1
|
Brochard J, Dayan P, Bach DR. Critical intelligence: Computing defensive behaviour. Neurosci Biobehav Rev 2025; 174:106213. [PMID: 40381896 DOI: 10.1016/j.neubiorev.2025.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/24/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Characterising the mechanisms underlying naturalistic defensive behavior remains a significant challenge. While substantial progress has been made in unravelling the neural basis of tightly constrained behaviors, a critical gap persists in our comprehension of the circuits that implement algorithms capable of generating the diverse defensive responses observed outside experimental restrictions. Recent advancements in neuroscience technology now allow for an unprecedented examination of naturalistic behaviour. To help provide a theoretical grounding for this nascent experimental programme, we summarise the main computational and statistical challenges of defensive decision making, encapsulated in the concept of critical intelligence. Next, drawing from an extensive literature in biology, machine learning, and decision theory, we explore a range of candidate solutions to these challenges. While the proposed solutions offer insights into potential adaptive strategies, they also present inherent trade-offs and limitations in their applicability across different biological contexts. Ultimately, we propose series of experiments designed to differentiate between these candidate solutions, providing a roadmap for future investigations into the fundamental defensive algorithms utilized by biological agents and their neural implementation. Thus, our work aims to provide a roadmap towards broader understanding of how complex defensive behaviors are orchestrated in the brain, with implications for both neuroscience research and the development of more sophisticated artificial intelligence systems.
Collapse
Affiliation(s)
- Jules Brochard
- University of Bonn, Transdisciplinary Research Area Life and Health, Center for Artificial Intelligence and Neuroscience, Bonn, Germany
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Dominik R Bach
- University of Bonn, Transdisciplinary Research Area Life and Health, Center for Artificial Intelligence and Neuroscience, Bonn, Germany; Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
2
|
Maselli A, Musculus L, Moretti R, d'Avella A, Raab M, Pezzulo G. Whole body coarticulation reflects expertise in sport climbing. J Neurophysiol 2025; 133:1016-1033. [PMID: 39951560 DOI: 10.1152/jn.00341.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 02/11/2025] [Indexed: 02/16/2025] Open
Abstract
Taking sport climbing as a testbed, we explored coarticulation in naturalistic motor-behavior at the level of whole body kinematics. Participants were instructed to execute a series of climbing routes, each composed of two initial foot-moves equal in all routes, and two subsequent hand-moves differing across routes in a set of eight possible configurations. The goal was assessing whether climbers modulate the execution of a given move depending on which moves come next in the plan. Coarticulation was assessed by training a set of classifiers and estimating how well the whole body (or single-joint) kinematics during a given stage of the climbing execution could predict its future unfolding. Results showed that most participants engage in coarticulation, with temporal and bodily patterns that depend on expertise. Nonclimbers tend to prepare the next-to-come move right before its onset and only after the end of the previous move. Rather, expert-climbers (and to a smaller extent, beginner-climbers) show early coarticulation during the execution of the previous move and engage in adjustments that involve the coordination of a larger number of joints across the body. These results demonstrate coarticulation effects in whole body naturalistic motor behavior and as a function of expertise. Furthermore, the enhanced coarticulation found in expert-climbers provides hints for experts engaging in more refined mental processes converting abstract instructions (e.g., move the right hand to a given location) into motor simulations involving whole body coordination. Overall, these results contribute to advancing our current knowledge of the rich interplay between cognition and motor control.NEW & NOTEWORTHY The current study explores the way in which having formed a plan for a sequential motor task affects its execution. We showed that climbing expertise increases the extent to which participants adjust their motor execution based on the moves that follow in a planned route. These results provide evidence of coarticulation in naturalistic motor behavior and suggest enhanced skills in mentalizing forward motor control and optimal-control strategies in expert climbers.
Collapse
Affiliation(s)
- Antonella Maselli
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Lisa Musculus
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Riccardo Moretti
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Andrea d'Avella
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, IRRCS, Rome, Italy
| | - Markus Raab
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
3
|
Eluchans M, Lancia GL, Maselli A, D’Alessandro M, Gordon JR, Pezzulo G. Adaptive planning depth in human problem-solving. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241161. [PMID: 40206860 PMCID: PMC11978448 DOI: 10.1098/rsos.241161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
We humans are capable of solving challenging planning problems, but the range of adaptive strategies that we use to address them is not yet fully characterized. Here, we designed a series of problem-solving tasks that require planning at different depths. After systematically comparing the performance of participants and planning models, we found that when facing problems that require planning to a certain number of subgoals (from 1 to 8), participants make an adaptive use of their cognitive resources-namely, they tend to select an initial plan having the minimum required depth, rather than selecting the same depth for all problems. These results support the view of problem-solving as a bounded rational process, which adapts costly cognitive resources to task demands.
Collapse
Affiliation(s)
- Mattia Eluchans
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
- Sapienza University of Rome, Roma, Lazio, Italy
| | - Gian Luca Lancia
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
- Sapienza University of Rome, Roma, Lazio, Italy
| | - Antonella Maselli
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco D’Alessandro
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | | | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
4
|
Fine JM, Chericoni A, Delgado G, Franch MC, Mickiewicz EA, Chavez AG, Bartoli E, Paulo D, Provenza NR, Watrous A, Yoo SBM, Sheth SA, Hayden BY. Complementary roles for hippocampus and anterior cingulate in composing continuous choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643774. [PMID: 40166150 PMCID: PMC11956977 DOI: 10.1101/2025.03.17.643774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Naturalistic, goal directed behavior often requires continuous actions directed at dynamically changing goals. In this context, the closest analogue to choice is a strategic reweighting of multiple goal-specific control policies in response to shifting environmental pressures. To understand the algorithmic and neural bases of choice in continuous contexts, we examined behavior and brain activity in humans performing a continuous prey-pursuit task. Using a newly developed control-theoretic decomposition of behavior, we find pursuit strategies are well described by a meta-controller dictating a mixture of lower-level controllers, each linked to specific pursuit goals. Examining hippocampus and anterior cingulate cortex (ACC) population dynamics during goal switches revealed distinct roles for the two regions in parameterizing continuous controller mixing and meta-control. Hippocampal ensemble dynamics encoded the controller blending dynamics, suggesting it implements a mixing of goal-specific control policies. In contrast, ACC ensemble activity exhibited value-dependent ramping activity before goal switches, linking it to a meta-control process that accumulates evidence for switching goals. Our results suggest that hippocampus and ACC play complementary roles corresponding to a generalizable mixture controller and meta-controller that dictates value dependent changes in controller mixing.
