1
|
Lin Y, Isomura T. Heartfelt gaze: Cardiac afferent signals and vagal tone affect gaze perception. Int J Psychophysiol 2025; 212:112564. [PMID: 40221047 DOI: 10.1016/j.ijpsycho.2025.112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Perceiving others' gaze direction is an essential aspect of social interactions. The cone of direct gaze (CoDG) refers to the range within which an observer perceives a gaze as looking directly at them. Previous research has demonstrated that self-relevant exteroceptive cues can widen the CoDG. However, the effect of self-relevant interoceptive information on the CoDG remains unknown. This study investigated the contribution of cardiac afferent signals and vagal tone to the perception of gaze from others. We used a modified gaze discrimination task to synchronize face stimuli with various gaze directions to specific phases of the cardiac cycle. Results revealed that participants with higher heart rate variability (HRV) exhibited a wider CoDG during cardiac systole (when cardiac signals are maximally represented in the brain). However, no effect was observed during cardiac diastole (when cardiac signals are quiescent). Moreover, this effect was independent of individual differences in anxiety levels and autistic traits. These findings are evidence that individuals with greater cardiac vagal control are more sensitive to cardiac afferent signals during systole, which leads to a stronger self-directed perception of others' gaze under transient and ambiguous gaze perception conditions. Our findings highlight the self-referential role of cardiac interoceptive signals in gaze perception and expand our knowledge of interoceptive influences on social judgment.
Collapse
Affiliation(s)
- Yaojie Lin
- Graduate School of Informatics, Nagoya University, Nagoya, Japan.
| | - Tomoko Isomura
- Graduate School of Informatics, Nagoya University, Nagoya, Japan.
| |
Collapse
|
2
|
Aprile F, Simões M, Henriques J, Carvalho P, Castelo-Branco M, Sel A, Ribeiro MJ. The Heartbeat-Evoked Potential in Young and Older Adults During Attention Orienting. Psychophysiology 2025; 62:e70057. [PMID: 40237106 DOI: 10.1111/psyp.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Cardiac cycle duration, or interbeat interval (IBI), is the period from one heartbeat to the next. IBI changes from cycle to cycle. Periods with longer IBI are associated with higher sensitivity to external sensory stimuli (exteroception). Warning cues induce a state of attentive anticipation characterized by an increase in IBI (anticipatory cardiac deceleration) and faster reaction times. Aging reduces the increase in IBI induced by warning cues and response speed. However, it is unclear which mechanism, if any, connects IBI with reaction time. The heartbeat-evoked potential (HEP) is a cortical response evoked by the heartbeat, modulated by attention and associated with sensitivity to external sensory stimuli. HEP might be affected by IBI and mediate the association between cardiac output and cortical processing. We investigated if the HEP was affected by warning cues as well as spontaneous fluctuations in IBI. To explore the impact of age-related changes in cardiac responses, we included young and older people (N = 33/29; 26/23 women; mean age 23/61 years). We analyzed the electroencephalograms and electrocardiograms simultaneously acquired during auditory cued simple reaction time and go/no-go tasks. The warning cue did not induce significant changes in the HEP. Yet, fluctuations in IBI (not locked with the warning cue) affected the HEP, and HEP amplitude was associated with average reaction time in the older group. However, on a trial-by-trial basis, reaction time was independent from IBI fluctuations. In conclusion, we found no evidence that the HEP mediates the effect of attention orienting on reaction time.
