1
|
Gacso Z, Adamson G, Slama J, Xie C, Burdick E, Persaud K, Chowdhury S, Ahmed ZS, Vaysman E, Aminov A, Ranaldi R, Galaj E. Fentanyl exposure alters rat CB1 receptor expression in the insula, nucleus accumbens and substantia nigra. Neurosci Lett 2025; 844:138058. [PMID: 39577686 DOI: 10.1016/j.neulet.2024.138058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Prolonged periods of opioid use have been shown to cause neuroadaptations in the brain's reward circuitry, contributing to addictive behaviors and drug dependence. Recently, considerable focus has been placed on the role of the endocannabinoid system (ECS) and its CB receptors in opioid-driven behaviors. However, opioid-induced neuroadaptations to the ECS remain understudied. In this study, we systematically assessed CB1 receptor (CB1R) protein expression within the cortico-mesolimbic-basal ganglia circuit in rats following chronic fentanyl exposure. Male and female Long Evans rats were administered increasing daily doses of fentanyl or saline for 14 days. During naloxone-precipitated withdrawal, fentanyl-treated rats exhibited significantly higher withdrawal symptoms than saline-treated controls. Using Western Blotting, we demonstrated that the fentanyl-treated rats had significantly higher CB1R expression in the insula and significantly lower CB1R expression in the nucleus accumbens and substantia nigra compared to saline-treated rats. No significant differences in CB1R expression were detected between saline and fentanyl-treated rats in the prefrontal cortex, dorsal striatum, medial septum, hypothalamus, amygdala, hippocampus, ventral tegmental area, periaqueductal gray area, pedunculopontine tegmentum, and laterodorsal tegmentum (LDT). These findings suggest that chronic fentanyl exposure leads to region-specific neuroadaptations of CB1R protein expression in motivation- and addiction-associated brain regions.
Collapse
Affiliation(s)
- Zuzu Gacso
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - George Adamson
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Joseph Slama
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Coco Xie
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Emma Burdick
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Sharnom Chowdhury
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Zaki Sya Ahmed
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Emily Vaysman
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Arthur Aminov
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Robert Ranaldi
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA; The Graduate Center of the City University of New York, New York, NY, USA
| | - Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
2
|
Wang Y, Wang D, Zhang X, Li H, Wang S, He Y, Zhao G, Dong H, Li J. Dorsal Raphe Serotonergic Neurons-Ventral Tegmental Area Neural Pathway Promotes Wake From Sleep. CNS Neurosci Ther 2024; 30:e70141. [PMID: 39593192 PMCID: PMC11598740 DOI: 10.1111/cns.70141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Dorsal raphe nucleus (DRN) serotonergic neurons projecting to the ventral tegmental area (VTA) neural circuit participate in regulating wake-related behaviors; however, the effect and mechanism of which in regulating sleep-wake are poorly understood. METHODS Fiber photometry was used to study DRN serotonergic afferent activity changes in the VTA during sleep-wake processes. Optogenetics and chemogenetics were took advantage to study the effects of DRN serotonergic afferents modulating VTA during sleep-wake. In vivo electrophysiology was employed to investigate how VTA neuronal firings were influenced by upregulation of DRN serotonergic afferents during sleep-wake. RESULTS We found that DRN serotonergic afferent activity in the VTA was higher during wake than during NREM and REM sleep. Chemogenetic activation of VTA-projecting DRN serotonergic neurons increased wake, and optogenetic activation of DRN serotonergic terminals in the VTA induced wake during NREM and REM sleep. Furthermore, we found that optogenetic activation of DRN serotonergic terminals in the VTA increased glutamatergic neuronal firing, decreased dopaminergic neuronal firing, but not influenced GABAergic neuronal firing during NREM sleep. CONCLUSION Our findings provide evidence in understanding the role of DRN serotonergic neurons-VTA neural pathway in regulating sleep-wake, in which dynamic VTA dopaminergic, glutamatergic, and GABAergic neuronal firing changes responded to the wake promoting effect of DRN serotonergic afferents.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
- Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Dan Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Huiming Li
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Sa Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yuting He
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
- Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Hailong Dong
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Jiannan Li
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
3
|
Gunn MP, Rose GM, Whitton AE, Pizzagalli DA, Gilbert DG. Smoking Progression and Nicotine-Enhanced Reward Sensitivity Predicted by Resting-State Functional Connectivity in Salience and Executive Control Networks. Nicotine Tob Res 2024; 26:1305-1312. [PMID: 38624067 PMCID: PMC11417123 DOI: 10.1093/ntr/ntae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION The neural underpinnings underlying individual differences in nicotine-enhanced reward sensitivity (NERS) and smoking progression are poorly understood. Thus, we investigated whether brain resting-state functional connectivity (rsFC.) during smoking abstinence predicts NERS and smoking progression in young light smokers. We hypothesized that high rsFC between brain areas with high densities of nicotinic receptors (insula, anterior cingulate cortex [ACC], hippocampus, thalamus) and areas involved in reward-seeking (nucleus accumbens [NAcc], prefrontal cortex [PFC]) would predict NERS and smoking progression. AIMS AND METHODS Young light smokers (N = 64, age 18-24, M = 1.89 cigarettes/day) participated in the study. These individuals smoked between 5 and 35 cigarettes per week and lifetime use never exceeded 35 cigarettes per week. Their rsFC was assessed using functional magnetic resonance imaging after 14 hours of nicotine deprivation. Subjects also completed a probabilistic reward task after smoking a placebo on 1 day and a regular cigarette on another day. RESULTS The probabilistic-reward-task assessed greater NERS was associated with greater rsFC between the right anterior PFC and right NAcc, but with reduced rsFC between the ACC and left inferior prefrontal gyrus and the insula and ACC. Decreased rsFC within the salience network (ACC and insula) predicted increased smoking progression across 18 months and greater NERS. CONCLUSIONS These findings provide the first evidence that differences in rsFCs in young light smokers are associated with nicotine-enhanced reward sensitivity and smoking progression. CLINICAL TRIAL REGISTRATION NCT02129387 (preregistered hypothesis: www.clinicaltrials.gov). IMPLICATIONS Weaker rsFC within the salience network predicted greater NERS and smoking progression. These findings suggest that salience network rsFC and drug-enhanced reward sensitivity may be useful tools and potential endophenotypes for reward sensitivity and drug-dependence research.
Collapse
Affiliation(s)
- Matthew P Gunn
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Gregory M Rose
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Alexis E Whitton
- Division of Medical Science, McLean Hospital & Harvard Medical School, Boston, MA, USA
- Black Dog Institute, University of New South Wales, Sydney, NSW, Australia
| | - Diego A Pizzagalli
- Division of Medical Science, McLean Hospital & Harvard Medical School, Boston, MA, USA
| | - David G Gilbert
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
4
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
5
|
Liu X, Lu T, Chen X, Huang S, Zheng W, Zhang W, Meng S, Yan W, Shi L, Bao Y, Xue Y, Shi J, Yuan K, Han Y, Lu L. Memory consolidation drives the enhancement of remote cocaine memory via prefrontal circuit. Mol Psychiatry 2024; 29:730-741. [PMID: 38221548 DOI: 10.1038/s41380-023-02364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
Remote memory usually decreases over time, whereas remote drug-cue associated memory exhibits enhancement, increasing the risk of relapse during abstinence. Memory system consolidation is a prerequisite for remote memory formation, but neurobiological underpinnings of the role of consolidation in the enhancement of remote drug memory are unclear. Here, we found that remote cocaine-cue associated memory was enhanced in rats that underwent self-administration training, together with a progressive increase in the response of prelimbic cortex (PrL) CaMKII neurons to cues. System consolidation was required for the enhancement of remote cocaine memory through PrL CaMKII neurons during the early period post-training. Furthermore, dendritic spine maturation in the PrL relied on the basolateral amygdala (BLA) input during the early period of consolidation, contributing to remote memory enhancement. These findings indicate that memory consolidation drives the enhancement of remote cocaine memory through a time-dependent increase in activity and maturation of PrL CaMKII neurons receiving a sustained BLA input.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xuan Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Xinxiang Medical University, Xinxiang, 453003, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Wei Zheng
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Dongcheng, Beijing, China.