Collapse
|
5
|
Wang J, Meng F, Xu C, Zhang Y, Liang K, Han C, Gao Y, Yu X, Li Z, Zeng X, Ni J, Tan H, Yang J, Ma Y. Simultaneous intracranial recordings of interacting brains reveal neurocognitive dynamics of human cooperation. Nat Neurosci 2025; 28:161-173. [PMID: 39672965 DOI: 10.1038/s41593-024-01824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/17/2024] [Indexed: 12/15/2024]
Abstract
Cooperative interactions profoundly shape individual and collective behaviors of social animals. Successful cooperation requires coordinated efforts by cooperators toward collective goals. However, the underlying behavioral dynamics and neuronal mechanisms within and between cooperating brains remain largely unknown. We recorded intracranial electrophysiological signals from human pairs engaged in a cooperation game. We show that teammate coordination and goal pursuit make distinct contributions to the behavioral cooperation dynamics. Increases and decreases in high-gamma activity in the temporoparietal junction (TPJ) and amygdala distinguish between establishing and maintaining cooperation and forecast transitions between these two states. High-gamma activity from distinct neuronal populations encodes teammate coordination and goal pursuit motives, with populations of TPJ neurons preferentially tracking dominant motives of different cooperation states. Across cooperating brains, high-gamma activity in the TPJ and amygdala synchronizes in a state-dependent manner that predicts how well cooperators coordinate. These findings provide fine-grained understandings of human cooperation dynamics as a state-dependent process with distinctive neurocognitive profiles of each state.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Fangang Meng
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Kun Liang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Gao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zizhou Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xiaoyu Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jun Ni
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Huixin Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jiaxin Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
6
|
Habekost T, Ovesen J, Madsen JB. Cognition in elite soccer players: a general model. Front Psychol 2024; 15:1477262. [PMID: 39723399 PMCID: PMC11668572 DOI: 10.3389/fpsyg.2024.1477262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
This paper presents a general model of the cognitive processes involved in each play situation of soccer at the elite level. Theoretically the model draws on general frameworks from cognitive psychology and neuroscience, in particular the affordance competition hypothesis and the reward prediction error theory. The model includes three functional stages: situational assessment, action selection and execution, and outcome assessment. The three stages form a perception-action cycle that corresponds to a single play situation. The cognitive processes operating at each functional stage are described and related to soccer research by a review of 52 empirical studies. The review covers the main cognitive processes that have been studied in soccer research: visual orientation and attention, pattern recognition, anticipation, working memory, action selection and decision making, executive control processes, as well as behavioral and cognitive learning. The model accommodates the wide variety of findings in the empirical literature and provides a general organizing frame for cognitive soccer research at the elite level. The influence of emotional and stress-related factors on cognition are also discussed. Four general limitations of the existing soccer research are identified, and suggestions for future studies include development of more naturalistic and interventional study designs. By specifying the different cognitive processes in soccer and their dynamic interactions the model has many applied perspectives for soccer training at the professional level. Overall, the paper presents the first integrated process model of cognition in elite soccer players with implications for both research and practice.
Collapse
Affiliation(s)
- Thomas Habekost
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Ovesen
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Jes Buster Madsen
- F. C. Copenhagen, Copenhagen, Denmark
- Saudi Pro League, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Molano-Mazón M, Garcia-Duran A, Pastor-Ciurana J, Hernández-Navarro L, Bektic L, Lombardo D, de la Rocha J, Hyafil A. Rapid, systematic updating of movement by accumulated decision evidence. Nat Commun 2024; 15:10583. [PMID: 39632800 PMCID: PMC11618783 DOI: 10.1038/s41467-024-53586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
Acting in the natural world requires not only deciding among multiple options but also converting decisions into motor commands. How the dynamics of decision formation influence the fine kinematics of response movement remains, however, poorly understood. Here we investigate how the accumulation of decision evidence shapes the response orienting trajectories in a task where freely-moving rats combine prior expectations and auditory information to select between two possible options. Response trajectories and their motor vigor are initially determined by the prior. Rats movements then incorporate sensory information in less than 100 ms after stimulus onset by accelerating or slowing depending on how much the stimulus supports their initial choice. When the stimulus evidence is in strong contradiction, rats change their mind and reverse their initial trajectory. Human subjects performing an equivalent task display a remarkably similar behavior. We encapsulate these results in a computational model that maps the decision variable onto the movement kinematics at discrete time points, capturing subjects' choices, trajectories and changes of mind. Our results show that motor responses are not ballistic. Instead, they are systematically and rapidly updated, as they smoothly unfold over time, by the parallel dynamics of the underlying decision process.
Collapse
Affiliation(s)
- Manuel Molano-Mazón
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain.
- IDIBAPS, Rosselló 149, Barcelona, Spain.
| | - Alexandre Garcia-Duran
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
- Departament de Matemàtiques, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Becchio C, Pullar K, Scaliti E, Panzeri S. Kinematic coding: Measuring information in naturalistic behaviour. Phys Life Rev 2024; 51:442-458. [PMID: 39603216 DOI: 10.1016/j.plrev.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Recent years have seen an explosion of interest in naturalistic behaviour and in machine learning tools for automatically tracking it. However, questions about what to measure, how to measure it, and how to relate naturalistic behaviour to neural activity and cognitive processes remain unresolved. In this Perspective, we propose a general experimental and computational framework - kinematic coding - for measuring how information about cognitive states is encoded in structured patterns of behaviour and how this information is read out by others during social interactions. This framework enables the design of new experiments and the generation of testable hypotheses that link behaviour, cognition, and neural activity at the single-trial level. Researchers can employ this framework to identify single-subject, single-trial encoding and readout computations and address meaningful questions about how information encoded in bodily motion is transmitted and communicated.
Collapse
Affiliation(s)
- Cristina Becchio
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Kiri Pullar
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute for Neural Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Eugenio Scaliti
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Management "Valter Cantino", University of Turin, Turin, Italy; Human Science and Technologies, University of Turin, Turin, Italy
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
9
|
Lacal I, Das A, Logiaco L, Molano-Mazón M, Schwaner MJ, Trach JE. Emerging perspectives for the study of the neural basis of motor behaviour. Eur J Neurosci 2024; 60:6342-6356. [PMID: 39364639 DOI: 10.1111/ejn.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
The 33rd Annual Meeting of the Society for the Neural Control of Movement (NCM) brought together over 500 experts to discuss recent advancements in motor control. This article highlights key topics from the conference, including the foundational mechanisms of motor control, the ongoing debate over the context-dependency of feedforward and feedback processes, and the interplay between motor and cognitive functions in learning, memory, and decision-making. It also presents innovative methods for studying movement in complex, real-world environments.
