1
|
Corridori E, Salviati S, Begni V, Marchesin A, Gambarana C, Riva MA, Scheggi S. Restorative properties of chronic lurasidone treatment on emotional dysfunction in rats exposed to chronic unavoidable stress: A role for medial prefrontal cortex - nucleus accumbens network. Neuropharmacology 2025; 267:110302. [PMID: 39814132 DOI: 10.1016/j.neuropharm.2025.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Anhedonia, a transdiagnostic symptom prevalent in depressive and psychotic disorders, poses a significant challenge for pharmacological intervention due to its association with impaired motivation. Understanding how psychotropic drugs can modulate this pathological domain and elucidating the molecular mechanisms underlying such effects are crucial endeavors in psychiatric research. In this study, we aimed to investigate the pro-motivational properties of lurasidone in a rat (Sprague Dawley males) model of anhedonia and to unravel the interplay between lurasidone and the brain regions critical for reward processing. Exposure to unpredictable chronic stress (UCS) led to a marked reduction in motivation, a deficit that was restored by lurasidone treatment at 3 mg/kg, but not at 10 mg/kg. Interestingly, the stress-induced decrease in reactivity to negative stimuli was reversed by both doses of lurasidone. At the molecular level, stressed animals exhibited reduced expression of neuroplastic markers, that was increased following lurasidone administration. Furthermore, UCS exposure impaired the activation of the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) in response to hedonic stimuli, an effect amended by lurasidone treatment. Additionally, lurasidone restored the impaired phosphorylation of DARPP-32, a key regulator of dopamine signaling, in mPFC and NAc of UCS rats exposed to a hedonic stimulus. These findings underscore the potential of lurasidone in improving various psychopathological domains, like impaired motivation and emotional reactivity, core elements contributing to the disability associated with mental disorders. These effects highlight the therapeutic potential of lurasidone in addressing the intricate behavioral and neurochemical alterations associated with anhedonia and related mood disorders.
Collapse
Affiliation(s)
- Eleonora Corridori
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara Salviati
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
2
|
Haikonen J, Szrinivasan R, Ojanen S, Rhee JK, Ryazantseva M, Sulku J, Zumaraite G, Lauri SE. GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function. Mol Psychiatry 2024; 29:3752-3768. [PMID: 38942774 PMCID: PMC11609095 DOI: 10.1038/s41380-024-02641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Parvalbumin expressing interneurons (PV INs) are key players in the local inhibitory circuits and their developmental maturation coincides with the onset of adult-type network dynamics in the brain. Glutamatergic signaling regulates emergence of the unique PV IN phenotype, yet the receptor mechanisms involved are not fully understood. Here we show that GluK1 subunit containing kainate receptors (KARs) are necessary for development and maintenance of the neurochemical and functional properties of PV INs in the lateral and basal amygdala (BLA). Ablation of GluK1 expression specifically from PV INs resulted in low parvalbumin expression and loss of characteristic high firing rate throughout development. In addition, we observed reduced spontaneous excitatory synaptic activity at adult GluK1 lacking PV INs. Intriguingly, inactivation of GluK1 expression in adult PV INs was sufficient to abolish their high firing rate and to reduce PV expression levels, suggesting a role for GluK1 in dynamic regulation of PV IN maturation state. The PV IN dysfunction in the absence of GluK1 perturbed the balance between evoked excitatory vs. inhibitory synaptic inputs and long-term potentiation (LTP) in LA principal neurons, and resulted in aberrant development of the resting-state functional connectivity between mPFC and BLA. Behaviorally, the absence of GluK1 from PV INs associated with hyperactivity and increased fear of novelty. These results indicate a critical role for GluK1 KARs in regulation of PV IN function across development and suggest GluK1 as a potential therapeutic target for pathologies involving PV IN malfunction.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Rakenduvadhana Szrinivasan
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Jun Kyu Rhee
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Janne Sulku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gabija Zumaraite