| |
Collapse
|
6
|
Morishita M, Kobayashi K, Mitsuzuka M, Takagi R, Ono K, Momma R, Tsuneoka Y, Horio S, Tsukahara S. Two-Step Actions of Testicular Androgens in the Organization of a Male-Specific Neural Pathway from the Medial Preoptic Area to the Ventral Tegmental Area for Modulating Sexually Motivated Behavior. J Neurosci 2023; 43:7322-7336. [PMID: 37722849 PMCID: PMC10621776 DOI: 10.1523/jneurosci.0361-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
The medial preoptic area (MPOA) is a sexually dimorphic region of the brain that regulates social behaviors. The sexually dimorphic nucleus (SDN) of the MPOA has been studied to understand sexual dimorphism, although the anatomy and physiology of the SDN is not fully understood. Here, we characterized SDN neurons that contribute to sexual dimorphism and investigated the mechanisms underlying the emergence of such neurons and their roles in social behaviors. A target-specific neuroanatomical study using transgenic mice expressing Cre recombinase under the control of Calb1, a gene expressed abundantly in the SDN, revealed that SDN neurons are divided into two subpopulations, GABA neurons projecting to the ventral tegmental area (VTA), where they link to the dopamine system (CalbVTA neurons), and GABA neurons that extend axons in the MPOA or project to neighboring regions (CalbnonVTA neurons). CalbVTA neurons were abundant in males, but were scarce or absent in females. There was no difference in the number of CalbnonVTA neurons between sexes. Additionally, we found that emergence of CalbVTA neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. Chemogenetic analyses of CalbVTA neurons indicated a role in modulating sexual motivation in males. Knockdown of Calb1 in the MPOA reduced the intromission required for males to complete copulation. These findings provide strong evidence that a male-specific neural pathway from the MPOA to the VTA is organized by the two-step actions of testicular androgens for the modulation of sexually motivated behavior.SIGNIFICANCE STATEMENT The MPOA is a sexually dimorphic region of the brain that regulates social behaviors, although its sexual dimorphism is not fully understood. Here, we describe a population of MPOA neurons that contribute to the sexual dimorphism. These neurons only exist in masculinized brains, and they project their axons to the ventral tegmental area, where they link to the dopamine system. Emergence of such neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. These MPOA neurons endow masculinized brains with a neural pathway from the MPOA to the ventral tegmental area and modulate sexually motivated behavior in males.
Collapse
Affiliation(s)
- Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kaito Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Moeri Mitsuzuka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ryo Takagi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kota Ono
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Rami Momma
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 43-8540, Japan
| | - Shuhei Horio
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
7
|
Li Y, Chang CC, Wang C, Wu WT, Wang CM, Tu HL. Microfluidic Biosensor Decorated with an Indium Phosphate Nanointerface for Attomolar Dopamine Detection. ACS Sens 2023; 8:2263-2270. [PMID: 37155824 DOI: 10.1021/acssensors.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing functional materials that directly integrate into miniaturized devices for sensing applications is essential for constructing the next-generation point-of-care system. Although crystalline structure materials such as metal organic frameworks are attractive materials exhibiting promising potential for biosensing, their integration into miniaturized devices is limited. Dopamine (DA) is a major neurotransmitter released by dopaminergic neurons and has huge implications in neurodegenerative diseases. Integrated microfluidic biosensors capable of sensitive monitoring of DA from mass-limited samples is thus of significant importance. In this study, we developed and systematically characterized a microfluidic biosensor functionalized with the hybrid material composed of indium phosphate and polyaniline nanointerfaces for DA detection. Under the flowing operation, this biosensor displays a linear dynamic sensing range going from 10-18 to 10-11 M and a limit of detection (LOD) value of 1.83 × 10-19 M. In addition to the high sensitivity, this microfluidic sensor showed good selectivity toward DA and high stability (>1000 cycles). Further, the reliability and practical utility of the microfluidic biosensor were demonstrated using the neuro-2A cells treated with the activator, promoter, and inhibiter. These promising results underscore the importance and potential of microfluidic biosensors integrated with hybrid materials as advanced biosensors systems.