Collapse
Affiliation(s)
- Irene Lacal
- Sensorimotor Group, German Primate Center, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Anwesha Das
- Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Laureline Logiaco
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | | | - M Janneke Schwaner
- Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Juliana E Trach
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Coucke N, Heinrich MK, Dorigo M, Cleeremans A. Action-based confidence sharing and collective decision making. iScience 2024; 27:111006. [PMID: 39429786 PMCID: PMC11490717 DOI: 10.1016/j.isci.2024.111006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/14/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Joint action research explores how multiple humans can coordinate their movements to achieve common goals. When there is uncertainty about the joint goal, individuals need to integrate their perceptual information of the environment to collaboratively determine their new goal. To ensure that a group reaches a consensus about the goal, collective decision making among the individuals is required. Collective decision making can be facilitated by nonverbal expressions of opinions and associated confidence levels. Here, we show that confidence sharing in groups of 2, 3, and 4 individuals can be studied using their trajectories when jointly moving toward one of several options. We found that both opinions and confidence levels can be distinguished in individual movement trajectories, and found that movement features can predict an individual's influence. Our results suggest that movement trajectories are a valid way to study confidence sharing in human collective decision making.
Collapse
Affiliation(s)
- Nicolas Coucke
- Center for Research in Cognition and Neurosciences, Université libre de Bruxelles, Brussels, Belgium
- IRIDIA, Université libre de Bruxelles, Brussels, Belgium
- Moral and Social Brain Lab, Department of Experimental Psychology, Universiteit Gent, Ghent, Belgium
| | | | - Marco Dorigo
- IRIDIA, Université libre de Bruxelles, Brussels, Belgium
| | - Axel Cleeremans
- Center for Research in Cognition and Neurosciences, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Garrett J, Chak C, Bullock T, Giesbrecht B. A systematic review and Bayesian meta-analysis provide evidence for an effect of acute physical activity on cognition in young adults. COMMUNICATIONS PSYCHOLOGY 2024; 2:82. [PMID: 39242965 PMCID: PMC11358546 DOI: 10.1038/s44271-024-00124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2024] [Indexed: 09/09/2024]
Abstract
Physical exercise is a potential intervention for enhancing cognitive function across the lifespan. However, while studies employing long-term exercise interventions consistently show positive effects on cognition, studies using single acute bouts have produced mixed results. Here, a systematic review and meta-analysis was conducted to determine the impact of acute exercise on cognitive task performance in healthy young adults. A Bayesian hierarchical model quantified probabilistic evidence for a modulatory relationship by synthesizing 651 effect sizes from 113 studies from PsychInfo and Google Scholar representing 4,390 participants. Publication bias was mitigated using the trim-and-fill method. Acute exercise was found to have a small beneficial effect on cognition (g = 0.13 ± 0.04; BF = 3.67) and decrease reaction time. A meta-analysis restricted to executive function tasks revealed improvements in working memory and inhibition. Meta-analytic estimates were consistent across multiple priors and likelihood functions. Physical activities were categorized based on exercise type (e.g., cycling) because many activities have aerobic and anaerobic components, but this approach may limit comparison to studies that categorize activities based on metabolic demands. The current study provides an updated synthesis of the existing literature and insights into the robustness of acute exercise-induced effects on cognition. Funding provided by the United States Army Research Office.
Collapse
Affiliation(s)
- Jordan Garrett
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA.
| | - Carly Chak
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Tom Bullock
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Barry Giesbrecht
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
12
|
Canaveral CA, Lata W, Green AM, Cisek P. Biomechanical costs influence decisions made during ongoing actions. J Neurophysiol 2024; 132:461-469. [PMID: 38988286 PMCID: PMC11427048 DOI: 10.1152/jn.00090.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Accurate interaction with the environment relies on the integration of external information about the spatial layout of potential actions and knowledge of their costs and benefits. Previous studies have shown that when given a choice between voluntary reaching movements, humans tend to prefer actions with lower biomechanical costs. However, these studies primarily focused on decisions made before the onset of movement ("decide-then-act" scenarios), and it is not known to what extent their conclusions generalize to many real-life situations, in which decisions occur during ongoing actions ("decide-while-acting"). For example, one recent study found that biomechanical costs did not influence decisions to switch from a continuous manual tracking movement to a point-to-point movement, suggesting that biomechanical costs may be disregarded in decide-while-acting scenarios. To better understand this surprising result, we designed an experiment in which participants were faced with the decision between continuing to track a target moving along a straight path or changing paths to track a new target that gradually moved along a direction that deviated from the initial one. We manipulated tracking direction, angular deviation rate, and side of deviation, allowing us to compare scenarios where biomechanical costs favored either continuing or changing the path. Crucially, here the choice was always between two continuous tracking actions. Our results show that in this situation decisions clearly took biomechanical costs into account. Thus we conclude that biomechanics are not disregarded during decide-while-acting scenarios but rather that cost comparisons can only be made between similar types of actions.NEW & NOTEWORTHY In this study, we aim to shed light on how biomechanical factors influence decisions made during ongoing actions. Previous work suggested that decisions made during actions disregard biomechanical costs, in contrast to decisions made before movement. Our results challenge that proposal and suggest instead that the effect of biomechanical factors is dependent on the types of actions being compared (e.g., continuous tracking vs. point-to-point reaching). These findings contribute to our understanding of the dynamic interplay between biomechanical considerations and action choices during ongoing interactions with the environment.
Collapse
Affiliation(s)
| | - William Lata
- Department of NeuroscienceUniversity of MontréalMontréalQuébecCanada
| | - Andrea M Green
- Department of NeuroscienceUniversity of MontréalMontréalQuébecCanada
| | - Paul Cisek
- Department of NeuroscienceUniversity of MontréalMontréalQuébecCanada
| |
Collapse
|
13
|
Cisek P, Green AM. Toward a neuroscience of natural behavior. Curr Opin Neurobiol 2024; 86:102859. [PMID: 38583263 DOI: 10.1016/j.conb.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
One of the most exciting new developments in systems neuroscience is the progress being made toward neurophysiological experiments that move beyond simplified laboratory settings and address the richness of natural behavior. This is enabled by technological advances such as wireless recording in freely moving animals, automated quantification of behavior, and new methods for analyzing large data sets. Beyond new empirical methods and data, however, there is also a need for new theories and concepts to interpret that data. Such theories need to address the particular challenges of natural behavior, which often differ significantly from the scenarios studied in traditional laboratory settings. Here, we discuss some strategies for developing such novel theories and concepts and some example hypotheses being proposed.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada.