Collapse
Affiliation(s)
- Francesca Aprile
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Marco Simões
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Center for Informatics and Systems (CISUC), University of Coimbra, Polo II, Coimbra, Portugal
| | - Jorge Henriques
- Center for Informatics and Systems (CISUC), University of Coimbra, Polo II, Coimbra, Portugal
| | - Paulo Carvalho
- Center for Informatics and Systems (CISUC), University of Coimbra, Polo II, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alejandra Sel
- Department of Psychology, Centre for Brain Science, University of Essex, Colchester, UK
| | - Maria J Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Boukarras S, Placidi V, Rossano F, Era V, Aglioti SM, Candidi M. Interpersonal Physiological Synchrony During Dyadic Joint Action Is Increased by Task Novelty and Reduced by Social Anxiety. Psychophysiology 2025; 62:e70031. [PMID: 40097345 PMCID: PMC11913774 DOI: 10.1111/psyp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Interpersonal physiological synchrony refers to the temporal coordination of autonomic states during social encounters. Previous studies indicate that physiological synchrony may arise during nonverbal interactions. Nevertheless, the role played by contextual and individual factors in determining its emergence is understudied. In this work, we examined heart rate synchrony during a cooperative joint action task, exploring how task constraints, novelty, and behavioral synchrony influence physiological alignment. To achieve this, we periodically modulated task demands by alternating between peer-to-peer and leader-follower dynamics, as well as between complementary and imitative movements, and their combinations. Additionally, we assessed the role of individual differences by examining the impact of dyad members' Social Anxiety and Perspective Taking levels. We further investigated how task demands and personal traits shape the perceived quality of social interactions and subject-level heart rate variability. Our findings revealed a significant increase in physiological synchrony and a decrease in perceived interaction quality when participants switched to a novel task version (i.e., during switch blocks) compared to task repetition. Task switching was also associated with increased heart rate variability. Notably, Social Anxiety negatively predicted physiological synchrony, suggesting that more socially anxious dyads were less likely to achieve physiological alignment. However, no relationship was observed between physiological synchrony and task performance. Overall, our results suggest that physiological synchrony intensifies when dyads navigate the challenge of learning a novel task together, and that both contextual and individual aspects contribute to its emergence.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Valerio Placidi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- School of Advanced Studies, Centre for Neuroscience, University of Camerino, Camerino, Italy
- Italian Institute of Technology, Sapienza University of Rome and CLN2S@Sapienza, Rome, Italy
| | - Federico Rossano
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS), Rome, Italy
- Italian Institute of Technology, Sapienza University of Rome and CLN2S@Sapienza, Rome, Italy
| | - Vanessa Era
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS), Rome, Italy
- Italian Institute of Technology, Sapienza University of Rome and CLN2S@Sapienza, Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS), Rome, Italy
| |
Collapse
|
4
|
Makowski D, Te AS, Neves A, Kirk S, Liang NZ, Mavros P, Chen SHA. Too beautiful to be fake: Attractive faces are less likely to be judged as artificially generated. Acta Psychol (Amst) 2025; 252:104670. [PMID: 39705943 DOI: 10.1016/j.actpsy.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Technological advances render the distinction between artificial (e.g., computer-generated faces) and real stimuli increasingly difficult, yet the factors driving our beliefs regarding the nature of ambiguous stimuli remain largely unknown. In this study, 150 participants rated 109 pictures of faces on 4 characteristics (attractiveness, beauty, trustworthiness, familiarity). The stimuli were then presented again with the new information that some of them were AI-generated, and participants had to rate each image according to whether they believed them to be real or fake. Despite all images being pictures of real faces from the same database, most participants did indeed rate a large portion of them as 'fake' (often with high confidence), with strong intra- and inter-individual variability. Our results suggest a gender-dependent role of attractiveness on reality judgements, with faces rated as more attractive being classified as more real. We also report links between reality beliefs tendencies and dispositional traits such as narcissism and paranoid ideation.
Collapse
Affiliation(s)
- Dominique Makowski
- School of Psychology, University of Sussex, United Kingdom of Great Britain and Northern Ireland; Sussex Centre for Consciousness Science, University of Sussex, United Kingdom of Great Britain and Northern Ireland.