Collapse
Affiliation(s)
- Ying Li
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chiao-Chun Chang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chu Wang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Ti Wu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Min Wang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- General Education Center, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Ranaldi R, Timken P, Parasram D, Ali T, Zhang S, Moukha-Chafiq O, Augelli-Szafran C, Streicher JM. The D3 receptor antagonist SR 21502 reduces cue-induced reinstatement of methamphetamine-seeking in rats. Neurosci Lett 2023; 806:137237. [PMID: 37059218 PMCID: PMC10189795 DOI: 10.1016/j.neulet.2023.137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
There is as of yet no FDA-approved medication for methamphetamine use disorder. Although dopamine D3 receptor antagonists have been shown to be useful in reducing methamphetamine seeking in animal models their translation to the clinic has been hindered because currently tested compounds can produce dangerously high blood pressure. Thus, it is important to continue to explore other classes of D3 antagonists. We report here the effects of SR 21502, a selective D3 receptor antagonist, on cue-induced reinstatement (i.e., relapse) of methamphetamine-seeking in rats. In Experiment 1, rats were trained to self-administer methamphetamine under a fixed ratio schedule of reinforcement followed by extinction of the response. Then, animals were tested with one of several doses of SR 21502 on cue-induced reinstatement of responding. SR 21502 significantly reduced cue-induced reinstatement of methamphetamine-seeking. In Experiment 2, animals were trained to lever press for food under a PR schedule and tested with the lowest dose of SR 21502 that caused a significant reduction in Experiment 1. These animals responded on average 8 times more than the vehicle-treated rats in Experiment 1, eliminating the possibility that SR 21502-treated rats in Experiment 1 responded less because they were incapacitated. In summary, these data suggest that SR 21502 may selectively inhibit methamphetamine-seeking and may constitute a promising pharmacotherapeutic agent for methamphetamine or other drug use disorders.
Collapse
Affiliation(s)
- Robert Ranaldi
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA.
| | - Patrick Timken
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA
| | - Daleya Parasram
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA
| | - Tasmia Ali
- Department of Psychology, Queens College, The City University of New York, Flushing, NY, USA
| | - Sixue Zhang
- Scientific Platforms, Southern Research Institute, Birmingham, AL, USA
| | | | | | - John M Streicher
- Department of Pharmacology, College of Medicine and the Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Nunes EJ, Kebede N, Haight JL, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Ventral Tegmental Area M5 Muscarinic Receptors Mediate Effort-Choice Responding and Nucleus Accumbens Dopamine in a Sex-Specific Manner . J Pharmacol Exp Ther 2023; 385:146-156. [PMID: 36828630 PMCID: PMC10108441 DOI: 10.1124/jpet.122.001438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Optimization of effort-related choices is impaired in depressive disorders. Acetylcholine (ACh) and dopamine (DA) are linked to depressive disorders, and modulation of ACh tone in the ventral tegmental area (VTA) affects mood-related behavioral responses in rats. However, it is unknown if VTA ACh mediates effort-choice behaviors. Using a task of effort-choice, rats can choose to lever press on a fixed-ratio 5 (FR5) schedule for a more-preferred food or consume freely available, less-preferred food. VTA administration of physostigmine (1 μg and 2 μg/side), a cholinesterase inhibitor, reduced FR5 responding for the more-preferred food while leaving consumption of the less-preferred food intact. VTA infusion of the M5 muscarinic receptor negative allosteric modulator VU6000181 (3 μM, 10 μM, 30 μM/side) did not affect lever pressing or chow consumption. However, VU6000181 (30 μM/side) coadministration with physostigmine (2 μg/side) attenuated physostigmine-induced decrease in lever pressing in female and male rats and significantly elevated lever pressing above vehicle baseline levels in male rats. In in vivo voltammetry experiments, VTA infusion of combined physostigmine and VU6000181 did not significantly alter evoked phasic DA release in the nucleus accumbens core (NAc) in female rats. In male rats, combined VTA infusion of physostigmine and VU6000181 increased phasic evoked DA release in the NAc compared with vehicle, physostigmine, or VU6000181 infusion alone. These data indicate a critical role and potential sex differences of VTA M5 receptors in mediating VTA cholinergic effects on effort choice behavior and regulation of DA release. SIGNIFICANCE STATEMENT: Effort-choice impairments are observed in depressive disorders, which are often treatment resistant to currently available thymoleptics. The role of ventral tegmental area (VTA) acetylcholine muscarinic M5 receptors, in a preclinical model of effort-choice behavior, is examined. Using the selective negative allosteric modulator of the M5 receptor VU6000181, we show the role of VTA M5 receptors on effort-choice and regulation of dopamine release in the nucleus accumbens core. This study supports M5 receptors as therapeutic targets for depression.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nardos Kebede
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Joshua L Haight
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Daniel J Foster
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Craig W Lindsley
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - P Jeffrey Conn
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| | - Nii A Addy
- Department of Psychiatry (E.J.N., N.K., J.L.H., N.A.A.) and Yale Tobacco Center of Regulatory Science (E.J.N.), Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Quinnipiac University, Hamden, Connecticut (J.L.H.); Departments of Pharmacology (D.J.F., C.W.L., P.J.C.) and Chemistry (C.W.L.) and Vanderbilt Center for Neuroscience Drug Discovery (D.J.F., C.W.L., P.J.C.), Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee (D.J.F., P.J.C.); and Department of Cellular and Molecular Physiology and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (N.A.A.)