| | - Andrea M Green
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Xie T, Adamek M, Cho H, Adamo MA, Ritaccio AL, Willie JT, Brunner P, Kubanek J. Graded decisions in the human brain. Nat Commun 2024; 15:4308. [PMID: 38773117 PMCID: PMC11109249 DOI: 10.1038/s41467-024-48342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Markus Adamek
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Hohyun Cho
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY, 12208, USA
| | - Anthony L Ritaccio
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jon T Willie
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA
| | - Peter Brunner
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- National Center for Adaptive Neurotechnologies, St. Louis, MO, 63110, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
15
|
Krüger M, Puri R, Summers JJ, Hinder MR. Influence of age and cognitive demand on motor decision making under uncertainty: a study on goal directed reaching movements. Sci Rep 2024; 14:9119. [PMID: 38643224 PMCID: PMC11032380 DOI: 10.1038/s41598-024-59415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
In everyday life, we constantly make decisions about actions to be performed subsequently. Research on motor decision making has provided empirical evidence for an influence of decision uncertainty on movement execution in young adults. Further, decision uncertainty was suggested to be increased in older adults due to limited cognitive resources for the integration of information and the prediction of the decision outcomes. However, the influence of cognitive aging on decision uncertainty during motor decision making and movement execution has not been investigated, yet. Thus, in the current study, we presented young and older adults with a motor decision making task, in which participants had to decide on pointing towards one out of five potential targets under varying cognitive demands. Statistical analyses revealed stronger decreases in correctly deciding upon the pointing target, i.e. task performance, from low to higher cognitive demand in older as compared to young adults. Decision confidence also decreased more strongly in older adults with increasing cognitive demand, however, only when collapsing across correct and incorrect decision trials, but not when considering correct decision trials, only. Further, older adults executed reaching movements with longer reaction times and increased path length, though the latter, again, not when considering correct decision trials, only. Last, reaction time and variability in movement execution were both affected by cognitive demand. The outcomes of this study provide a differentiated picture of the distinct and joint effects of aging and cognitive demand during motor decision making.
Collapse
Affiliation(s)
- Melanie Krüger
- Institute of Sports Science, Faculty of Humanities, Leibniz University Hannover, Am Moritzwinkel 6, 30167, Hannover, Germany.
| | - Rohan Puri
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Jeffery J Summers
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
16
|
Grießbach E, Raßbach P, Herbort O, Cañal-Bruland R. Dual-tasking modulates movement speed but not value-based choices during walking. Sci Rep 2024; 14:6342. [PMID: 38491146 PMCID: PMC10943095 DOI: 10.1038/s41598-024-56937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Value-based decision-making often occurs in multitasking scenarios relying on both cognitive and motor processes. Yet, laboratory experiments often isolate these processes, thereby neglecting potential interactions. This isolated approach reveals a dichotomy: the cognitive process by which reward influences decision-making is capacity-limited, whereas the influence of motor cost is free of such constraints. If true, dual-tasking should predominantly impair reward processing but not affect the impact of motor costs. To test this hypothesis, we designed a decision-making task in which participants made choices to walk toward targets for rewards while navigating past an obstacle. The motor cost to reach these rewards varied in real-time. Participants either solely performed the decision-making task, or additionally performed a secondary pitch-recall task. Results revealed that while both reward and motor costs influenced decision-making, the secondary task did not affect these factors. Instead, dual-tasking slowed down participants' walking, thereby reducing the overall reward rate. Hence, contrary to the prediction that the added cognitive demand would affect the weighing of reward or motor cost differentially, these processes seem to be maintained at the expense of slowing down the motor system. This slowdown may be indicative of interference at the locomotor level, thereby underpinning motor-cognitive interactions during decision-making.
Collapse
Affiliation(s)
- Eric Grießbach
- Department for Neurology, Johns Hopkins University, Baltimore, MD, USA.
- Department for the Psychology of Human Movement and Sport, Friedrich Schiller University, Jena, Germany.
| | - Philipp Raßbach
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Oliver Herbort
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rouwen Cañal-Bruland
- Department for the Psychology of Human Movement and Sport, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
17
|
Desmet DM, Kazanski ME, Cusumano JP, Dingwell JB. How Healthy Older Adults Enact Lateral Maneuvers While Walking. Gait Posture 2024; 108:117-123. [PMID: 38035512 PMCID: PMC10842127 DOI: 10.1016/j.gaitpost.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Walking requires frequent maneuvers to navigate changing environments with shifting goals. Humans accomplish maneuvers and simultaneously maintain balance primarily by modulating their foot placement, but a direct trade-off between these two objectives has been proposed. As older adults may rely more on foot placement to maintain lateral balance, they may be less able to adequately adapt stepping to perform lateral maneuvers. RESEARCH QUESTION How do older adults adapt stepping to enact lateral lane-change maneuvers, and how do physical and perceived ability influence their task performance? METHODS Twenty young (21.7 ± 2.6 yrs) and 18 older (71.6 ± 6.0 yrs) adults walked on a motorized treadmill in a virtual environment. Following an audible and visual cue, participants switched between two parallel paths, centered 0.6 m apart, to continue walking on their new path. We quantified when participants initiated the maneuver following the cue, as well as their step width, lateral position, and stepping variability ellipses at each maneuver step. RESULTS Young and older adults did not differ in when they initiated the maneuver, but participants with lower perceived ability took longer to do so. Young and older adults also did not exhibit differences in step width or lateral positions at any maneuver step, but participants with greater physical ability reached their new path faster. While only older adults exhibited stepping adaptations prior to initiating the maneuver, both groups traded off stability for maneuverability to enact the lateral maneuver. SIGNIFICANCE Physical and perceived balance ability, rather than age per se, differentially influenced maneuver task performance. Humans must make decisions related to the task of walking itself and do so based on both physical and perceived factors. Understanding and targeting these interactions may help improve walking performance among older adults.
Collapse
Affiliation(s)
- David M Desmet
- Department of Kinesiology, Pennsylvania State University, University Park, PA, United States
| | - Meghan E Kazanski
- Department of Kinesiology, Pennsylvania State University, University Park, PA, United States; Department of Medicine, Division of Geriatrics and Gerontology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph P Cusumano
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, United States
| | - Jonathan B Dingwell
- Department of Kinesiology, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
18
|
Molano-Mazón M, Garcia-Duran A, Pastor-Ciurana J, Hernández-Navarro L, Bektic L, Lombardo D, de la Rocha J, Hyafil A. Rapid, systematic updating of movement by accumulated decision evidence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566389. [PMID: 38352370 PMCID: PMC10862760 DOI: 10.1101/2023.11.09.566389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Acting in the natural world requires not only deciding among multiple options but also converting decisions into motor commands. How the dynamics of decision formation influence the fine kinematics of response movement remains, however, poorly understood. Here we investigate how the accumulation of decision evidence shapes the response orienting trajectories in a task where freely-moving rats combine prior expectations and auditory information to select between two possible options. Response trajectories and their motor vigor are initially determined by the prior. Rats movements then incorporate sensory information as early as 60 ms after stimulus onset by accelerating or slowing depending on how much the stimulus supports their initial choice. When the stimulus evidence is in strong contradiction, rats change their mind and reverse their initial trajectory. Human subjects performing an equivalent task display a remarkably similar behavior. We encapsulate these results in a computational model that, by mapping the decision variable onto the movement kinematics at discrete time points, captures subjects' choices, trajectories and changes of mind. Our results show that motor responses are not ballistic. Instead, they are systematically and rapidly updated, as they smoothly unfold over time, by the parallel dynamics of the underlying decision process.
