1
|
Kitai K, Nishigaya K, Mizomoto Y, Ito H, Yamauchi R, Katayama O, Morita K, Murata S, Kodama T. Enhancing Hand Sensorimotor Function in Individuals with Cervical Spinal Cord Injury: A Novel Tactile Discrimination Feedback Approach Using a Multiple-Baseline Design. Brain Sci 2025; 15:352. [PMID: 40309804 PMCID: PMC12026407 DOI: 10.3390/brainsci15040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: This study evaluated the effects of a tactile-discrimination compensatory real-time feedback device on hand sensorimotor function in cervical spinal cord injury patients. The study assessed changes in hand numbness, dexterity, and electroencephalogram (EEG) activity, particularly γ-wave power in the sensorimotor area during skilled finger movements. Methods: Three patients with cervical spinal cord injury who presented with hand sensorimotor dysfunction underwent treatment with this device. All cases underwent the intervention using an AB design; A is the exercise task without the system device, and B is the exercise task under the system device. To confirm the reproducibility and minimize the influence of confounding factors, a multiple-baseline design, in which the intervention period was staggered for each subject, was applied. To determine efficacy, the hand numbness numerical rating scale, peg test, and EEG were measured daily, and Tau-U calculations were performed. Results: In two of three cases, moderate or very large changes were observed in numbness in B. In all cases, there was a large or very large change in the peg test results in the B. Regarding EEG activity, the non-skilled participants showed amplification of γ-wave power in the sensorimotor area during the B. Conversely, in the skilled participants, the γ-wave power of the sensorimotor area was attenuated during skillful movements. Conclusions: These findings indicate that the ability of the brain to compare and align predictive control with sensory feedback might be compromised in patients with damage to the afferent pathways of the central nervous system. Moreover, the use of this device appears to have played a role in supporting functional recovery.
Collapse
Affiliation(s)
- Ken Kitai
- Rehabilitation Department, Maizuru Red Cross Hospital, Maizuru City 624-0906, Kyoto, Japan
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Kaichi Nishigaya
- Rehabilitation Department, Zenjokai Rehabilitation Hospital, Nagoya City 457-0046, Aichi, Japan;
| | - Yasuhisa Mizomoto
- Rehabilitation Department, Watanabe Hospital, Chita 470-3235, Aichi, Japan;
| | - Hiroki Ito
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Ryosuke Yamauchi
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Osamu Katayama
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu City 474-8511, Aichi, Japan;
| | - Kiichiro Morita
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Kurume 830-0011, Fukuoka, Japan;
| | - Shin Murata
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| | - Takayuki Kodama
- Graduate School of Health Sciences, Kyoto Tachibana University, Kyoto City 607-8175, Kyoto, Japan; (H.I.); (R.Y.); (S.M.); (T.K.)
| |
Collapse
|
2
|
Carius D, Kaminski E, Clauß M, Ragert P. Dynamic alterations in cortical activation during motor adaptation in table tennis using whole‑brain fNIRS. Sci Rep 2025; 15:10399. [PMID: 40140446 PMCID: PMC11947452 DOI: 10.1038/s41598-025-94699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Human movements must constantly be adapted due to changing internal and external conditions in our environment. The underlying neuronal mechanisms that are responsible for motor adaptations have so far mainly been investigated in highly controlled laboratory scenarios using simple motor tasks. However, because motor adaptations in daily life and sports entail more complex processes involving several cognitive components and strategic adjustments, results from such highly controlled settings only allow restricted conclusions and do not capture neuronal processing in everyday life scenarios. Hence, we studied 56 participants using a table tennis paradigm to unravel cortical activation during motor adaptation in a sport-specific setting using functional NIRS. Furthermore, we wanted to investigate whether cortical activation during motor adaptation is influenced by the temporal order of perturbations (serial vs. randomized practice). Our findings revealed brain areas such as the dorsolateral prefrontal cortex and primary sensory cortex, left supplementary motor cortex and left primary motor cortex, as well as right superior parietal cortex and right inferior parietal cortex, exhibited dynamic alterations in their activation as motor adaptation progressed. Specifically, hemodynamic response alterations generally increased during early adaptation and decreased as motor adaptation progressed. On the other hand, no differential changes in cortical brain processing were observed with serial and randomized practice. Based on our findings, we can confirm and extent theoretical models and laboratory evidence of motor adaptation using a sport-specific motor task.