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Santos-Silva T, Souza BK, Colodete DAE, Campos LR, Lima TSA, Guimarães FS, Gomes FV. Differential Impact of Adolescent or Adult Stress on Behavior and Cortical Parvalbumin Interneurons and Perineuronal Nets in Male and Female Mice. Int J Neuropsychopharmacol 2024; 27:pyae042. [PMID: 39276147 PMCID: PMC11639180 DOI: 10.1093/ijnp/pyae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Stress has become a common public health concern, contributing to the rising prevalence of psychiatric disorders. Understanding the impact of stress considering critical variables, such as age, sex, and individual differences, is of the utmost importance for developing effective intervention strategies. METHODS Stress effects (daily footshocks for 10 days) during adolescence (postnatal day [PND] 31-40) and adulthood (PND 65-74) were investigated on behavioral outcomes and parvalbumin (PV)-expressing GABAergic interneurons and their associated perineuronal nets (PNNs) in the prefrontal cortex of male and female mice 5 weeks post stress. RESULTS In adulthood, adolescent stress induced behavioral alterations in male mice, including anxiety-like behaviors, social deficits, cognitive impairments, and altered dopamine system responsivity. Applying integrated behavioral z-score analysis, we identified sex-specific differences in response to adolescent stress, with males displaying greater vulnerability than females. Furthermore, adolescent-stressed male mice showed decreased PV+ and PNN+ cell numbers and PV+/PNN+ colocalization, while in females, adolescent stress reduced prefrontal PV+/PNN+ colocalization in the prefrontal cortex. Further analysis identified distinct behavioral clusters, with certain females demonstrating resilience to adolescent stress-induced deficits in sociability and PV+ cell number. Adult stress in male and female mice did not cause long-lasting changes in behavior and PV+ and PNN+ cell number. CONCLUSION Our findings indicate that the timing of stress, sex, and individual variabilities seem to be determinants for the development of behavioral changes associated with psychiatric disorders, particularly in male mice during adolescence.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Kinchin Souza
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora Akemi Endo Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lara Ramos Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaís Santos Almeida Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
King C, Maze T, Plakke B. Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats. Exp Brain Res 2024; 242:2295-2308. [PMID: 39085433 DOI: 10.1007/s00221-024-06902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Tessa Maze
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA.
| |
Collapse
|
5
|
Smith HC, Yu Z, Iyer L, Marvar PJ. Sex-Dependent Effects of Angiotensin Type 2 Receptor-Expressing Medial Prefrontal Cortex Interneurons in Fear Extinction Learning. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100340. [PMID: 39140003 PMCID: PMC11321323 DOI: 10.1016/j.bpsgos.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 08/15/2024] Open
Abstract
Background The renin-angiotensin system has been identified as a potential therapeutic target for posttraumatic stress disorder, although its mechanisms are not well understood. Brain angiotensin type 2 receptors (AT2Rs) are a subtype of angiotensin II receptors located in stress and anxiety-related regions, including the medial prefrontal cortex (mPFC), but their function and mechanism in the mPFC remain unexplored. Therefore, we used a combination of imaging, cre/lox, and behavioral methods to investigate mPFC-AT2R-expressing neurons in fear and stess related behavior. Methods To characterize mPFC-AT2R-expressing neurons in the mPFC, AT2R-Cre/tdTomato male and female mice were used for immunohistochemistry. mPFC brain sections were stained with glutamatergic or interneuron markers, and density of AT2R+ cells and colocalization with each marker were quantified. To assess fear-related behaviors in AT2R-flox mice, we selectively deleted AT2R from mPFC neurons using a Cre-expressing adeno-associated virus. Mice then underwent Pavlovian auditory fear conditioning, elevated plus maze, and open field testing. Results Immunohistochemistry results revealed that AT2R was densely expressed throughout the mPFC and primarily expressed in somatostatin interneurons in a sex-dependent manner. Following fear conditioning, mPFC-AT2R Cre-lox deletion impaired extinction and increased exploratory behavior in female but not male mice, while locomotion was unaltered by mPFC-AT2R deletion in both sexes. Conclusions These results identify mPFC-AT2R+ neurons as a novel subgroup of somatostatin interneurons and reveal their role in regulating fear learning in a sex-dependent manner, potentially offering insights into novel therapeutic targets for posttraumatic stress disorder.
