1
|
Jing P, Chen Q, Ke H, Xu W, Ni Y, Mao C, Deng R. Magnesium-based micromotors for electrochemical detection of dopamine in blood. Talanta 2025; 293:128052. [PMID: 40209533 DOI: 10.1016/j.talanta.2025.128052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
In the fields of neuroscience and medicine, the accurate capture and quantitative analysis of dopamine (DA) levels in the blood are of great clinical significance for the early diagnosis of neurological dysfunctions and other pathological conditions. In this study, we developed a laccase (La) sensor based on micromotor technology to accurately detect DA content in blood. Firstly, the magnesium-based micromotor was used to endow the sensor with autonomous motion performance, which significantly increased the contact frequency between La and DA molecules in blood. Secondly, the micromotor-loaded Fe3O4/PPY/La magnetic nanoparticles provide an efficient electrical signal transmission interface for La, while the presence of polypyrrole (PPY) prevented electrode passivation caused by La. In addition, we used magnetic to collect Fe3O4/PPY/La after capture and tested it by differential pulse voltammetry. Finally, thanks to the excellent catalytic performance and high selectivity of La, the effective recognition and detection of DA in blood samples were realized, and an efficient electrochemical detection method was developed. This innovative detection scheme has a wide linear detection range and high sensitivity, which is expected to provide a more accurate diagnostic tool for health problems related to DA abnormalities, so as to better cope with and prevent related diseases.
Collapse
Affiliation(s)
- Pengshen Jing
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Haifeng Ke
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - WenHui Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yanhong Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Runzhi Deng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2025; 50:596-604. [PMID: 39300273 PMCID: PMC11735851 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
3
|
Pagiazitis JG, Delestrée N, Sowoidnich L, Sivakumar N, Simon CM, Chatzisotiriou A, Albani M, Mentis GZ. Catecholaminergic dysfunction drives postural and locomotor deficits in a mouse model of spinal muscular atrophy. Cell Rep 2025; 44:115147. [PMID: 39752251 PMCID: PMC11832083 DOI: 10.1016/j.celrep.2024.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025] Open
Abstract
Development and maintenance of posture is essential behavior for overground mammalian locomotion. Dopamine and noradrenaline strongly influence locomotion, and their dysregulation initiates the development of motor impairments linked to neurodegenerative disease. However, the precise cellular and circuit mechanisms are not well defined. Here, we investigated the role of catecholaminergic neuromodulation in a mouse model of spinal muscular atrophy (SMA). SMA is characterized by severe motor dysfunction and postural deficits. We identify progressive loss of catecholaminergic synapses from spinal neurons that occur via non-cell autonomous mechanisms. Importantly, the selective restoration of survival motor neuron (SMN) in either catecholaminergic or serotonergic neurons is sufficient to correct impairments in locomotion. However, only combined SMN restoration in both catecholaminergic and serotonergic neurons or pharmacological treatment with l-dopa improve the severe postural deficits. These findings uncover the synaptic and cellular mechanisms responsible for the postural and motor symptoms in SMA and identify catecholaminergic neuromodulation as a potential therapeutic target.