Collapse
Affiliation(s)
- Daniel Carius
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany.
| | - Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Martina Clauß
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Hughes LE, Adams NE, Rouse MA, Naessens M, Shaw A, Murley AG, Cope TE, Holland N, Nesbitt D, Street D, Whiteside DJ, Rowe JB. GABAergic modulation of beta power enhances motor adaptation in frontotemporal lobar degeneration. Alzheimers Dement 2025:e14531. [PMID: 39968697 PMCID: PMC7617437 DOI: 10.1002/alz.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/20/2025]
Abstract
INTRODUCTION We examined how abnormal prefrontal neurophysiology and changes in gamma-aminobutyric acid-ergic (GABAergic) neurotransmission contribute to behavioral impairments in disorders associated with frontotemporal lobar degeneration (FTLD). METHODS We recorded magnetoencephalography during an adaptive visuomotor task from 11 people with behavioral-variant frontotemporal dementia, 11 with progressive supranuclear palsy, and 20 age-matched controls. We used tiagabine, a gamma-aminobutyric acid (GABA) re-uptake inhibitor, as a pharmacological probe to assess the role of GABA during motor-related beta power changes. RESULTS Task impairments were associated with diminished movement-related beta power. Tiagabine facilitated partial recovery of behavioral impairments and neurophysiology, moderated by executive function, such that the greatest improvements were seen in those with higher cognitive scores. The right prefrontal cortex was revealed as a key site of drug interaction. DISCUSSION Behavioral and neurophysiological deficits can be mitigated by enhancement of GABAergic neurotransmission. Clinical trials are warranted to test for enduring clinical benefits from this restorative-psychopharmacology strategy. HIGHLIGHTS Event-related beta power changes during movement can be altered by the GABA reuptake inhibitor, tiagabine. In people with behavioral-variant frontotemporal dementia and progressive supranuclear palsy, tiagabine enhanced beta modulation and concurrently improved task performance, dependent on baseline cognition, and diagnosis. The effects of the drug suggest a GABA-dependent beta-related mechanism that underlies adaptive motor control. Restoring selective deficits in neurotransmission is a potential means to improve behavioral symptoms in patients with dementia.
Collapse
Affiliation(s)
- Laura E Hughes
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Natalie E Adams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Matthew A Rouse
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Michelle Naessens
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | | | - Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - David Nesbitt
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - Duncan Street
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - David J Whiteside
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
4
|
Faßbender L, Falck J, López FM, Shing YL, Triesch J, Schwarzer G. A comparison of force adaptation in toddlers and adults during a drawer opening task. Sci Rep 2025; 15:3699. [PMID: 39880910 PMCID: PMC11779916 DOI: 10.1038/s41598-025-87441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models. However, how internal models are adapted in early childhood remains largely unexplored. This study investigated a naturalistic force adaptation task in 1.5-, 3-year-olds, and young adults. Participants opened a drawer with temporarily increased resistance, creating sensory prediction errors between predicted and actual drawer dynamics. After perturbation, all age groups showed lower peak speed, longer movement time, and more movement units with trial-wise changes analyzed as adaptation process. Results revealed no age differences in adapting peak speed and movement units, but 1.5- and 3-year-olds exhibited higher trial-to-trial variability and were slower in adapting their movement time, although they also adapted their movement time more strongly. Upon removal of perturbation, we found significant aftereffects across all age groups, indicating effective internal model adaptation. These results suggest that even 1.5-year-olds form internal models of force parameters and adapt them to reduce sensory prediction errors, possibly through more exploration and with more variable movement dynamics compared to adults.