Collapse
Affiliation(s)
- Hannah C. Smith
- Department of Neuroscience, George Washington University, Washington, DC
| | - Zhe Yu
- Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| | - Laxmi Iyer
- Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
| | - Paul J. Marvar
- Department of Neuroscience, George Washington University, Washington, DC
- Department of Pharmacology & Physiology, George Washington University, Washington, District of Columbia
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC
| |
Collapse
|
6
|
Campbell BFN, Cruz-Ochoa N, Otomo K, Lukacsovich D, Espinosa P, Abegg A, Luo W, Bellone C, Földy C, Tyagarajan SK. Gephyrin phosphorylation facilitates sexually dimorphic development and function of parvalbumin interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2510-2526. [PMID: 38503929 PMCID: PMC11412903 DOI: 10.1038/s41380-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The precise function of specialized GABAergic interneuron subtypes is required to provide appropriate synaptic inhibition for regulating principal neuron excitability and synchronization within brain circuits. Of these, parvalbumin-type (PV neuron) dysfunction is a feature of several sex-biased psychiatric and brain disorders, although, the underlying developmental mechanisms are unclear. While the transcriptional action of sex hormones generates sexual dimorphism during brain development, whether kinase signaling contributes to sex differences in PV neuron function remains unexplored. In the hippocampus, we report that gephyrin, the main inhibitory post-synaptic scaffolding protein, is phosphorylated at serine S268 and S270 in a developmentally-dependent manner in both males and females. When examining GphnS268A/S270A mice in which site-specific phosphorylation is constitutively blocked, we found that sex differences in PV neuron density in the hippocampal CA1 present in WT mice were abolished, coincident with a female-specific increase in PV neuron-derived terminals and increased inhibitory input onto principal cells. Electrophysiological analysis of CA1 PV neurons indicated that gephyrin phosphorylation is required for sexually dimorphic function. Moreover, while male and female WT mice showed no difference in hippocampus-dependent memory tasks, GphnS268A/S270A mice exhibited sex- and task-specific deficits, indicating that gephyrin phosphorylation is differentially required by males and females for convergent cognitive function. In fate mapping experiments, we uncovered that gephyrin phosphorylation at S268 and S270 establishes sex differences in putative PV neuron density during early postnatal development. Furthermore, patch-sequencing of putative PV neurons at postnatal day 4 revealed that gephyrin phosphorylation contributes to sex differences in the transcriptomic profile of developing interneurons. Therefore, these early shifts in male-female interneuron development may drive adult sex differences in PV neuron function and connectivity. Our results identify gephyrin phosphorylation as a new substrate organizing PV neuron development at the anatomical, functional, and transcriptional levels in a sex-dependent manner, thus implicating kinase signaling disruption as a new mechanism contributing to the sex-dependent etiology of brain disorders.
Collapse
Affiliation(s)
- Benjamin F N Campbell
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Kanako Otomo
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Pedro Espinosa
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Andrin Abegg
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
7
|
Miller B, Crider A, Aravamuthan B, Galindo R. Human chorionic gonadotropin decreases cerebral cystic encephalomalacia and parvalbumin interneuron degeneration in a pro-inflammatory model of mouse neonatal hypoxia-ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587006. [PMID: 38585735 PMCID: PMC10996598 DOI: 10.1101/2024.03.27.587006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The pregnancy hormone, human chorionic gonadotropin (hCG) is an immunoregulatory and neurotrophic glycoprotein of potential clinical utility in the neonate at risk for cerebral injury. Despite its well-known role in its ability to modulate the innate immune response during pregnancy, hCG has not been demonstrated to affect the pro-degenerative actions of inflammation in neonatal hypoxia-ischemia (HI). Here we utilize a neonatal mouse model of mild HI combined with intraperitoneal administration of lipopolysaccharide (LPS) to evaluate the neuroprotective actions of hCG in the setting of endotoxin-mediated systemic inflammation. Intraperitoneal treatment of hCG shortly prior to LPS injection significantly decreased tissue loss and cystic degeneration in the hippocampal and cerebral cortex in the term-equivalent neonatal mouse exposed to mild HI. Noting that parvalbumin immunoreactive interneurons have been broadly implicated in neurodevelopmental disorders, it is notable that hCG significantly improved the injury-mediated reduction of these neurons in the cerebral cortex, striatum and hippocampus. The above findings were associated with a decrease in the amount of Iba1 immunoreactive microglia in most of these brain regions. These observations implicate hCG as an agent capable of improving the neurological morbidity associated with peripheral inflammation in the neonate affected by HI. Future preclinical studies should aim at demonstrating added neuroprotective benefit by hCG in the context of therapeutic hypothermia and further exploring the mechanisms responsible for this effect. This research is likely to advance the therapeutic role of gonadotropins as a treatment for neonates with neonatal brain injury.