Collapse
Affiliation(s)
- John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Leonie Sowoidnich
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Athanasios Chatzisotiriou
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Maria Albani
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Cummings JL, Brubaker M, Selzler KJ, Gonzalez ST, Patel M, Stahl SM. An overview of the pathophysiology of agitation in Alzheimer's dementia with a focus on neurotransmitters and circuits. CNS Spectr 2024:1-10. [PMID: 39438777 DOI: 10.1017/s1092852924000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's dementia (AD) is a progressive, neurodegenerative disease often accompanied by neuropsychiatric symptoms that profoundly impact both patients and caregivers. Agitation is among the most prevalent and distressing of these symptoms and often requires treatment. Appropriate therapeutic interventions depend on understanding the biological basis of agitation and how it may be affected by treatment. This narrative review discusses a proposed pathophysiology of agitation in Alzheimer's dementia based on convergent evidence across research approaches. Available data indicate that agitation in Alzheimer's dementia is associated with an imbalance of activity between key prefrontal and subcortical brain regions. The monoamine neurotransmitter systems serve as key modulators of activity within these brain regions and circuits and are rendered abnormal in AD. Patients with AD who exhibited agitation symptoms during life have alterations in neurotransmitter nuclei and related systems when the brain is examined at autopsy. The authors present a model of agitation in Alzheimer's dementia in which noradrenergic hyperactivity along with serotonergic deficits and dysregulated striatal dopamine release contribute to agitated and aggressive behaviors.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Malaak Brubaker
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | | | | | - Mehul Patel
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, New Jersey, USA
| | - Stephen M Stahl
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, California; Department of Psychiatry and Neurology, University of California, Riverside School of Medicine, Riverside, California, USA
| |
Collapse
|
5
|
Low JJL, Tan BJW, Yi LX, Zhou ZD, Tan EK. Genetic susceptibility to caffeine intake and metabolism: a systematic review. J Transl Med 2024; 22:961. [PMID: 39438936 PMCID: PMC11515775 DOI: 10.1186/s12967-024-05737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Coffee and tea consumption account for most caffeine intake and 2-3 billion cups are taken daily around the world. Caffeine dependence is a widespread but under recognized problem. OBJECTIVES To conduct a systematic review on the genetic susceptibility factors affecting caffeine metabolism and caffeine reward and their association with caffeine intake. METHODOLOGY We conducted PubMed and Embase searches using the terms "caffeine", "reward", "gene", "polymorphism", "addiction", "dependence" and "habit" from inception till 2024. The demographics, genetic and clinical data from included studies were extracted and analyzed. Only case-control studies on habitual caffeine drinkers with at least 100 in each arm were included. RESULTS A total of 2552 studies were screened and 26 studies involving 1,851,428 individuals were included. Several genes that were involved with caffeine metabolism such as CYP1A2, ADORA2A, AHR, POR, ABCG2, CYP2A6, PDSS2 and HECTD4 rs2074356 (A allele specific to East Asians and monomorphic in Europeans, Africans and Americans) were associated with habitual caffeine consumption with effect size difference of 3% to 32% in number of cups of caffeinated drink per day per effect allele. In addition, ALDH2 was linked to the Japanese population. Genes associated with caffeine reward included BDNF, SLC6A4, GCKR, MLXIPL and dopaminergic genes such as DRD2 and DAT1 which had around 2-5% effect size difference in number of cups of caffeinated drink for each allele per day. CONCLUSION Several genes that were involved in caffeine metabolism and reward were associated with up to 30% effect size difference in number of cups of caffeinated drink per day, and some associations were specific to certain ethnicities. Identification of at-risk caffeine dependence individuals can lead to early diagnosis and stratification of at-risk vulnerable individuals such as pregnant women and children, and can potentially lead to development of drug targets for dependence to caffeine.
Collapse
Affiliation(s)
- Jazreel Ju-Li Low
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Brendan Jen-Wei Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
| | - Ling-Xiao Yi
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Zhi-Dong Zhou
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
6
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Owe-Larsson M, Kamińska K, Buchalska B, Mirowska-Guzel D, Cudnoch-Jędrzejewska A. Psilocybin in pharmacotherapy of obsessive-compulsive disorder. Pharmacol Rep 2024; 76:911-925. [PMID: 39088105 PMCID: PMC11387457 DOI: 10.1007/s43440-024-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic mental disease that affects approximately 2% of the population. Obsessions and compulsions are troublesome for patients and may disturb their everyday activities. The pathogenesis of this disease is still not fully elucidated, but dysfunctions of serotonin-, dopamine- and glutamate-mediated neurotransmission together with early maladaptive schemas seem of importance. Pharmacological treatment includes drugs affecting the serotoninergic, dopaminergic, and glutamatergic systems, such as selective serotonin reuptake inhibitors (SSRIs). Providing that up to 40% of patients with OCD are resistant to the currently available medications, there is a need for novel and effective therapies. Recent discoveries suggest that psilocybin, a non-physically addictive psychoactive substance, may ameliorate disease symptoms. When used in appropriate doses and under strict clinical control, psilocybin appears as a valuable treatment for OCD. This narrative article provides a thorough overview of OCD's etiology, current treatment options, and the emerging evidence supporting psilocybin's efficacy in managing OCD symptoms.