| |
Collapse
|
10
|
Galaj E, Barrera ED, Lynch OL, Diodati R, Thomas A, Schneider P, Lenhard H, Vashisht A, Ranaldi R. Muscarinic and NMDA Receptors in the Substantia Nigra Play a Role in Reward-Related Learning. Int J Neuropsychopharmacol 2023; 26:80-90. [PMID: 36402549 PMCID: PMC9850662 DOI: 10.1093/ijnp/pyac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Reward-related learning, where animals form associations between rewards and stimuli (i.e., conditioned stimuli [CS]) that predict or accompany those rewards, is an essential adaptive function for survival. METHODS In this study, we investigated the mechanisms underlying the acquisition and performance of conditioned approach learning with a focus on the role of muscarinic acetylcholine (mACh) and NMDA glutamate receptors in the substantia nigra (SN), a brain region implicated in reward and motor processes. RESULTS Using RNAscope in situ hybridization assays, we found that dopamine neurons of the SN express muscarinic (mACh5), NMDA2a, NMDA2b, and NMDA2d receptor mRNA but not mACh4. NMDA, but not mACh5, receptor mRNA was also found on SN GABA neurons. In a conditioned approach paradigm, rats were exposed to 3 or 7 conditioning sessions during which light/tone (CS) presentations were paired with delivery of food pellets, followed by a test session with CS-only presentations. Intra-SN microinjections of scopolamine (a mACh receptor antagonist) or AP-5 (a NMDA receptor antagonist) were made either prior to each conditioning session (to test their effects on acquisition) or prior to the CS-only test (to test their effects on expression of the learned response). Scopolamine and AP-5 produced dose-dependent significant reductions in the acquisition, but not performance, of conditioned approach. CONCLUSIONS These results suggest that SN mACh and NMDA receptors are key players in the acquisition, but not the expression, of reward-related learning. Importantly, these findings redefine the role of the SN, which has traditionally been known for its involvement in motor processes, and suggest that the SN possesses attributes consistent with a function as a hub of integration of primary reward and CS signals.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, New York, USA
| | - Olivia L Lynch
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Rachel Diodati
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Ashley Thomas
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Piper Schneider
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, New York, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, New York, USA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
11
|
Wolfschlag M, Håkansson A. Drug-Induced Gambling Disorder: Epidemiology, Neurobiology, and Management. Pharmaceut Med 2023; 37:37-52. [PMID: 36611111 PMCID: PMC9825131 DOI: 10.1007/s40290-022-00453-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/09/2023]
Abstract
Problematic gambling has been suggested to be a possible consequence of dopaminergic medications used mainly in neurological conditions, i.e. pramipexole and ropinirole, and possibly by one antipsychotic compound, aripiprazole. Patients with Parkinson's disease, restless legs syndrome and other conditions potentially treated with dopamine agonists, as well as patients treated for psychotic disorders, are vulnerable patient groups with theoretically increased risk of developing gambling disorder (GD), for example due to higher rates of mental ill-health in these groups. The aim of the present paper is to review the epidemiological, clinical, and neurobiological evidence of the association between dopaminergic medications and GD, and to describe risk groups and treatment options. The neurobiology of GD involves the reward and reinforcement system, based mainly on mesocorticolimbic dopamine projections, with the nucleus accumbens being a crucial area for developing addictions to substances and behaviors. The addictive properties of gambling can perhaps be explained by the reward uncertainty that activates dopamine signaling in a pathological manner. Since reward-related learning is mediated by dopamine, it can be altered by dopaminergic medications, possibly leading to increased gambling behavior and a decreased impulse control. A causal relationship between the medications and GD seems likely, but the molecular mechanisms behind this association have not been fully described yet. More research is needed in order to fully outline the clinical picture of GD developing in patient groups with dopaminergic medications, and data are needed on the differentiation of risk in different compounds. In addition, very few interventional studies are available on the management of GD induced by dopaminergic medications. While GD overall can be treated, there is need for treatment studies testing the effectiveness of tapering of the medication or other gambling-specific treatment modalities in these patient groups.