Collapse
Affiliation(s)
- Ben Miller
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Alexander Crider
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Bhooma Aravamuthan
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Rafael Galindo
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, MO, USA 63110
| |
Collapse
|
8
|
Smith HC, Yu Z, Iyer L, Marvar PJ. Sex-dependent effects of angiotensin type 2 receptor expressing medial prefrontal cortex (mPFC) interneurons in fear extinction learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568156. [PMID: 38045293 PMCID: PMC10690250 DOI: 10.1101/2023.11.21.568156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background The renin-angiotensin system (RAS) has been identified as a potential therapeutic target for PTSD, though its mechanisms are not well understood. Brain angiotensin type 2 receptors (AT2Rs) are a subtype of angiotensin II receptors located in stress and anxiety-related regions, including the medial prefrontal cortex (mPFC), but their function and mechanism in the mPFC remain unexplored. We therefore used a combination of imaging, cre/lox, and behavioral methods to investigate mPFC-AT2R-expressing neuron involvement in fear learning. Methods To characterize mPFC-AT2R-expressing neurons in the mPFC, AT2R-Cre/td-Tomato male and female mice were used for immunohistochemistry (IHC). mPFC brain sections were stained with glutamatergic or interneuron markers, and density of AT2R+ cells and colocalization with each marker was quantified. To assess fear-related behaviors in AT2R-flox mice, we selectively deleted AT2R from mPFC neurons using an AAV-Cre virus. Mice then underwent Pavlovian auditory fear conditioning, approach/avoidance, and locomotion testing. Results IHC results revealed that AT2R is densely expressed in the mPFC. Furthermore, AT2R is primarily expressed in somatostatin interneurons in females but not males. Following fear conditioning, mPFC-AT2R deletion impaired extinction in female but not male mice. Locomotion was unaltered by mPFC-AT2R deletion in males or females, while AT2R-deleted females had increased exploratory behavior. Conclusion These results lend support for mPFC-AT2R+ neurons as a novel subgroup of somatostatin interneurons that influence fear extinction in a sex-dependent manner. This furthers underscores the role of mPFC in top-down regulation and a unique role for peptidergic (ie., angiotensin) mPFC regulation of fear and sex differences.
Collapse
Affiliation(s)
- Hannah C. Smith
- Department of Neuroscience, George Washington University, Washington, DC
| | - Zhe Yu
- Department of Pharmacology & Physiology, George Washington University, Washington, DC
| | - Laxmi Iyer
- Department of Pharmacology & Physiology, George Washington University, Washington, DC
| | - Paul J. Marvar
- Department of Neuroscience, George Washington University, Washington, DC
- Department of Pharmacology & Physiology, George Washington University, Washington, DC
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington DC
| |
Collapse
|
9
|
Kohler CG, Wolf DH, Abi-Dargham A, Anticevic A, Cho YT, Fonteneau C, Gil R, Girgis RR, Gray DL, Grinband J, Javitch JA, Kantrowitz JT, Krystal JH, Lieberman JA, Murray JD, Ranganathan M, Santamauro N, Van Snellenberg JX, Tamayo Z, Gur RC, Gur RE, Calkins ME. Illness Phase as a Key Assessment and Intervention Window for Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:340-350. [PMID: 37519466 PMCID: PMC10382701 DOI: 10.1016/j.bpsgos.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
The phenotype of schizophrenia, regardless of etiology, represents the most studied psychotic disorder with respect to neurobiology and distinct phases of illness. The early phase of illness represents a unique opportunity to provide effective and individualized interventions that can alter illness trajectories. Developmental age and illness stage, including temporal variation in neurobiology, can be targeted to develop phase-specific clinical assessment, biomarkers, and interventions. We review an earlier model whereby an initial glutamate signaling deficit progresses through different phases of allostatic adaptation, moving from potentially reversible functional abnormalities associated with early psychosis and working memory dysfunction, and ending with difficult-to-reverse structural changes after chronic illness. We integrate this model with evidence of dopaminergic abnormalities, including cortical D1 dysfunction, which develop during adolescence. We discuss how this model and a focus on a potential critical window of intervention in the early stages of schizophrenia impact the approach to research design and clinical care. This impact includes stage-specific considerations for symptom assessment as well as genetic, cognitive, and neurophysiological biomarkers. We examine how phase-specific biomarkers of illness phase and brain development can be incorporated into current strategies for large-scale research and clinical programs implementing coordinated specialty care. We highlight working memory and D1 dysfunction as early treatment targets that can substantially affect functional outcome.