Collapse
Affiliation(s)
- Maja Owe-Larsson
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland.
| | - Katarzyna Kamińska
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland.
| | - Barbara Buchalska
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warszawa, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, Warszawa, 02-097, Poland
| |
Collapse
|
8
|
Lee WL, Westergaard X, Hwu C, Hwu J, Fiala T, Lacefield C, Boltaev U, Mendieta AM, Lin L, Sonders MS, Brown KR, He K, Asher WB, Javitch JA, Sulzer D, Sames D. Molecular Design of SERTlight: A Fluorescent Serotonin Probe for Neuronal Labeling in the Brain. J Am Chem Soc 2024; 146:9564-9574. [PMID: 38557024 DOI: 10.1021/jacs.3c11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed SERTlight, that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters. The high labeling selectivity is not achieved by high affinity binding to SERT itself but rather by a sufficient rate of SERT-mediated transport of SERTlight, resulting in accumulation of these molecules in 5HT neurons and yielding a robust and selective optical signal in the mammalian brain. SERTlight provides a stable signal, as it is not released via exocytosis nor by reverse SERT transport induced by 5HT releasers such as MDMA. SERTlight is optically, pharmacologically, and operationally orthogonal to a wide range of genetically encoded sensors, enabling multiplexed imaging. SERTlight enables labeling of distal 5HT axonal projections and simultaneous imaging of the release of endogenous 5HT using the GRAB5HT sensor, providing a new versatile molecular tool for the study of the serotonergic system.
Collapse
Affiliation(s)
- Wei-Li Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xavier Westergaard
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Christopher Hwu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jennifer Hwu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomas Fiala
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Laboratory of Organic Chemistry, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Clay Lacefield
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Umed Boltaev
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Adriana M Mendieta
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lisa Lin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Mark S Sonders
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Keaon R Brown
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Keer He
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wesley B Asher
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027, United States
| |
Collapse
|
9
|
Yang L, Cheng Y, Zhu Y, Cui L, Li X. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cell Mol Neurobiol 2023; 43:2387-2414. [PMID: 36729314 PMCID: PMC11410157 DOI: 10.1007/s10571-023-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the premature death of motor neurons. Serotonin (5-HT) is a crucial neurotransmitter, and its dysfunction, whether as a contributor or by-product, has been implicated in ALS pathogenesis. Here, we summarize current evidence linking serotonergic alterations to ALS, including results from post-mortem and neuroimaging studies, biofluid testing, and studies of ALS animal models. We also discuss the possible role of 5-HT in modulating some important mechanisms of ALS (i.e. glutamate excitotoxity and neuroinflammation) and in regulating ALS phenotypes (i.e. breathing dysfunction and metabolic defects). Finally, we discuss the promise and limitations of the serotonergic system as a target for the development of ALS biomarkers and therapeutic approaches. However, due to a relative paucity of data and standardized methodologies in previous studies, proper interpretation of existing results remains a challenge. Future research is needed to unravel the mechanisms linking serotonergic pathways and ALS and to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
10
|