Collapse
Affiliation(s)
- Laura Faßbender
- Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.
| | - Johannes Falck
- Department of Psychology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Francisco M López
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Department of Physics, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Gießen, Darmstadt, Germany
| | - Gudrun Schwarzer
- Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Gießen, Darmstadt, Germany
| |
Collapse
|
5
|
Mahmoudi A, Khosrotabar M, Gramann K, Rinderknecht S, Sharbafi MA. Using passive BCI for personalization of assistive wearable devices: a proof-of-concept study. IEEE Trans Neural Syst Rehabil Eng 2025; PP:476-487. [PMID: 40030934 DOI: 10.1109/tnsre.2025.3530154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Assistive wearable devices can significantly enhance the quality of life for individuals with movement impairments, aid the rehabilitation process, and augment movement abilities of healthy users. However, personalizing the assistance to individual preferences and needs remains a challenge. Brain-Computer Interface (BCI) offers a promising solution for this personalization problem. The overarching goal of this study is to investigate the feasibility of utilizing passive BCI technology to personalize the assistance provided by a knee exoskeleton. Participants performed seated knee flexion-extension tasks while wearing a one-degree-of-freedom knee exoskeleton with varying levels of applied force. Their brain activities were recorded throughout the movements using electroencephalography (EEG). EEG spectral bands from several brain regions were compared between the conditions with the lowest and highest exoskeleton forces to identify statistically significant changes. A Naive Bayes classifier was trained on these spectral features to distinguish between the two conditions. Statistical analysis revealed significant increases in δ and θ activity and decreases in α and β activity in the frontal, motor, and occipital cortices. These changes suggest heightened attention, concentration, and motor engagement when the task became more difficult. The trained Naive Bayes classifier achieved an average accuracy of approximately 72% in distinguishing between the two conditions. The outcomes of our study demonstrate the potential of passive BCI in personalizing assistance provided by wearable devices. Future research should further explore integrating passive BCI into assistive wearable devices to enhance user experience.
Collapse
|
6
|
Korka B, Stenner MP. The P3 event-related potential increases when humans learn a strategy for motor adaptation. Eur J Neurosci 2024; 60:5362-5380. [PMID: 39180166 DOI: 10.1111/ejn.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024]
Abstract
Human motor learning involves cognitive strategies in addition to implicit adaptation. Differences in systems-level neurophysiology between strategy-based and implicit learning remain poorly understood. We asked how the P3 event-related potential, an electroencephalography signal known to increase during early motor learning, relates to strategy-based learning and implicit adaptation. We re-analysed data from two experiments, in which participants (n = 64) reached towards a visual target, with online visual feedback replacing vision of their moving hand. We induced learning by rotating the visual feedback. In the first experiment, feedback rotations were turned on during pairs of two consecutive trials, interspersed between non-rotated trials. In one condition, feedback was rotated relative to the actual movement, allowing participants to develop a re-aiming strategy on the second trial of each pair, while it was rotated relative to the target in the other condition, rendering re-aiming futile. P3 amplitude increased in the first rotated trial in both conditions, but this increase was more pronounced in the re-aiming condition. In the second experiment, a constant visuomotor rotation was turned on for many consecutive trials. We instructed one group beforehand how to re-aim successfully, while the other group had to develop a strategy by themselves. P3 amplitude increased during early adaptation only in the latter group. These findings collectively suggest that in the context of motor learning, the P3 ERP is associated with a need to develop, or adjust, a cognitive strategy.
Collapse
Affiliation(s)
- Betina Korka
- Zander Labs, Munich, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Max-Philipp Stenner
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, Jena-Magdeburg-Halle, Germany
| |
Collapse
|
7
|
Song S, Haynes CA, Bradford JC. Novice Users' Brain Activity and Biomechanics Change After Practicing Walking With an Ankle Exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2522-2532. [PMID: 38963738 DOI: 10.1109/tnsre.2024.3423696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Walking with an exoskeleton represents a sophisticated interplay between human physiology and mechanical augmentation, yet understanding of cortical responses in this context remains limited. To address this gap, this study aimed to explore cortical responses during walking with an ankle exoskeleton, examining how these responses evolve with familiarity to the augmentation. Healthy participants without prior exoskeleton experience underwent EEG, EMG, and motion capture analysis while walking with exoskeleton assistance at 1.2m/s. Initially, exoskeleton-assisted walking induced significant biomechanical changes accompanied by corresponding cortical alterations, leading to increased cortical involvement. In addition, after a brief familiarization period, significant increases in alpha band cortical power were observed, indicating decreased cortical engagement. These findings hold significance for elucidating the cortical mechanisms involved in exoskeleton-assisted walking and may contribute to the development of more seamlessly integrated augmentation devices.