Collapse
Affiliation(s)
- Christian G. Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H. Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Alan Anticevic
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Youngsun T. Cho
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Clara Fonteneau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Ragy R. Girgis
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - David L. Gray
- Cerevel Therapeutics Research and Development, East Cambridge, Massachusetts
| | - Jack Grinband
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Jonathan A. Javitch
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York
| | - Joshua T. Kantrowitz
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- New York State Psychiatric Institute, New York
- Nathan Kline Institute, Orangeburg, New York
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jeffrey A. Lieberman
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - John D. Murray
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Nicole Santamauro
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Zailyn Tamayo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica E. Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Binette AN, Liu J, Bayer H, Crayton KL, Melissari L, Sweck SO, Maren S. Parvalbumin-Positive Interneurons in the Medial Prefrontal Cortex Regulate Stress-Induced Fear Extinction Impairments in Male and Female Rats. J Neurosci 2023; 43:4162-4173. [PMID: 37127359 PMCID: PMC10255009 DOI: 10.1523/jneurosci.1442-22.2023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023] Open
Abstract
Stress has profound effects on fear extinction, a form of learning that is essential to behavioral therapies for trauma-related and stressor-related disorders. Recent work reveals that acute footshock stress reduces medial prefrontal cortex (mPFC) activity that is critical for extinction learning. Reductions in mPFC activity may be mediated by parvalbumin (PV)-containing interneurons via feedforward inhibition imposed by amygdala afferents. To test this hypothesis, footshock stress-induced Fos expression was characterized in PV+ and PV- neurons in the prelimbic (PL) and infralimbic (IL) cortices. Footshock stress increased the proportion of PV+ cells expressing Fos in both male and female rats; this effect was more pronounced in IL compared with PL. To determine whether PV+ interneurons in the mPFC mediate stress-induced extinction impairments, we chemogenetically silenced these neurons before an immediate extinction procedure in PV-Cre rats. Clozapine-N-oxide (CNO) did not affect conditioned freezing during the extinction procedure. However, CNO exacerbated extinction retrieval in both male and female rats with relatively high PL expression of designer receptors exclusively activated by designer drugs (DREADD). In contrast, in rats with relatively high IL DREADD expression, CNO produced a modest facilitation of extinction in the earliest retrieval trials, but in male rats only. Conversely, excitation of IL PV interneurons was sufficient to impair delayed extinction in both male and female rats. Finally, chemogenetic inhibition of IL-projecting amygdala neurons reduced the immediate extinction deficit in male, but not female rats. These results reveal that PV interneurons regulate extinction learning under stress in a sex-dependent manner, and this effect is mediated by amygdaloprefrontal projections.SIGNIFICANCE STATEMENT Stress significantly impairs the memory of fear extinction, a type of learning that is central to behavioral therapies for trauma-based and anxiety-based disorders (e.g., post-traumatic stress disorder). Here we show that acute footshock stress recruits parvalbumin (PV) interneurons in the medial prefrontal cortex (mPFC) of male and female rats. Silencing mPFC PV interneurons or mPFC-projecting amygdala neurons during immediate extinction influenced extinction retrieval in a sex-dependent manner. This work highlights the role for PV-containing mPFC interneurons in stress-induced impairments in extinction learning.