Collapse
Affiliation(s)
- Manuel Molano-Mazón
- IDIBAPS, Rosselló 149, Barcelona, 08036, Spain
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
- These authors contributed equally
| | | | | | | | | | | | - Jaime de la Rocha
- IDIBAPS, Rosselló 149, Barcelona, 08036, Spain
- These authors contributed equally
| | - Alexandre Hyafil
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
- These authors contributed equally
| |
Collapse
|
19
|
Dingwell JB, Render AC, Desmet DM, Cusumano JP. Generalizing stepping concepts to non-straight walking. J Biomech 2023; 161:111840. [PMID: 37897990 PMCID: PMC10880122 DOI: 10.1016/j.jbiomech.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
People rarely walk in straight lines. Instead, we make frequent turns or other maneuvers. Spatiotemporal parameters fundamentally characterize gait. For straight walking, these parameters are well-defined for the task of walking on a straight path. Generalizing these concepts to non-straight walking, however, is not straightforward. People follow non-straight paths imposed by their environment (sidewalk, windy hiking trail, etc.) or choose readily-predictable, stereotypical paths of their own. People actively maintain lateral position to stay on their path and readily adapt their stepping when their path changes. We therefore propose a conceptually coherent convention that defines step lengths and widths relative to predefined walking paths. Our convention simply re-aligns lab-based coordinates to be tangent to a walker's path at the mid-point between the two footsteps that define each step. We hypothesized this would yield results both more correct and more consistent with notions from straight walking. We defined several common non-straight walking tasks: single turns, lateral lane changes, walking on circular paths, and walking on arbitrary curvilinear paths. For each, we simulated idealized step sequences denoting "perfect" performance with known constant step lengths and widths. We compared results to path-independent alternatives. For each, we directly quantified accuracy relative to known true values. Results strongly confirmed our hypothesis. Our convention returned vastly smaller errors and introduced no artificial stepping asymmetries across all tasks. All results for our convention rationally generalized concepts from straight walking. Taking walking paths explicitly into account as important task goals themselves thus resolves conceptual ambiguities of prior approaches.
Collapse
Affiliation(s)
- Jonathan B Dingwell
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Anna C Render
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David M Desmet
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph P Cusumano
- Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
20
|
Garcia M, Gupta S, Wikenheiser AM. Sex differences in patch-leaving foraging decisions in rats. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad011. [PMID: 38596244 PMCID: PMC11003400 DOI: 10.1093/oons/kvad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 04/11/2024]
Abstract
The ubiquity, importance, and sophistication of foraging behavior makes it an ideal platform for studying naturalistic decision making in animals. We developed a spatial patch-foraging task for rats, in which subjects chose how long to remain in one foraging patch as the rate of food earnings steadily decreased. The cost of seeking out a new location was varied across sessions. The behavioral task was designed to mimic the structure of natural foraging problems, where distinct spatial locations are associated with different reward statistics, and decisions require navigation and movement through space. Male and female Long-Evans rats generally followed the predictions of theoretical models of foraging, albeit with a consistent tendency to persist with patches for too long compared to behavioral strategies that maximize food intake rate. The tendency to choose overly-long patch residence times was stronger in male rats. We also observed sex differences in locomotion as rats performed the task, but these differences in movement only partially accounted for the differences in patch residence durations observed between male and female rats. Together, these results suggest a nuanced relationship between movement, sex, and foraging decisions.
Collapse
Affiliation(s)
- Marissa Garcia
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sukriti Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew M Wikenheiser
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Garcia M, Gupta S, Wikenheiser AM. Sex differences in patch-leaving foraging decisions in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529135. [PMID: 36824852 PMCID: PMC9949151 DOI: 10.1101/2023.02.19.529135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The ubiquity, importance, and sophistication of foraging behavior makes it an ideal platform for studying naturalistic decision making in animals. We developed a spatial patch-foraging task for rats, in which subjects chose how long to remain in one foraging patch as the rate of food earnings steadily decreased. The cost of seeking out a new location was varied across sessions. The behavioral task was designed to mimic the structure of natural foraging problems, where distinct spatial locations are associated with different reward statistics, and decisions require navigation and movement through space. Male and female Long-Evans rats generally followed the predictions of theoretical models of foraging, albeit with a consistent tendency to persist with patches for too long compared to behavioral strategies that maximize food intake rate. The tendency to choose overly-long patch residence times was stronger in male rats. We also observed sex differences in locomotion as rats performed the task, but these differences in movement only partially accounted for the differences in patch residence durations observed between male and female rats. Together, these results suggest a nuanced relationship between movement, sex, and foraging decisions.
Collapse
Affiliation(s)
- Marissa Garcia
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
- Current address: Neurosciences Graduate Program, University of California, San Diego, San Diego, CA 92093
| | - Sukriti Gupta
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Andrew M. Wikenheiser
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
22
|
Dingwell JB, Render AC, Desmet DM, Cusumano JP. Generalizing Stepping Concepts To Non-Straight Walking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540644. [PMID: 37293042 PMCID: PMC10245567 DOI: 10.1101/2023.05.15.540644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
People rarely walk in straight lines. Instead, we make frequent turns or other maneuvers. Spatiotemporal parameters fundamentally characterize gait. For straight walking, these parameters are well-defined for that task of walking on a straight path. Generalizing these concepts to non-straight walking, however, is not straightforward. People also follow non-straight paths imposed by their environment (store aisle, sidewalk, etc.) or choose readily-predictable, stereotypical paths of their own. People actively maintain lateral position to stay on their path and readily adapt their stepping when their path changes. We therefore propose a conceptually coherent convention that defines step lengths and widths relative to known walking paths. Our convention simply re-aligns lab-based coordinates to be tangent to a walker's path at the mid-point between the two footsteps that define each step. We hypothesized this would yield results both more correct and more consistent with notions from straight walking. We defined several common non-straight walking tasks: single turns, lateral lane changes, walking on circular paths, and walking on arbitrary curvilinear paths. For each, we simulated idealized step sequences denoting "perfect" performance with known constant step lengths and widths. We compared results to path- independent alternatives. For each, we directly quantified accuracy relative to known true values. Results strongly confirmed our hypothesis. Our convention returned vastly smaller errors and introduced no artificial stepping asymmetries across all tasks. All results for our convention rationally generalized concepts from straight walking. Taking walking paths explicitly into account as important task goals themselves thus resolves conceptual ambiguities of prior approaches.