Rasmussen AL, Larsen SV, Ozenne B, Köhler-Forsberg K, Stenbæk DS, Jørgensen MB, Giraldi A, Frokjaer VG. Sexual health and serotonin 4 receptor brain binding in unmedicated patients with depression-a NeuroPharm study. Transl Psychiatry 2023; 13:247. [PMID: 37414758 DOI: 10.1038/s41398-023-02551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Sexual dysfunction is prominent in Major Depressive Disorder (MDD) and affects women with depression more than men. Patients with MDD relative to healthy controls have lower brain levels of the serotonin 4 receptor (5-HT4R), which is expressed with high density in the striatum, i.e. a key hub of the reward system. Reduced sexual desire is putatively related to disturbed reward processing and may index anhedonia in MDD. Here, we aim to illuminate plausible underlying neurobiology of sexual dysfunction in unmedicated patients with MDD. We map associations between 5-HT4R binding, as imaged with [11C]SB207145 PET, in the striatum, and self-reported sexual function. We also evaluate if pre-treatment sexual desire score predicts 8-week treatment outcome in women. From the NeuroPharm study, we include 85 untreated MDD patients (71% women) who underwent eight weeks of antidepressant drug treatment. In the mixed sex group, we find no difference in 5-HT4R binding between patients with sexual dysfunction vs normal sexual function. However, in women we find lower 5-HT4R binding in the sexual dysfunctional group compared to women with normal sexual function (β = -0.36, 95%CI[-0.62:-0.09], p = 0.009) as well as a positive association between sexual desire and 5-HT4R binding (β = 0.07, 95%CI [0.02:0.13], p = 0.012). Sexual desire at baseline do not predict treatment outcome (ROC curve AUC = 52%[36%:67%]) in women. Taken together, we find evidence for a positive association between sexual desire and striatal 5-HT4R availability in women with depression. Interestingly, this raises the question if direct 5-HT4R agonism can target reduced sexual desire or anhedonia in MDD.
Collapse
Affiliation(s)
| | - Søren Vinther Larsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Kristin Köhler-Forsberg
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Psychiatric Centre Copenhagen, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
| | - Dea Siggaard Stenbæk
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- Psychiatric Centre Copenhagen, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
| | - Annamaria Giraldi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Sexological Clinic, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Psychiatric Centre Copenhagen, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark.
| |
Collapse
|
11
|
Marty V, Butler JJ, Coutens B, Chargui O, Chagraoui A, Guiard BP, De Deurwaerdère P, Cavaillé J. Deleting Snord115 genes in mice remodels monoaminergic systems activity in the brain toward cortico-subcortical imbalances. Hum Mol Genet 2023; 32:244-261. [PMID: 35951020 DOI: 10.1093/hmg/ddac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023] Open
Abstract
The neuronal-specific SNORD115 has gathered interest because its deficiency may contribute to the pathophysiology of Prader-Willi syndrome (PWS), possibly by altering post-transcriptional regulation of the gene encoding the serotonin (HTR2C) receptor. Yet, Snord115-KO mice do not resume the main symptoms of PWS, and only subtle-altered A-to-I RNA editing of Htr2c mRNAs was uncovered. Because HTR2C signaling fine-tunes the activity of monoaminergic neurons, we addressed the hypothesis that lack of Snord115 alters monoaminergic systems. We first showed that Snord115 was expressed in both monoaminergic and non-monoaminergic cells of the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN) harboring cell bodies of dopaminergic and serotonergic neurons, respectively. Measuring the tissue level of monoamines and metabolites, we found very few differences except that the content of homovanillic acid-a metabolite of dopamine-was decreased in the orbitofrontal and prefrontal cortex of Snord115-KO mice. The latter effects were, however, associated with a few changes in monoamine tissue content connectivity across the 12 sampled brain regions. Using in vivo single-cell extracellular recordings, we reported that the firing rate of VTA dopaminergic neurons and DRN serotonergic neurons was significantly increased in Snord115-KO mice. These neural circuit dysfunctions were not, however, associated with apparent defects in binge eating, conditioned place preference to cocaine, cocaine-induced hyperlocomotion or compulsive behavior. Altogether, our multiscale study shows that the absence of Snord115 impacts central monoaminergic circuits to an extent that does not elicit gross behavioral abnormalities.