Collapse
Affiliation(s)
- Annalise N Binette
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Jianfeng Liu
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Hugo Bayer
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Kennedi L Crayton
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Laila Melissari
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Samantha O Sweck
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| | - Stephen Maren
- Department of Psychological & Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3474
| |
Collapse
|
11
|
Muscat SM, Butler MJ, Mackey-Alfonso SE, Barrientos RM. Young adult and aged female rats are vulnerable to amygdala-dependent, but not hippocampus-dependent, memory impairment following short-term high-fat diet. Brain Res Bull 2023; 195:145-156. [PMID: 36870621 PMCID: PMC10257807 DOI: 10.1016/j.brainresbull.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Global populations are increasingly consuming diets high in saturated fats and refined carbohydrates, and such diets have been well-associated with heightened inflammation and neurological dysfunction. Notably, older individuals are particularly vulnerable to the impact of unhealthy diet on cognition, even after a single meal, and pre-clinical rodent studies have demonstrated that short-term consumption of high-fat diet (HFD) induces marked increases in neuroinflammation and cognitive impairment. Unfortunately though, to date, most studies on the topic of nutrition and cognition, especially in aging, have been performed only in male rodents. This is especially concerning given that older females are more vulnerable to develop certain memory deficits and/or severe memory-related pathologies than males. Thus, the aim of the present study was to determine the extent to which short-term HFD consumption impacts memory function and neuroinflammation in female rats. Young adult (3 months) and aged (20-22 months) female rats were fed HFD for 3 days. Using contextual fear conditioning, we found that HFD had no effect on long-term contextual memory (hippocampus-dependent) at either age, but impaired long-term auditory-cued memory (amygdala-dependent) regardless of age. Gene expression of Il-1β was markedly dysregulated in the amygdala, but not hippocampus, of both young and aged rats after 3 days of HFD. Interestingly, modulation of IL-1 signaling via central administration of the IL-1 receptor antagonist (which we have previously demonstrated to be protective in males) had no impact on memory function following the HFD in females. Investigation of the memory-associated gene Pacap and its receptor Pac1r revealed differential effects of HFD on their expression in the hippocampus and amygdala. Specifically, HFD induced increased expression of Pacap and Pac1r in the hippocampus, whereas decreased Pacap was observed in the amygdala. Collectively, these data suggest that both young adult and aged female rats are vulnerable to amygdala-dependent (but not hippocampus-dependent) memory impairments following short-term HFD consumption, and identify potential mechanisms related to IL-1β and PACAP signaling in these differential effects. Notably, these findings are strikingly different than those previously reported in male rats using the same diet regimen and behavioral paradigms, and highlight the importance of examining potential sex differences in the context of neuroimmune-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sabrina E Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Woodward EM, Ringland A, Ackerman J, Coutellier L. Prepubertal ovariectomy confers resilience to stress-induced anxiety in adult female mice. Psychoneuroendocrinology 2023; 148:105997. [PMID: 36470154 PMCID: PMC9898172 DOI: 10.1016/j.psyneuen.2022.105997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The increased vulnerability to stress-induced neuropsychiatric disorders in women, including anxiety disorders, does not emerge until pubertal onset, suggesting a role for ovarian hormones in organizing sex-specific vulnerability to anxiety. Parvalbumin (PV) interneurons in the prefrontal cortex are a potential target for these ovarian hormones. PV+ interneurons undergo maturation during the adolescent period and have been shown to be sensitive to stress and to mediate stress-induced anxiety in female mice. To test the idea that ovarian hormones at puberty are necessary for the acquisition of sensitivity to stress, hypothetically driving the response of PV+ interneurons to stress, we performed ovariectomy or sham surgery before pubertal onset in female mice. These mice then were exposed to four weeks of unpredictable chronic mild stress in adulthood. We then assessed anxiety-like behavior and PV/FosB colocalization in the medial PFC. Additionally, we assessed stress-induced anxiety-like behavior in female mice following ovariectomy in adulthood to determine if puberty is a sensitive period for ovarian hormones in mediating vulnerability to stress. We found that prepubertal ovariectomy protects against the development of anxiety-like behavior in adulthood, an effect not found following ovariectomy in adulthood. This effect may be independent of ovarian hormones on prefrontal PV+ interneurons response to stress.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Amanda Ringland
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| | - Jennifer Ackerman
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
14
|
Banerjee T, Pati S, Tiwari P, Vaidya VA. Chronic hM3Dq-DREADD-mediated chemogenetic activation of parvalbumin-positive inhibitory interneurons in postnatal life alters anxiety and despair-like behavior in adulthood in a task- and sex-dependent manner. J Biosci 2022. [DOI: 10.1007/s12038-022-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Liu T, Qi C, Bai W, Tian X, Zheng X. Behavioral state-dependent oscillatory activity in prefrontal cortex induced by chronic social defeat stress. Front Neurosci 2022; 16:885432. [PMID: 36033616 PMCID: PMC9403768 DOI: 10.3389/fnins.2022.885432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic stress contributes to the onset and exacerbation of major depressive disorder (MDD) through the oscillatory activity in the prefrontal cortex (PFC). However, the oscillations on which chronic social stress converges to yield the behavioral state of social avoidance are largely unknown. Here, we use a chronic social defeat stress model and in vivo electrophysiological recordings to uncover a novel neurophysiological measure that predicts the social behavioral state in stressed animals. First, in this study, we find that chronic social defeat stress model induces depression-like behaviors (anhedonia and social avoidance). Second, we find statistically significant differences in PFC oscillatory activity across different frequency ranges in social behavioral state, and the oscillatory activity correlates with stress-induced behavioral state. Finally, we show that the social behavioral states are accurately decoded from the oscillatory activity based on machine learning. Together, these results demonstrate that naturally occurring differences in PFC oscillation underlie the social behavioral state that accompanies the emergence of stress-induced behavioral dysfunction.
