |
Collapse
|
14
|
Oleynik EA, Naumova АА, Grigorieva YS, Bakhteeva VT, Lavrova EA, Chernigovskaya EV, Glazova MV. Neurogenesis in the Hippocampus of Mice Exposed to Short-Term Hindlimb Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Yoshikawa M, Ishikawa C, Li H, Kudo T, Shiba D, Shirakawa M, Murtani M, Takahashi S, Aizawa S, Shiga T. Comparing effects of microgravity and amyotrophic lateral sclerosis in the mouse ventral lumbar spinal cord. Mol Cell Neurosci 2022; 121:103745. [PMID: 35660087 DOI: 10.1016/j.mcn.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022] Open
Abstract
Microgravity (MG) exposure and motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), lead to motor deficits, including muscle atrophy and loss of neuronal activity. Abnormalities in motor neurons and muscles caused by MG exposure can be recovered by subsequent ground exercise. In contrast, the degeneration that occurs in ALS is irreversible. A common phenotype between MG exposure and ALS pathology is motor system abnormality, but the causes may be different. In this study, to elucidate the motor system that is affected by each condition, we investigated the effects of MG and the human SOD1 ALS mutation on gene expression in various cell types of the mouse ventral lumbar spinal cord, which is rich in motor neurons innervating the lower limb. To identify cell types affected by MG or ALS pathogenesis, we analyzed differentially expressed genes with known cell-type markers, which were determined from previous single-cell studies of the spinal cord in MG-exposed and SOD1G93A mice, an ALS mouse model. Differentially expressed genes were observed in MG mice in various spinal cord cell types, including neurons, microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells, meningeal cells/Schwann cells, and vascular cells. We also examined neuronal populations in the spinal cord. Gene expression in putative excitatory and inhibitory neurons changed more than that in cholinergic motor neurons of the spinal cord in both MG and SOD1G93A mice. Many putative neuron types, especially visceral motor neurons, and axon initial segments (AIS) were affected in MG mice. In contrast, the effect on neurons and AIS in SOD1G93A mice was slight at P30 but progressed with aging. Interestingly, changes in dopaminergic system-related genes were specifically altered in the spinal cord of MG mice. These results indicate that MG and ALS pathology in various cell types contribute to motor neuron degeneration. Furthermore, there were more alterations in neurons in MG-exposed mice than in SOD1G93A mice. A large number of differentially expressed genes (DEGs) in MG mice represent more than SOD1G93A mice with ALS pathology. Elucidation of MG pathogenesis may provide more insight into the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan.
| | - Chihiro Ishikawa
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Haiyan Li
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Kudo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki 305-8505, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki 305-8505, Japan
| | - Masafumi Murtani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Takashi Shiga
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
16
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Plantar Stimulations during 3-Day Hindlimb Unloading Prevent Loss of Neural Progenitors and Maintain ERK1/2 Activity in the Rat Hippocampus. Life (Basel) 2021; 11:life11050449. [PMID: 34067876 PMCID: PMC8157184 DOI: 10.3390/life11050449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Adult neurogenesis is a flexible process that depends on the environment and correlates with cognitive functions. Cognitive functions are impaired by various factors including space flight conditions and reduced physical activity. Physically active life significantly improves both cognition and the hippocampal neurogenesis. Here, we analyzed how 3-day simulated microgravity caused by hindlimb unloading (HU) or dynamic foot stimulation (DFS) during HU can affect the hippocampal neurogenesis. Adult Wistar rats were recruited in the experiments. The results demonstrated a decrease in the number of doublecortine (DCX) positive neural progenitors, but proliferation in the subgranular zone of the dentate gyrus was not changed after 3-day HU. Analysis of the effects of DFS showed restoration of neural progenitor population in the subgranular zone of the dentate gyrus. Additionally, we analyzed activity of the cRaf/ERK1/2 pathway, which is one of the major players in the regulation of neuronal differentiation. The results demonstrated inhibition of cRaf/ERK1/2 signaling in the hippocampus of HU rats. In DFS rats, no changes in the activity of cRaf/ERK1/2 were observed. Thus, we demonstrated that the process of neurogenesis fading during HU begins with inhibition of the formation of immature neurons and associated ERK1/2 signaling activity, while DFS prevents the development of mentioned alterations.
Collapse
|
18
|
Amirova LE, Plehuna A, Rukavishnikov IV, Saveko AA, Peipsi A, Tomilovskaya ES. Sharp Changes in Muscle Tone in Humans Under Simulated Microgravity. Front Physiol 2021; 12:661922. [PMID: 34025451 PMCID: PMC8134537 DOI: 10.3389/fphys.2021.661922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
A decrease in muscle tone induced by space flight requires a standardized assessment of changes to control the state of the neuromuscular system. This study is a step toward the development of a unified protocol, aimed at determining the initial effect of the presence or withdrawal of support on muscle tone, the effects of a 2-h supportlessness in Dry Immersion (DI) experiments, and the changes in muscle tone depending on the site of measurement. To perform measurements of changes in muscle tone, we used a MyotonPRO device. The list of muscles that we assessed includes: trunk – mm. deltoideus posterior, trapezius, erector spinae; leg – mm. biceps femoris, rectus femoris, tibialis anterior, soleus, gastrocnemius; foot – m. flexor digitorum brevis, tendo Achillis, aponeurosis plantaris. The study involved 12 healthy volunteers (6 men, 6 women) without musculoskeletal disorders and aged 32.8 ± 1.6 years. At the start of DI, there was a significant decrease in muscle tone of the following muscles: mm. tibialis anterior (−10.9%), soleus (−9.6%), erector spinae (−14.4%), and the tendo Achillis (−15.3%). The decrease continued to intensify over the next 2 h. In contrast, the gastrocnemius muscle demonstrated an increase in muscle tone (+7.5%) 2 h after the start of DI compared to the immediate in-bath baseline. Muscle tone values were found to be site-dependent and varied in different projections of mm. erector spinae and soleus. In previous experiments, we observed a high sensitivity of the myotonometry technique, which was confirmed in this study. To make it possible to compare data from different studies, a standardized protocol for measuring muscle tone for general use in gravitational physiology needs to be developed.
Collapse
Affiliation(s)
- Liubov E Amirova
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anastasija Plehuna
- King's College London, Centre of Human & Applied Physiological Sciences, London, United Kingdom
| | - Ilya V Rukavishnikov
- Department of Medical Support for Spaceflight, Institute of Biomedical Problem of Russian Academy of Science, Moscow, Russia
| | - Alina A Saveko
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena S Tomilovskaya
- Laboratory of Gravitational Physiology of the Sensorimotor System, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|