Collapse
Affiliation(s)
- Virginie Marty
- Molecular, Cellular and Developmental Biology (MCD) unit, Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Jasmine J Butler
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Basile Coutens
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Oumaima Chargui
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale (NorDic), INSERM U1239, IRIB, CHU Rouen, 76 000 Rouen, France.,Department of Medical Biochemistry, Rouen University Hospital, 76 000 Rouen, France
| | - Bruno P Guiard
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Philippe De Deurwaerdère
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental Biology (MCD) unit, Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| |
Collapse
|
12
|
Raphe serotonin projections dynamically regulate feeding behavior through targeting inhibitory circuits from rostral zona incerta to paraventricular thalamus. Mol Metab 2022; 66:101634. [PMID: 36351530 PMCID: PMC9672487 DOI: 10.1016/j.molmet.2022.101634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Rostral zona incerta (ZIR) evokes feeding by sending GABA transmission to paraventricular thalamus (PVT). Although central serotonin (5-HT) signaling is known to play critical roles in the regulation of food intake and eating disorders, it remains unknown whether raphe 5-HT neurons functionally innervate ZIR-PVT neural pathway for feeding control. Here, we sought to reveal how raphe 5-HT signaling regulates both ZIR and PVT for feeding control. METHODS We used retrograde neural tracers to map 5-HT projections in Sert-Cre mice and slice electrophysiology to examine the mechanism by which 5-HT modulates ZIR GABA neurons. We also used optogenetics to test the effects of raphe-ZIR and raphe-PVT 5-HT projections on feeding motivation and food intake in mice regularly fed, 24 h fasted, and with intermittent high-fat high-sugar (HFHS) diet. In addition, we applied RNAscope in situ hybridization to identify 5-HT receptor subtype mRNA in ZIR. RESULTS We show raphe 5-HT neurons sent projections to both ZIR and PVT with partial collateral axons. Photostimulation of 5-HT projections inhibited ZIR but excited PVT neurons to decrease motivated food consumption. However, both acute food deprivation and intermittent HFHS diet downregulated 5-HT inhibition on ZIR GABA neurons, abolishing the inhibitory regulation of raphe-ZIR 5-HT projections on feeding motivation and food intake. Furthermore, we found high-level 5-HT1a and 5-HT2c as well as low-level 5-HT7 mRNA expression in ZIR. Intermittent HFHS diet increased 5-HT7 but not 5-HT1a or 5-HT2c mRNA levels in the ZIR. CONCLUSIONS Our results reveal that raphe-ZIR 5-HT projections dynamically regulate ZIR GABA neurons for feeding control, supporting that a dynamic fluctuation of ZIR 5-HT inhibition authorizes daily food intake but a sustained change of ZIR 5-HT signaling leads to overeating induced by HFHS diet.
Collapse
|
13
|
Calleja‐Conde J, Morales‐García JA, Echeverry‐Alzate V, Bühler KM, Giné E, López‐Moreno JA. Classic psychedelics and alcohol use disorders: A systematic review of human and animal studies. Addict Biol 2022; 27:e13229. [PMID: 36301215 PMCID: PMC9541961 DOI: 10.1111/adb.13229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Classic psychedelics refer to substances such as lysergic acid diethylamide (LSD), psilocybin, ayahuasca, and mescaline, which induce altered states of consciousness by acting mainly on 5-HT2A receptors. Recently, the interest of psychedelics as pharmacological treatment for psychiatric disorders has increased significantly, including their use on problematic use of alcohol. This systematic review is aimed to analyse the last two decades of studies examining the relationship between classic psychedelics and alcohol consumption. We searched PubMed and PsycInfo for human and preclinical studies published between January 2000 to December 2021. The search identified 639 publications. After selection, 27 studies were included. Human studies (n = 20) generally show promising data and seem to indicate that classic psychedelics could help reduce alcohol consumption. Nevertheless, some of these studies present methodological concerns such as low number of participants, lack of control group or difficulty in determining the effect of classic psychedelics in isolation. On the other hand, preclinical studies (n = 7) investigating the effect of these compounds on voluntary alcohol consumption are scarce and show some conflicting data. Among these compounds, psilocybin seems to show the most consistent data indicating that this compound could be a potential candidate to treat alcohol use disorders. In the absence of understanding the biological and/or psychological mechanisms, more studies including methodological quality parameters are needed to finally determine the effects of classic psychedelics on alcohol consumption.