| | - An Shu Te
- School of Social Sciences, Nanyang Technological University, Singapore
| | - Ana Neves
- School of Psychology, University of Sussex, United Kingdom of Great Britain and Northern Ireland
| | - Stephanie Kirk
- School of Social Sciences, Nanyang Technological University, Singapore
| | - Ngoi Zi Liang
- School of Social Sciences, Nanyang Technological University, Singapore
| | | | - S H Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; LKC Medicine, Nanyang Technological University, Singapore; National Institute of Education, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| |
Collapse
|
5
|
Oh S, Yang X, Hayes WM, Anderson A, Wedell DH, Shinkareva SV. Physiological responses to aversive and non-aversive audiovisual, auditory, and visual stimuli. Biol Psychol 2025; 195:108994. [PMID: 39855538 DOI: 10.1016/j.biopsycho.2025.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
We examined differences in physiological responses to aversive and non-aversive naturalistic audiovisual stimuli and their auditory and visual components within the same experiment. We recorded five physiological measures that have been shown to be sensitive to affect: electrocardiogram, electromyography (EMG) for zygomaticus major and corrugator supercilii muscles, electrodermal activity (EDA), and skin temperature. Valence and arousal ratings confirmed that aversive stimuli were more negative in valence and higher in arousal than non-aversive stimuli. Valence also showed an emotional enhancement effect for cross-modal integration. Both heart rate deceleration and facial EMG potentiation for corrugator supercilii were larger for aversive compared to non-aversive conditions for audiovisual stimuli and their auditory components, even after controlling for arousal. Facial EMG potentiation for zygomaticus major was greater for aversive compared to non-aversive conditions for audiovisual stimuli and EDA was greater for aversive compared to non-aversive conditions for visual stimuli. Neither of these effects remained significant after controlling for arousal. These findings provide a benchmark for examining atypical sensory processing of mundane aversive stimuli for clinical populations.
Collapse
Affiliation(s)
- Sewon Oh
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA.
| | - Xuan Yang
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA.
| | - William M Hayes
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA.
| | - Ashley Anderson
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA.
| | - Douglas H Wedell
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA.
| | - Svetlana V Shinkareva
- Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA.
| |
Collapse
|
6
|
Saltafossi M, Heck D, Kluger DS, Varga S. Common threads: Altered interoceptive processes across affective and anxiety disorders. J Affect Disord 2025; 369:244-254. [PMID: 39321982 DOI: 10.1016/j.jad.2024.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
There is growing attention towards atypical brain-body interactions and interoceptive processes and their potential role in psychiatric conditions, including affective and anxiety disorders. This paper aims to synthesize recent developments in this field. We present emerging explanatory models and focus on brain-body coupling and modulations of the underlying neurocircuitry that support the concept of a continuum of affective disorders. Grounded in theoretical frameworks like peripheral theories of emotion and predictive processing, we propose that altered interoceptive processes might represent transdiagnostic mechanisms that confer common vulnerability traits across multiple disorders. A deeper understanding of the interplay between bodily states and neural processing is essential for a holistic conceptualization of mental disorders.
Collapse
Affiliation(s)
- Martina Saltafossi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Detlef Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA; Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Somogy Varga
- Department of Philosophy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
Mason MA, Semple S, Marshall HH, McElligott AG. Do goats recognise humans cross-modally? PeerJ 2025; 13:e18786. [PMID: 39830959 PMCID: PMC11740737 DOI: 10.7717/peerj.18786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Recognition plays a key role in the social lives of gregarious species, enabling animals to distinguish among social partners and tailor their behaviour accordingly. As domesticated animals regularly interact with humans, as well as members of their own species, we might expect mechanisms used to discriminate between conspecifics to also apply to humans. Given that goats can combine visual and vocal cues to recognise one another, we investigated whether this cross-modal recognition extends to discriminating among familiar humans. We presented 26 goats (17 males and nine females) with facial photographs of familiar people and two repeated playbacks of a voice, either congruent (from the same person) or incongruent with that photograph (from a different person). When cues were incongruent, violating their expectations, we expected goats to show changes in physiological parameters and moreover, respond faster and for longer after playbacks. Accordingly, heart rate decreased as the playback sequence progressed, but only when the face and voice presented were incongruent. Heart rate variability was also affected by congruency, but we were unable to determine precisely where differences lay. However, goats showed no changes in time taken to respond, or how long they responded for (our primary variables of interest). We also found evidence to suggest that shifts in cardiac responses may not have been robust. Although our findings could imply that goats had successfully perceived differences in congruency between the visual and vocal identity information presented, further evidence is needed to determine whether they are capable of cross-modal recognition of humans.