Collapse
|
16
|
Altered Development of Prefrontal GABAergic Functions and Anxiety-like Behavior in Adolescent Offspring Induced by Prenatal Stress. Brain Sci 2022; 12:brainsci12081015. [PMID: 36009078 PMCID: PMC9406165 DOI: 10.3390/brainsci12081015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Maternal stress can afflict fetal brain development, putting the offspring at risk of cognitive deficits, including anxiety. The prefrontal cortex (PFC), a protracted maturing region, is notably affected by prenatal stress (PS). However, it remains unclear how PS interferes with the maturation of the GABAergic system, considering its functional adjustment in the PFC during adolescence. The present study thus investigated the long-lasting consequences of PS on the prefrontal GABAergic functions of adolescent offspring. Pregnant Sprague–Dawley rats were divided into controls and the PS group, which underwent restraint stress during the last week of gestation. Male pups from postnatal days (PND) 40–42 were submitted to the elevated plus maze (EPM) test. Proteins essentially involved in GABAergic signaling were then examined in PFC tissues, including the K+-Cl− cotransporter (KCC2), Na+-K+-Cl− cotransporter (NKCC1), α1 and α5 subunits of GABA type A receptors (GABAA receptors), and parvalbumin (PV), along with cAMP response element-binding protein phosphorylation (pCREB), which reacts in the plasticity regulation of PV-positive interneurons. The results revealed that the higher anxiety-like behavior of PS adolescent rats concurred with the significant decreases of the KCC2 and α1 subunits, with PV- and pCREB-lowered levels. The findings suggested that PS disrupts the continuance of PFC maturity by reducing the essential elements of GABAergic functions. These changes likely underlie the anxiety emerging in adolescence, possibly progressing to mental disorders.
Collapse
|
17
|
Sicher AR, Duerr A, Starnes WD, Crowley NA. Adolescent Alcohol and Stress Exposure Rewires Key Cortical Neurocircuitry. Front Neurosci 2022; 16:896880. [PMID: 35655755 PMCID: PMC9152326 DOI: 10.3389/fnins.2022.896880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Human adolescence is a period of development characterized by wide ranging emotions and behavioral risk taking, including binge drinking (Konrad et al., 2013). These behavioral manifestations of adolescence are complemented by growth in the neuroarchitecture of the brain, including synaptic pruning (Spear, 2013) and increases in overall white matter volume (Perrin et al., 2008). During this period of profound physiological maturation, the adolescent brain has a unique vulnerability to negative perturbations. Alcohol consumption and stress exposure, both of which are heightened during adolescence, can individually and synergistically alter these neurodevelopmental trajectories in positive and negative ways (conferring both resiliency and susceptibility) and influence already changing neurotransmitter systems and circuits. Importantly, the literature is rapidly changing and evolving in our understanding of basal sex differences in the brain, as well as the interaction between biological sex and life experiences. The animal literature provides the distinctive opportunity to explore sex-specific stress- and alcohol- induced changes in neurocircuits on a relatively rapid time scale. In addition, animal models allow for the investigation of individual neurons and signaling molecules otherwise inaccessible in the human brain. Here, we review the human and rodent literature with a focus on cortical development, neurotransmitters, peptides, and steroids, to characterize the field's current understanding of the interaction between adolescence, biological sex, and exposure to stress and alcohol.
Collapse
Affiliation(s)
- Avery R. Sicher
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Arielle Duerr
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - William D. Starnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Nicole A. Crowley
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|