Collapse
|
8
|
Le Cong D, Sato D, Ikarashi K, Ochi G, Fujimoto T, Yamashiro K. No effect of whole-hand water flow stimulation on skill acquisition and retention during sensorimotor adaptation. Front Hum Neurosci 2024; 18:1398164. [PMID: 38911224 PMCID: PMC11190340 DOI: 10.3389/fnhum.2024.1398164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Repetitive somatosensory stimulation (RSS) is a conventional approach to modulate the neural states of both the primary somatosensory cortex (S1) and the primary motor cortex (M1). However, the impact of RSS on skill acquisition and retention in sensorimotor adaptation remains debated. This study aimed to investigate whether whole-hand water flow (WF), a unique RSS-induced M1 disinhibition, influences sensorimotor adaptation by examining the hypothesis that whole-hand WF leads to M1 disinhibition; thereby, enhancing motor memory retention. Methods Sixty-eight young healthy participants were randomly allocated to three groups based on the preconditioning received before motor learning: control, whole-hand water immersion (WI), and whole-hand WF. The experimental protocol for all the participants spanned two consecutive days. On the initial day (day 1), baseline transcranial magnetic stimulation (TMS) assessments (T0) were executed before any preconditioning. Subsequently, each group underwent their respective 30 min preconditioning protocol. To ascertain the influence of each preconditioning on the excitability of the M1, subsequent TMS assessments were conducted (T1). Following this, all participants engaged in the motor learning (ML) of a visuomotor tracking task, wherein they were instructed to align a cursor with a target trajectory by modulating the pinch force. Upon completion of the ML session, final TMS assessments (T2) were conducted. All participants were required to perform the same motor learning 24 h later on day 2. Results The results revealed that whole-hand WF did not significantly influence skill acquisition during sensorimotor adaptation, although it did reduce intracortical inhibition. This phenomenon is consistent with the idea that S1, rather than M1, is involved in skill acquisition during the early stages of sensorimotor adaptation. Moreover, memory retention 24 h after skill acquisition did not differ significantly across the three groups, challenging our initial hypothesis that whole-hand WF enhances memory retention throughout sensorimotor adaptation. This could be due to the inability of whole-hand WF to alter sensorimotor connectivity and integration, as well as the nature of the plastic response elicited by the preconditioning. Discussion In conclusion, these findings suggest that although whole-hand WF attenuates intracortical inhibition, it does not modulate skill acquisition or motor memory retention during sensorimotor adaptation.
Collapse
Affiliation(s)
- Dat Le Cong
- Major in Health and Welfare, Graduate School of Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Genta Ochi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Tomomi Fujimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
9
|
Numasawa K, Miyamoto T, Kizuka T, Ono S. Prediction error in implicit adaptation during visually- and memory-guided reaching tasks. Sci Rep 2024; 14:8582. [PMID: 38615053 PMCID: PMC11016115 DOI: 10.1038/s41598-024-59169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Human movements are adjusted by motor adaptation in order to maintain their accuracy. There are two systems in motor adaptation, referred to as explicit or implicit adaptation. It has been suggested that the implicit adaptation is based on the prediction error and has been used in a number of motor adaptation studies. This study aimed to examine the effect of visual memory on prediction error in implicit visuomotor adaptation by comparing visually- and memory-guided reaching tasks. The visually-guided task is thought to be implicit learning based on prediction error, whereas the memory-guided task requires more cognitive processes. We observed the adaptation to visuomotor rotation feedback that is gradually rotated. We found that the adaptation and retention rates were higher in the visually-guided task than in the memory-guided task. Furthermore, the delta-band power obtained by electroencephalography (EEG) in the visually-guided task was increased immediately following the visual feedback, which indicates that the prediction error was larger in the visually-guided task. Our results show that the visuomotor adaptation is enhanced in the visually-guided task because the prediction error, which contributes update of the internal model, was more reliable than in the memory-guided task. Therefore, we suggest that the processing of the prediction error is affected by the task-type, which in turn affects the rate of the visuomotor adaptation.