Collapse
Affiliation(s)
- Marianne A. Mason
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Stuart Semple
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Harry H. Marshall
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
- RSPB Centre for Conservation Science, Cambridge, United Kingdom
| | - Alan G. McElligott
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Corcoran AW, Perrykkad K, Feuerriegel D, Robinson JE. Body as First Teacher: The Role of Rhythmic Visceral Dynamics in Early Cognitive Development. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:45-75. [PMID: 37694720 PMCID: PMC11720274 DOI: 10.1177/17456916231185343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Embodied cognition-the idea that mental states and processes should be understood in relation to one's bodily constitution and interactions with the world-remains a controversial topic within cognitive science. Recently, however, increasing interest in predictive processing theories among proponents and critics of embodiment alike has raised hopes of a reconciliation. This article sets out to appraise the unificatory potential of predictive processing, focusing in particular on embodied formulations of active inference. Our analysis suggests that most active-inference accounts invoke weak, potentially trivial conceptions of embodiment; those making stronger claims do so independently of the theoretical commitments of the active-inference framework. We argue that a more compelling version of embodied active inference can be motivated by adopting a diachronic perspective on the way rhythmic physiological activity shapes neural development in utero. According to this visceral afferent training hypothesis, early-emerging physiological processes are essential not only for supporting the biophysical development of neural structures but also for configuring the cognitive architecture those structures entail. Focusing in particular on the cardiovascular system, we propose three candidate mechanisms through which visceral afferent training might operate: (a) activity-dependent neuronal development, (b) periodic signal modeling, and (c) oscillatory network coordination.
Collapse
Affiliation(s)
- Andrew W. Corcoran
- Monash Centre for Consciousness and Contemplative Studies, Monash University
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | - Kelsey Perrykkad
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | | | - Jonathan E. Robinson
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| |
Collapse
|
9
|
Mussini E, Perrucci MG, Costantini M, Ferri F. Heartfelt choices: The influence of cardiac phase on free-choice actions. Psychophysiology 2024; 61:e14682. [PMID: 39392407 PMCID: PMC11579240 DOI: 10.1111/psyp.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The influence of cardiac phases on cognitive and sensorimotor functions is noteworthy. Specifically, during systole, as opposed to diastole, there is an observed enhancement in tasks demanding the suppression of instructed responses. This suggests that systole contributes to inhibitory control in motor functions. However, the extent to which systolic inhibition is significant in volitional free-choice actions, such as choosing to execute or refrain from a cue-initiated response, remains to be clarified. To fill this gap in the current literature, the purpose of this study was to test whether during the systole phase, compared with the diastole phase, the tendency to enact volitional actions decreased due to the systolic inhibitory effect. We used a modified version of the Go/No-Go task with an added condition for volitional free-choice actions, where participants could decide whether to respond or not, to test whether systolic inhibition could affect the volitional decision to act. The results showed that participants' responses were less frequent in systole than in diastole in the volitional action condition. Then, to test the robustness of the cardiac effect on volitional actions, we used two established manipulations: the Straw Breathing Manipulation and the Cold Pressor Test, which were able to induce anxiety and increase the heart rate, respectively. Results showed that the systole/diastole difference in the number of volitional action trials in which participants decided to respond tended to remain the same despite all manipulations. Overall, our results provide convergent evidence for the effect of the heart on the decision to act, an effect that appears independent of manipulations of both the physiological and psychological state of the individual.
Collapse
Affiliation(s)
- Elena Mussini
- Department of Neuroscience, Imaging and Clinical Sciences“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies—ITAB“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies—ITAB“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Department of Psychology“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies—ITAB“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
10
|
Lai G, Landi D, Vidaurre C, Bhattacharya J, Herrojo Ruiz M. Cardiac cycle modulates alpha and beta suppression during motor imagery. Cereb Cortex 2024; 34:bhae442. [PMID: 39579013 PMCID: PMC11584698 DOI: 10.1093/cercor/bhae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024] Open
Abstract
Previous interoception research has demonstrated that sensory processing is reduced during cardiac systole, an effect associated with diminished cortical excitability, possibly due to heightened baroreceptor activity. This study aims to determine how phases of the cardiac cycle-systole and diastole-modulate neural sensorimotor activity during motor imagery (MI) and motor execution (ME). We hypothesised that MI performance, indexed by enhanced suppression of contralateral sensorimotor alpha (8-13 Hz) and beta (14-30 Hz) activity, would be modulated by the cardiac phases, with improved performance during diastole due to enhanced sensory processing of movement cues. Additionally, we investigated whether movement cues during systole or diastole enhance muscle activity. To test these hypotheses, 29 participants were instructed to perform or imagine thumb abductions, while we recorded their electroencephalography, electrocardiogram, and electromyogram (EMG) activity. We show that imaginary movements instructed during diastole lead to more pronounced suppression of alpha and beta activity in contralateral sensorimotor cortices, with no significant cardiac timing effects observed during ME as confirmed by circular statistics. Additionally, diastole was associated with significantly increased EMG on the side of actual and, to a lesser degree, imagined movements. Our study identifies optimal cardiac phases for MI performance, suggesting potential pathways to enhance MI-based assistive technologies.