Collapse
Affiliation(s)
- Jonathan B. Dingwell
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anna C. Render
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David M. Desmet
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joseph P. Cusumano
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
23
|
Maselli A, Gordon J, Eluchans M, Lancia GL, Thiery T, Moretti R, Cisek P, Pezzulo G. Beyond simple laboratory studies: Developing sophisticated models to study rich behavior. Phys Life Rev 2023; 46:220-244. [PMID: 37499620 DOI: 10.1016/j.plrev.2023.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Psychology and neuroscience are concerned with the study of behavior, of internal cognitive processes, and their neural foundations. However, most laboratory studies use constrained experimental settings that greatly limit the range of behaviors that can be expressed. While focusing on restricted settings ensures methodological control, it risks impoverishing the object of study: by restricting behavior, we might miss key aspects of cognitive and neural functions. In this article, we argue that psychology and neuroscience should increasingly adopt innovative experimental designs, measurement methods, analysis techniques and sophisticated computational models to probe rich, ecologically valid forms of behavior, including social behavior. We discuss the challenges of studying rich forms of behavior as well as the novel opportunities offered by state-of-the-art methodologies and new sensing technologies, and we highlight the importance of developing sophisticated formal models. We exemplify our arguments by reviewing some recent streams of research in psychology, neuroscience and other fields (e.g., sports analytics, ethology and robotics) that have addressed rich forms of behavior in a model-based manner. We hope that these "success cases" will encourage psychologists and neuroscientists to extend their toolbox of techniques with sophisticated behavioral models - and to use them to study rich forms of behavior as well as the cognitive and neural processes that they engage.
Collapse
Affiliation(s)
- Antonella Maselli
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Jeremy Gordon
- University of California, Berkeley, Berkeley, CA, 94704, United States
| | - Mattia Eluchans
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy; University of Rome "La Sapienza", Rome, Italy
| | - Gian Luca Lancia
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy; University of Rome "La Sapienza", Rome, Italy
| | - Thomas Thiery
- Department of Psychology, University of Montréal, Montréal, Québec, Canada
| | - Riccardo Moretti
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy; University of Rome "La Sapienza", Rome, Italy
| | - Paul Cisek
- Department of Neuroscience, University of Montréal, Montréal, Québec, Canada
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| |
Collapse
|
24
|
Scaliti E, Pullar K, Borghini G, Cavallo A, Panzeri S, Becchio C. Kinematic priming of action predictions. Curr Biol 2023:S0960-9822(23)00687-5. [PMID: 37339628 DOI: 10.1016/j.cub.2023.05.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
The ability to anticipate what others will do next is crucial for navigating social, interactive environments. Here, we develop an experimental and analytical framework to measure the implicit readout of prospective intention information from movement kinematics. Using a primed action categorization task, we first demonstrate implicit access to intention information by establishing a novel form of priming, which we term kinematic priming: subtle differences in movement kinematics prime action prediction. Next, using data collected from the same participants in a forced-choice intention discrimination task 1 h later, we quantify single-trial intention readout-the amount of intention information read by individual perceivers in individual kinematic primes-and assess whether it can be used to predict the amount of kinematic priming. We demonstrate that the amount of kinematic priming, as indexed by both response times (RTs) and initial fixations to a given probe, is directly proportional to the amount of intention information read by the individual perceiver at the single-trial level. These results demonstrate that human perceivers have rapid, implicit access to intention information encoded in movement kinematics and highlight the potential of our approach to reveal the computations that permit the readout of this information with single-subject, single-trial resolution.
Collapse
Affiliation(s)
- Eugenio Scaliti
- Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy; Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany
| | - Kiri Pullar
- Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Giulia Borghini
- Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Andrea Cavallo
- Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy; Department of Psychology, Università degli Studi di Torino, Via Giuseppe Verdi, 10, 10124 Torino, Italy
| | - Stefano Panzeri
- Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany.
| | - Cristina Becchio
- Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy; Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
25
|
Gharesi N, Luneau L, Kalaska JF, Baillet S. Evaluation of abstract rule-based associations in the human premotor cortex during passive observation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543581. [PMID: 37333191 PMCID: PMC10274620 DOI: 10.1101/2023.06.06.543581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Decision-making often manifests in behavior, typically yielding overt motor actions. This complex process requires the registration of sensory information with one's internal representation of the current context, before a categorical judgment of the most appropriate motor behavior can be issued. The construct concept of embodied decision-making encapsulates this sequence of complex processes, whereby behaviorally salient information from the environment is represented in an abstracted space of potential motor actions rather than only in an abstract cognitive "decision" space. Theoretical foundations and some empirical evidence account for support the involvement of premotor cortical circuits in embodied cognitive functions. Animal models show that premotor circuits participate in the registration and evaluation of actions performed by peers in social situations, that is, prior to controlling one's voluntary movements guided by arbitrary stimulus-response rules. However, such evidence from human data is currently limited. Here we used time-resolved magnetoencephalography imaging to characterize activations of the premotor cortex as human participants observed arbitrary, non-biological visual stimuli that either respected or violated a simple stimulus-response association rule. The participants had learned this rule previously, either actively, by performing a motor task (active learning), or passively, by observing a computer perform the same task (passive learning). We discovered that the human premotor cortex is activated during the passive observation of the correct execution of a sequence of events according to a rule learned previously. Premotor activation also differs when the subjects observe incorrect stimulus sequences. These premotor effects are present even when the observed events are of a non-motor, abstract nature, and even when the stimulus-response association rule was learned via passive observations of a computer agent performing the task, without requiring overt motor actions from the human participant. We found evidence of these phenomena by tracking cortical beta-band signaling in temporal alignment with the observation of task events and behavior. We conclude that premotor cortical circuits that are typically engaged during voluntary motor behavior are also involved in the interpretation of events of a non-ecological, unfamiliar nature but related to a learned abstract rule. As such, the present study provides the first evidence of neurophysiological processes of embodied decision-making in human premotor circuits when the observed events do not involve motor actions of a third party.