Collapse
Affiliation(s)
| | | | - Víctor Echeverry‐Alzate
- School of Life and Nature SciencesNebrija UniversityMadridSpain
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| | - Kora Mareen Bühler
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| | - Elena Giné
- Department of Cell Biology, Faculty of MedicineComplutense University of MadridMadridSpain
| | - Jose Antonio López‐Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| |
Collapse
|
14
|
Environmentally-relevant concentrations of the antipsychotic drugs sulpiride and clozapine induce abnormal dopamine and serotonin signaling in zebrafish brain. Sci Rep 2022; 12:17973. [PMID: 36289270 PMCID: PMC9606268 DOI: 10.1038/s41598-022-22169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
The presence of drugs in surface and groundwaters adversely affects the physiological function of non-target organisms due special activities that can pose a serious threats to various forms of aquatic life. Psychotropic drugs are one of the most commonly used drugs in the world. Hence, the aim of this study was to investigate the effect of environmentally-relevant concentrations of the antipsychotic drugs, sulpiride and clozapine, on dopaminergic (DAergic) and serotonergic (5-HTergic) neurotransmitter systems in the brain of zebrafish. Adult zebrafish (AB strain) were exposed to the environmentally-relevant concentrations of sulpiride, clozapine, or a mixture of sulpiride and clozapine. The effects of the drugs on the mRNA and protein levels of major functional molecules in DAergic and 5-HTergic systems were then analyzed in the telencephalon and diencephalon. Both drugs induced abnormal mRNA and protein levels of important functional molecules of the DA and 5-HT signaling pathways in both telencephalon and diencephalon, as shown by the abnormal transcriptional levels of TH, DAT, DR D1, DR D2, MAO, TPH, serotonin transporter (SERT), 5-HTR 1AA, 5-HTR 1B, 5-THR 2AA, and 5-HTR 2B, and the abnormal translational levels of DAT, DR D2, SERT, 5-HTR 1A, 5-HTR 1B, and 5-HTR 2B. In addition, we observed a specificity in the adverse effects of these antipsychotic drugs, in terms of doses and brain parts. Compared to their effects alone, the drug mixture had a weaker effect on the DA and 5-HT systems, suggesting an antagonistic interaction between sulpiride and clozapine. Our findings suggest that sulpiride and clozapine interfere with DAergic and 5-HTergic neurotransmitter systems in the telencephalon and diencephalon of zebrafish, resulting in possible effects on brain functions and posing a serious threat to the health of zebrafish.
Collapse
|
15
|
Barko K, Shelton M, Xue X, Afriyie-Agyemang Y, Puig S, Freyberg Z, Tseng GC, Logan RW, Seney ML. Brain region- and sex-specific transcriptional profiles of microglia. Front Psychiatry 2022; 13:945548. [PMID: 36090351 PMCID: PMC9448907 DOI: 10.3389/fpsyt.2022.945548] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.
Collapse
Affiliation(s)
- Kelly Barko
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Micah Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Yvette Afriyie-Agyemang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Treatment-Resistant Depression with Anhedonia: Integrating Clinical and Preclinical Approaches to Investigate Distinct Phenotypes. Neurosci Biobehav Rev 2022; 136:104578. [DOI: 10.1016/j.neubiorev.2022.104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
|
17
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|