Collapse
Affiliation(s)
- Giuseppe Lai
- Goldsmiths, University of London, New Cross London SE14 6NW, UK
| | | | - Carmen Vidaurre
- Basque Center on Cognition Brain and Language, Paseo Mikeletegi 69, 2°20009 Donostia San Sebastián, Gipuzkoa, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 548009 Bilbao, Spain
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Straße des 17, Juni 13510623, Berlin, Germany
| | | | | |
Collapse
|
11
|
Sequestro M, Serfaty J, Grèzes J, Mennella R. Social threat avoidance depends on action-outcome predictability. COMMUNICATIONS PSYCHOLOGY 2024; 2:100. [PMID: 39462095 PMCID: PMC11512816 DOI: 10.1038/s44271-024-00152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Avoiding threatening individuals is pivotal for adaptation to our social environment. Yet, it remains unclear whether social threat avoidance is subtended by goal-directed processes, in addition to stimulus-response associations. To test this, we manipulated outcome predictability during spontaneous approach/avoidance decisions from avatars displaying angry facial expressions. Across three virtual reality experiments, we showed that participants avoided more often when they could predict the outcome of their actions, indicating goal-directed processes. However, above-chance avoidance rate when facing unpredictable outcomes suggested that stimulus-response associations also played a role. We identified two latent classes of participants: the "goal-directed class" showed above-chance avoidance only in the predictable condition, while the "stimulus-response class" showed no credible difference between conditions but had a higher overall avoidance rate. The goal-directed class exhibited greater cardiac deceleration in the predictable condition, associated with better value integration in decision-making. Computationally, this class had an increased drift-rate in the predictable condition, reflecting increased value estimation of threat avoidance. In contrast, the stimulus-response class showed higher responsiveness to threat, indicated by increased drift-rate for avoidance and increased muscular activity at response time. These results support the central role of goal-directed processes in social threat avoidance and reveal its physiological and computational correlates.
Collapse
Affiliation(s)
- Matteo Sequestro
- Cognitive and Computational Neuroscience Laboratory (LNC 2), Inserm U960, Department of Cognitive Studies, École Normale Supérieure, PSL University, 29 rue d'Ulm, 75005, Paris, France.
| | - Jade Serfaty
- Cognitive and Computational Neuroscience Laboratory (LNC 2), Inserm U960, Department of Cognitive Studies, École Normale Supérieure, PSL University, 29 rue d'Ulm, 75005, Paris, France
| | - Julie Grèzes
- Cognitive and Computational Neuroscience Laboratory (LNC 2), Inserm U960, Department of Cognitive Studies, École Normale Supérieure, PSL University, 29 rue d'Ulm, 75005, Paris, France.
| | - Rocco Mennella
- Cognitive and Computational Neuroscience Laboratory (LNC 2), Inserm U960, Department of Cognitive Studies, École Normale Supérieure, PSL University, 29 rue d'Ulm, 75005, Paris, France
- Laboratory of the Interactions between Cognition Action and Emotion (LICAÉ, EA2931), UFR STAPS, Université Paris Nanterre, 200 avenue de La République, 92001, Nanterre, Cedex, France
| |
Collapse
|
12
|
Candia-Rivera D, Engelen T, Babo-Rebelo M, Salamone PC. Interoception, network physiology and the emergence of bodily self-awareness. Neurosci Biobehav Rev 2024; 165:105864. [PMID: 39208877 DOI: 10.1016/j.neubiorev.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the brain and interoceptive signals is key in maintaining internal balance and orchestrating neural dynamics, encompassing influences on perceptual and self-awareness. Central to this interplay is the differentiation between the external world, others and the self, a cornerstone in the construction of bodily self-awareness. This review synthesizes physiological and behavioral evidence illustrating how interoceptive signals can mediate or influence bodily self-awareness, by encompassing interactions with various sensory modalities. To deepen our understanding of the basis of bodily self-awareness, we propose a network physiology perspective. This approach explores complex neural computations across multiple nodes, shifting the focus from localized areas to large-scale neural networks. It examines how these networks operate in parallel with and adapt to changes in visceral activities. Within this framework, we propose to investigate physiological factors that disrupt bodily self-awareness, emphasizing the impact of interoceptive pathway disruptions, offering insights across several clinical contexts. This integrative perspective not only can enhance the accuracy of mental health assessments but also paves the way for targeted interventions.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière AP-HP, Inria Paris, 75013, Paris, France.