Collapse
Affiliation(s)
- Kosuke Numasawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takeshi Miyamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tomohiro Kizuka
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Seiji Ono
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
10
|
Korka B, Will M, Avci I, Dukagjini F, Stenner MP. Strategy-based motor learning decreases the post-movement β power. Cortex 2023; 166:43-58. [PMID: 37295237 DOI: 10.1016/j.cortex.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Motor learning depends on the joint contribution of several processes including cognitive strategies aiming at goal achievement and prediction error-driven implicit adaptation. Understanding this functional interplay and its clinical implications requires insight into the individual learning processes, including at a neural level. Here, we set out to examine the impact of learning a cognitive strategy, over and above implicit adaptation, on the oscillatory post-movement β rebound (PMBR), which typically decreases in power following (visuo)motor perturbations. Healthy participants performed reaching movements towards a target, with online visual feedback replacing the view of their moving hand. The feedback was sometimes rotated, either relative to their movements (visuomotor rotation) or invariant to their movements (and relative to the target; clamped feedback), always for two consecutive trials interspersed between non-rotated trials. In both conditions, the first trial with a rotation was unpredictable. On the second trial, the task was either to re-aim, and thereby compensate for the rotation experienced in the first trial (visuomotor rotation; Compensate condition), or to ignore the rotation and keep on aiming at the target (clamped feedback; Ignore condition). After-effects did not differ between conditions, indicating that the amount of implicit learning was similar, while large differences in movement direction in the second rotated trial between conditions indicated that participants successfully acquired re-aiming strategies. Importantly, PMBR power following the first rotated trial was modulated differently in the two conditions. Specifically, it decreased in both conditions, but this effect was larger when participants had to acquire a cognitive strategy and prepare to re-aim. Our results therefore suggest that the PMBR is modulated by cognitive demands of motor learning, possibly reflecting the evaluation of a behaviourally significant goal achievement error.
Collapse
Affiliation(s)
- Betina Korka
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Matthias Will
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Izel Avci
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Max-Philipp Stenner
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
11
|
Jacobsen NA, Ferris DP. Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking. J Physiol 2023; 601:3921-3944. [PMID: 37522890 PMCID: PMC10528133 DOI: 10.1113/jp284505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Locomotor adaptation is crucial for daily gait adjustments to changing environmental demands and obstacle avoidance. Mobile brain imaging with high-density electroencephalography (EEG) now permits quantification of electrocortical dynamics during human locomotion. To determine the brain areas involved in human locomotor adaptation, we recorded high-density EEG from healthy, young adults during split-belt treadmill walking. We incorporated a dual-electrode EEG system and neck electromyography to decrease motion and muscle artefacts. Voluntary movement preparation and execution have been linked to alpha (8-13 Hz) and beta band (13-30 Hz) desynchronizations in the sensorimotor and posterior parietal cortices, whereas theta band (4-7 Hz) modulations in the anterior cingulate have been correlated with movement error monitoring. We hypothesized that relative to normal walking, split-belt walking would elicit: (1) decreases in alpha and beta band power in sensorimotor and posterior parietal cortices, reflecting enhanced motor flexibility; and (2) increases in theta band power in anterior cingulate cortex, reflecting instability and balance errors that will diminish with practice. We found electrocortical activity in multiple regions that was associated with stages of gait adaptation. Data indicated that sensorimotor and posterior parietal cortices had decreased alpha and beta band spectral power during early adaptation to split-belt treadmill walking that gradually returned to pre-adaptation levels by the end of the adaptation period. Our findings emphasize that multiple brain areas are involved in adjusting gait under changing environmental demands during human walking. Future studies could use these findings on healthy, young participants to identify dysfunctional supraspinal mechanisms that may be impairing gait adaptation. KEY POINTS: Identifying the location and time course of electrical changes in the brain correlating with gait adaptation increases our understanding of brain function and provides targets for brain stimulation interventions. Using high-density EEG in combination with 3D biomechanics, we found changes in neural oscillations localized near the sensorimotor, posterior parietal and cingulate cortices during split-belt treadmill adaptation. These findings suggest that multiple cortical mechanisms may be associated with locomotor adaptation, and their temporal dynamics can be quantified using mobile EEG. Results from this study can serve as a reference model to examine brain dynamics in individuals with movement disorders that cause gait asymmetry and reduced gait adaptation.
Collapse
Affiliation(s)
- Noelle A Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Szul MJ, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J, Bonaiuto JJ. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog Neurobiol 2023; 228:102490. [PMID: 37391061 DOI: 10.1016/j.pneurobio.2023.102490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
Collapse
Affiliation(s)
- Maciej J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Sotirios Papadopoulos
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | | | - Denis Schwartz
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|