Collapse
Affiliation(s)
- Niloofar Gharesi
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Lucie Luneau
- Groupe de recherche sur la signalisation neuronale et la circuiterie, Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - John F Kalaska
- Groupe de recherche sur la signalisation neuronale et la circuiterie, Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
26
|
Cañal-Bruland R, Raab M. Embodied choices bypass narratives under radical uncertainty. Behav Brain Sci 2023; 46:e88. [PMID: 37154135 DOI: 10.1017/s0140525x22002722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Johnson et al. suggest that we rely on narratives to make choices under radical uncertainty. We argue that in its current version Conviction Narrative Theory (CNT) does not account for embodied, direct sensorimotor influences on choices under radical uncertainty that may bypass narratives, particularly in highly time-constrained situations. We therefore suggest to extend CNT by an embodied choice perspective.
Collapse
Affiliation(s)
- Rouwen Cañal-Bruland
- Department for the Psychology of Human Movement and Sport, Friedrich Schiller University Jena, 07749Jena, Germany. ://www.spowi.uni-jena.de/en/departments/department-for-the-psychology-of-human-movement-and-sport/people/rouwen-canal-bruland
| | - Markus Raab
- Department of Performance Psychology, German Sport University Cologne, 50933 Cologne, Germany. https://fis.dshs-koeln.de/portal/en/persons/markus-raab(05e809e4-1be0-45aa-b811-58adc6779693).html
- School of Applied Sciences, London South Bank University, SE1 0AA London, UK
| |
Collapse
|
27
|
Dundon NM, Colas JT, Garrett N, Babenko V, Rizor E, Yang D, MacNamara M, Petzold L, Grafton ST. Decision heuristics in contexts integrating action selection and execution. Sci Rep 2023; 13:6486. [PMID: 37081031 PMCID: PMC10119283 DOI: 10.1038/s41598-023-33008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Heuristics can inform human decision making in complex environments through a reduction of computational requirements (accuracy-resource trade-off) and a robustness to overparameterisation (less-is-more). However, tasks capturing the efficiency of heuristics typically ignore action proficiency in determining rewards. The requisite movement parameterisation in sensorimotor control questions whether heuristics preserve efficiency when actions are nontrivial. We developed a novel action selection-execution task requiring joint optimisation of action selection and spatio-temporal skillful execution. State-appropriate choices could be determined by a simple spatial heuristic, or by more complex planning. Computational models of action selection parsimoniously distinguished human participants who adopted the heuristic from those using a more complex planning strategy. Broader comparative analyses then revealed that participants using the heuristic showed combined decisional (selection) and skill (execution) advantages, consistent with a less-is-more framework. In addition, the skill advantage of the heuristic group was predominantly in the core spatial features that also shaped their decision policy, evidence that the dimensions of information guiding action selection might be yoked to salient features in skill learning.
Collapse
Affiliation(s)
- Neil M Dundon
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106, USA.
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, 79104, Freiburg, Germany.
| | - Jaron T Colas
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106, USA
| | - Neil Garrett
- School of Psychology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Viktoriya Babenko
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106, USA
| | - Elizabeth Rizor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106, USA
| | - Dengxian Yang
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA
| | | | - Linda Petzold
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
28
|
Grießbach E, Raßbach P, Herbort O, Cañal-Bruland R. Embodied decision biases: individually stable across different tasks? Exp Brain Res 2023; 241:1053-1064. [PMID: 36907885 PMCID: PMC10082122 DOI: 10.1007/s00221-023-06591-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
In everyday life, action and decision-making often run in parallel. Action-based models argue that action and decision-making strongly interact and, more specifically, that action can bias decision-making. This embodied decision bias is thought to originate from changes in motor costs and/or cognitive crosstalk. Recent research confirmed embodied decision biases for different tasks including walking and manual movements. Yet, whether such biases generalize within individuals across different tasks remains to be determined. To test this, we used two different decision-making tasks that have independently been shown to reliably produce embodied decision biases. In a within-participant design, participants performed two tasks in a counterbalanced fashion: (i) a walking paradigm for which it is known that motor costs systematically influence reward decisions, and (ii) a manual movement task in which motor costs and cognitive crosstalk have been shown to impact reward decisions. In both tasks, we successfully replicated the predicted embodied decision biases. However, there was no evidence that the strength of the biases correlated between tasks. Hence, our findings do not confirm that embodied decision biases transfer between tasks. Future research is needed to examine whether this lack of transfer may be due to different causes underlying the impact of motor costs on decisions and the impact of cognitive crosstalk or task-specific differences.
Collapse
Affiliation(s)
- Eric Grießbach
- Department for the Psychology of Human Movement and Sport, Friedrich Schiller University Jena, Jena, Germany.
| | - Philipp Raßbach
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Oliver Herbort
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rouwen Cañal-Bruland
- Department for the Psychology of Human Movement and Sport, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
29
|
Desmet DM, Kazanski ME, Cusumano JP, Dingwell JB. How Healthy Older Adults Enact Lateral Maneuvers While Walking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529927. [PMID: 36909583 PMCID: PMC10002645 DOI: 10.1101/2023.02.24.529927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Walking requires frequent maneuvers to navigate changing environments with shifting goals. Humans accomplish maneuvers and simultaneously maintain balance primarily by modulating their foot placement, but a direct trade-off between these two objectives has been proposed. As older adults rely more on foot placement to maintain lateral balance, they may be less able to adequately adapt stepping to perform lateral maneuvers. Research Question How do older adults adapt stepping to enact lateral lane-change maneuvers, and how do physical and perceived ability influence their task performance? Methods Twenty young (21.7 ± 2.6 yrs) and 18 older (71.6 ± 6.0 yrs) adults walked on a motorized treadmill in a virtual environment. Following an audible and visual cue, participants switched between two parallel paths, centered 0.6m apart, to continue walking on their new path. We quantified when participants initiated the maneuver following the cue, as well as their step width, lateral position, and stepping variability ellipses at each maneuver step. Results Young and older adults did not differ in when they initiated the maneuver, but participants with lower perceived ability took longer to do so. Young and older adults also did not exhibit differences in step width or lateral positions at any maneuver step, but participants with greater physical ability reached their new path faster. While only older adults exhibited stepping adaptations prior to initiating the maneuver, both groups traded-off stability for maneuverability to enact the lateral maneuver. Significance Physical and perceived balance ability, rather than age per se, differentially influenced maneuver task performance. Humans must make decisions related to the task of walking itself and do so based on both physical and perceived factors. Understanding and targeting these interactions may help improve walking performance among older adults.