| | - Tahnée Engelen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, Jyväskylä FI-40014, Finland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Paula C Salamone
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Koreki A, Terasawa Y, Nuruki A, Oi H, Critchley H, Yogarajah M, Onaya M. Altered sense of agency in schizophrenia: the aberrant effect of cardiac interoceptive signals. Front Psychiatry 2024; 15:1441585. [PMID: 39386898 PMCID: PMC11461937 DOI: 10.3389/fpsyt.2024.1441585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background Schizophrenia (SZ) is characterized by abnormalities in self-representation, including a disturbed sense of agency (SoA). The continuous processing of sensory information concerning the internal state of the body (interoception) is argued to be fundamental to neural representations of the self. We, therefore, tested if aberrant interoception underpins disturbances in SoA in SZ, focusing on cardiac interoceptive signaling. Methods Forty-two SZ and 29 non-clinical participants (healthy controls; HC) performed an intentional binding task to measure SoA during concurrent heartbeat recording. The effect of cardiac interoceptive signals on SoA was measured by the difference in intentional binding effect during systole and diastole. This measure was standardized based on the overall intentional binding effect to control for non-cardiac factors, and then compared between SZ and HC. Results Our study revealed a significant difference between SZ and HC groups, with opposite effects of cardiac systole on SoA. Specifically, cardiac systole disrupted SoA in SZ, contrasting with the enhanced SoA in HC. Across the SZ group, the extent to which SoA was disrupted by cardiac systole correlated significantly with a clinical proxy for symptom instability, namely the number of hospital admissions for hallucinations and delusions. Furthermore, the disruption was particularly observed in patients with severe hallucinations. Conclusions This study revealed a disturbance in the impact of cardiac interoceptive signals on an implicit index of SoA in schizophrenia. This supports the notion that pathophysiological disruption of the central integration of interoceptive information increases vulnerability to disturbances in self-representation and the associated expression of schizophrenic symptoms.
Collapse
Affiliation(s)
- Akihiro Koreki
- Department of Psychiatry, NHO Shimofusa Psychiatric Medical Center, Chiba, Japan
- Department of Psychiatry, NHO Chibahigashi Hospital, Chiba, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuri Terasawa
- Department of Psychology, Keio University, Tokyo, Japan
| | - Atsuo Nuruki
- Center for General Education, Institute for Comprehensive Education, Kagoshima University, Kagoshima, Japan
| | - Hiroki Oi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hugo Critchley
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, Sussex University, Brighton, United Kingdom
| | - Mahinda Yogarajah
- Department of Clinical & Experimental Epilepsy, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Mitsumoto Onaya
- Department of Psychiatry, NHO Shimofusa Psychiatric Medical Center, Chiba, Japan
| |
Collapse
|
14
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
15
|
Leupin V, Britz J. Interoceptive signals shape the earliest markers and neural pathway to awareness at the visual threshold. Proc Natl Acad Sci U S A 2024; 121:e2311953121. [PMID: 39226342 PMCID: PMC11406234 DOI: 10.1073/pnas.2311953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/28/2024] [Indexed: 09/05/2024] Open
Abstract
Variations in interoceptive signals from the baroreceptors (BRs) across the cardiac and respiratory cycle can modulate cortical excitability and so affect awareness. It remains debated at what stages of processing they affect awareness-related event-related potentials (ERPs) in different sensory modalities. We investigated the influence of the cardiac (systole/diastole) and the respiratory (inhalation/exhalation) phase on awareness-related ERPs. Subjects discriminated visual threshold stimuli while their electroencephalogram, electrocardiogram, and respiration were simultaneously recorded. We compared ERPs and their intracranial generators for stimuli classified correctly with and without awareness as a function of the cardiac and respiratory phase. Cyclic variations of interoceptive signals from the BRs modulated both the earliest electrophysiological markers and the trajectory of brain activity when subjects became aware of the stimuli: an early sensory component (P1) was the earliest marker of awareness for low (diastole/inhalation) and a perceptual component (visual awareness negativity) for high (systole/exhalation) BR activity, indicating that BR signals interfere with the sensory processing of the visual input. Likewise, activity spread from the primary visceral cortex (posterior insula) to posterior parietal cortices during high and from associative interoceptive centers (anterior insula) to the prefrontal cortex during low BR activity. Consciousness is thereby resolved in cognitive/associative regions when BR is low and in perceptual centers when it is high. Our results suggest that cyclic fluctuations of BR signaling affect both the earliest markers of awareness and the brain processes underlying conscious awareness.