Collapse
Affiliation(s)
- Mirjam Wolfschlag
- Malmö-Trelleborg Addiction Center, Competence Center Addiction, Region Skåne, Södra Förstadsgatan 35, plan 4, S-205 02 Malmö, Sweden ,Faculty of Medicine, Dept of Clinical Sciences Lund, Lund University, Psychiatry, Lund, Sweden
| | - Anders Håkansson
- Malmö-Trelleborg Addiction Center, Competence Center Addiction, Region Skåne, Södra Förstadsgatan 35, plan 4, S-205 02, Malmö, Sweden. .,Faculty of Medicine, Dept of Clinical Sciences Lund, Lund University, Psychiatry, Lund, Sweden.
| |
Collapse
|
12
|
Arnautovska U, Kesby JP, Korman N, Rebar AL, Chapman J, Warren N, Rossell SL, Dark FL, Siskind D. Biopsychology of Physical Activity in People with Schizophrenia: An Integrative Perspective on Barriers and Intervention Strategies. Neuropsychiatr Dis Treat 2022; 18:2917-2926. [PMID: 36544549 PMCID: PMC9763049 DOI: 10.2147/ndt.s393775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
People with severe mental illness such as schizophrenia experience high physical comorbidity, leading to a 15-20-year mortality gap compared with the general population. Lifestyle behaviours such as physical activity (PA) play important roles in the quest to bridge this gap. Interventions to increase PA engagement in this population have potential to be efficacious; however, their effectiveness can be hindered by low participant engagement, including low adherence and high drop-out, and by implementation of interventions that are not designed to compensate for the cognitive and motivational impairments characteristic for this group. Moreover, and importantly, the negative symptoms of schizophrenia are associated with neurobiological changes in the brain, which-based on principles of biopsychology-can contribute to poor motivation and impaired decision-making processes and behavioural maintenance. To increase PA levels in people with schizophrenia, better understanding of these neurological changes that impact PA engagement is needed. This has the potential to inform the design of interventions that, through enhancement of motivation, could effectively increase PA levels in this specific population. Incorporating strategies that address the dopamine dysregulation associated with schizophrenia, such as boosting the role of reward and self-determined motivation, may improve long-term PA maintenance, leading to habitual PA. Consideration of motivation and behavioural maintenance is also needed to impart health benefits such as prevention of chronic disease, which is associated with currently low PA levels in this high metabolic risk population. Taking a biopsychological perspective, we outline the neural pathways involved in motivation that are impacted by schizophrenia and propose strategies for promoting motivation for and PA engagement from adoption to habit formation.
Collapse
Affiliation(s)
- Urska Arnautovska
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - James P Kesby
- Centre for Mental Health, Griffith University, Nathan, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Nicole Korman
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - Amanda L Rebar
- Motivation of Health Behaviours Lab, Appleton Institute, School of Health, Medical, and Applied Sciences; Central Queensland University, Rockhampton, QLD, Australia
| | - Justin Chapman
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
- Centre for Mental Health, Griffith University, Nathan, QLD, Australia
| | - Nicola Warren
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - Susan L Rossell
- Centre for Mental Health, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
- Psychiatry, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Frances L Dark
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
| | - Dan Siskind
- Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
- Metro South Addictions and Mental Health Service, Woolloongabba, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| |
Collapse
|