Collapse
Affiliation(s)
- David M. Desmet
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Meghan E. Kazanski
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Medicine, Division of Geriatrics and Gerontology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joseph P. Cusumano
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jonathan B. Dingwell
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
30
|
Coucke N, Heinrich MK, Cleeremans A, Dorigo M. Learning from humans to build social cognition among robots. Front Robot AI 2023; 10:1030416. [PMID: 36814449 PMCID: PMC9939630 DOI: 10.3389/frobt.2023.1030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Self-organized groups of robots have generally coordinated their behaviors using quite simple social interactions. Although simple interactions are sufficient for some group behaviors, future research needs to investigate more elaborate forms of coordination, such as social cognition, to progress towards real deployments. In this perspective, we define social cognition among robots as the combination of social inference, social learning, social influence, and knowledge transfer, and propose that these abilities can be established in robots by building underlying mechanisms based on behaviors observed in humans. We review key social processes observed in humans that could inspire valuable capabilities in robots and propose that relevant insights from human social cognition can be obtained by studying human-controlled avatars in virtual environments that have the correct balance of embodiment and constraints. Such environments need to allow participants to engage in embodied social behaviors, for instance through situatedness and bodily involvement, but, at the same time, need to artificially constrain humans to the operational conditions of robots, for instance in terms of perception and communication. We illustrate our proposed experimental method with example setups in a multi-user virtual environment.
Collapse
Affiliation(s)
- Nicolas Coucke
- IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,Consciousness, Cognition and Computation Group, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium,*Correspondence: Nicolas Coucke, ; Mary Katherine Heinrich,
| | - Mary Katherine Heinrich
- IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,*Correspondence: Nicolas Coucke, ; Mary Katherine Heinrich,
| | - Axel Cleeremans
- Consciousness, Cognition and Computation Group, Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Dorigo
- IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
31
|
Desmet DM, Cusumano JP, Dingwell JB. Adaptive multi-objective control explains how humans make lateral maneuvers while walking. PLoS Comput Biol 2022; 18:e1010035. [PMID: 36374914 PMCID: PMC9704766 DOI: 10.1371/journal.pcbi.1010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/28/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
To successfully traverse their environment, humans often perform maneuvers to achieve desired task goals while simultaneously maintaining balance. Humans accomplish these tasks primarily by modulating their foot placements. As humans are more unstable laterally, we must better understand how humans modulate lateral foot placement. We previously developed a theoretical framework and corresponding computational models to describe how humans regulate lateral stepping during straight-ahead continuous walking. We identified goal functions for step width and lateral body position that define the walking task and determine the set of all possible task solutions as Goal Equivalent Manifolds (GEMs). Here, we used this framework to determine if humans can regulate lateral stepping during non-steady-state lateral maneuvers by minimizing errors consistent with these goal functions. Twenty young healthy adults each performed four lateral lane-change maneuvers in a virtual reality environment. Extending our general lateral stepping regulation framework, we first re-examined the requirements of such transient walking tasks. Doing so yielded new theoretical predictions regarding how steps during any such maneuver should be regulated to minimize error costs, consistent with the goals required at each step and with how these costs are adapted at each step during the maneuver. Humans performed the experimental lateral maneuvers in a manner consistent with our theoretical predictions. Furthermore, their stepping behavior was well modeled by allowing the parameters of our previous lateral stepping models to adapt from step to step. To our knowledge, our results are the first to demonstrate humans might use evolving cost landscapes in real time to perform such an adaptive motor task and, furthermore, that such adaptation can occur quickly-over only one step. Thus, the predictive capabilities of our general stepping regulation framework extend to a much greater range of walking tasks beyond just normal, straight-ahead walking.
Collapse
Affiliation(s)
- David M. Desmet
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joseph P. Cusumano
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jonathan B. Dingwell
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
32
|
Voigt L, Friedrich J, Grove P, Heinrich N, Ittlinger S, Iskra M, Koop L, Michirev A, Sparascio S, Raab M. Advancing judgment and decision-making research in sport psychology by using the body as an informant in embodied choices. ASIAN JOURNAL OF SPORT AND EXERCISE PSYCHOLOGY 2022. [DOI: 10.1016/j.ajsep.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
33
|
Janković D, Čvorović A, Dopsaj M, Prćić I, Kukić F. Effects of the Task Complexity on the Single Movement Response Time of Upper and Lower Limbs in Police Officers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148695. [PMID: 35886550 PMCID: PMC9321739 DOI: 10.3390/ijerph19148695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023]
Abstract
Police officers occasionally encounter belligerents resisting or even physically assaulting them without or with objects. The self-defense or legal utilization of use of force to disable the offender from harming an officer or others may depend on a single movement speed of hands and legs. This study investigated the effects of task complexity on a single movement response time of the upper and lower limbs in police officers. The sample consisted of 32 male police officers aged between 23 and 50 years. They performed a single movement as fast as possible with their upper and lower limb in three incrementally more complex tasks. In the first task, participants acted on a light signal and with their dominant limb they had to turn off the signal as fast as possible. In the second task, on the light signal, participants could turn off the light with free choice of the upper limb in a hand task or lower limb in a leg task. In the third task, participants had to turn the light off with the right limb if the light turned red and with the left limb if the light turned blue. The BlazePod device was used to assess the movement response time. The results show that there was a significant effect of task complexity on the single movement response time of the hand (F = 24.5, p < 0.001) and leg (F = 46.2, p < 0.001). The training of police officers should utilize specific and situational tasks to improve movement response time by improving the redundancy in decision-making processes during work-specific tasks of different complexity.
Collapse
Affiliation(s)
- Dunja Janković
- Abu Dhabi Police, Police Sports Education Center, Abu Dhabi 253, United Arab Emirates; (D.J.); (A.Č.)
- Faculty of Sport and Physical Education, University of Belgrade, 11030 Belgrade, Serbia; (M.D.); (I.P.)
| | - Aleksandar Čvorović
- Abu Dhabi Police, Police Sports Education Center, Abu Dhabi 253, United Arab Emirates; (D.J.); (A.Č.)
| | - Milivoj Dopsaj
- Faculty of Sport and Physical Education, University of Belgrade, 11030 Belgrade, Serbia; (M.D.); (I.P.)
- Institute of Sport, Tourism and Service, South Ural State University, 454080 Chelyabinsk, Russia
| | - Iva Prćić
- Faculty of Sport and Physical Education, University of Belgrade, 11030 Belgrade, Serbia; (M.D.); (I.P.)
- Institute of Medical Research, Belgrade University, 11129 Belgrade, Serbia
| | - Filip Kukić
- Abu Dhabi Police, Police Sports Education Center, Abu Dhabi 253, United Arab Emirates; (D.J.); (A.Č.)
- Correspondence:
| |
Collapse
|
34
|
Pezzulo G, Parr T, Friston K. The evolution of brain architectures for predictive coding and active inference. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200531. [PMID: 34957844 PMCID: PMC8710884 DOI: 10.1098/rstb.2020.0531] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors-and were key to solving their fundamental problems of adaptive regulation. We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways: these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising-about predictive processing-with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via S. Martino della Battaglia, 44, 00185 Rome, Italy
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|