Collapse
Affiliation(s)
- Viviana Leupin
- Department of Psychology, University of Fribourg, FribourgCH-1700, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, FribourgCH-1700, Switzerland
| |
Collapse
|
16
|
Zaccaro A, Neri B. The role of alpha activity in regulating inward and outward conscious perception. Phys Life Rev 2024; 50:226-227. [PMID: 39167988 DOI: 10.1016/j.plrev.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Affiliation(s)
- A Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - B Neri
- Department of Information Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Candia-Rivera D, Chavez M, De Vico Fallani F. Measures of the coupling between fluctuating brain network organization and heartbeat dynamics. Netw Neurosci 2024; 8:557-575. [PMID: 38952808 PMCID: PMC11168717 DOI: 10.1162/netn_a_00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/19/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR 7225, INRIA Paris (Nerv Team), INSERM U1127, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Bonaz B. Enteric neuropathy and the vagus nerve: Therapeutic implications. Neurogastroenterol Motil 2024:e14842. [PMID: 38873822 DOI: 10.1111/nmo.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Enteric neuropathies are characterized by abnormalities of gut innervation, which includes the enteric nervous system, inducing severe gut dysmotility among other dysfunctions. Most of the gastrointestinal tract is innervated by the vagus nerve, the efferent branches of which have close interconnections with the enteric nervous system and whose afferents are distributed throughout the different layers of the digestive wall. The vagus nerve is a key element of the autonomic nervous system, involved in the stress response, at the interface of the microbiota-gut-brain axis, has anti-inflammatory and prokinetic properties, modulates intestinal permeability, and has a significant capacity of plasticity and regeneration. Targeting these properties of the vagus nerve, with vagus nerve stimulation (or non-stimulation/ pharmacological methods), could be of interest in the therapeutic management of enteric neuropathies.
Collapse
Affiliation(s)
- Bruno Bonaz
- Grenoble Institut des Neurosciences, Université Grenoble Alpes-Faculté de Médecine, Grenoble, France
| |
Collapse
|
19
|
Koreki A, Ogyu K, Miyazaki T, Takenouchi K, Matsushita K, Honda S, Koizumi T, Onaya M, Uchida H, Mimura M, Nakajima S, Noda Y. Aberrant heartbeat-evoked potential in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110969. [PMID: 38369098 DOI: 10.1016/j.pnpbp.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Self-disturbance is considered a core feature underlying the psychopathology of schizophrenia. Interoception has an important role in the development of a sense of self, leading to increased interest in the potential contribution of abnormal interoception to self-disturbances in schizophrenia. Several neuropsychological studies have demonstrated aberrant interoception in schizophrenia. However, cortical interoceptive processing has not yet been thoroughly investigated. Thus, we sought to examine resting-state heartbeat-evoked potential (HEP) in this population. We hypothesized that patients with schizophrenia would exhibit significant alterations in HEP compared to healthy controls (HCs). In this cross-sectional electroencephalogram (EEG) study, we compared the HEPs between age- and sex-matched groups of patients with schizophrenia and HCs. A 10-min resting-state EEG with eyes closed and an electrocardiogram (ECG) were recorded and analyzed for the time window of 450 ms to 500 ms after an ECG R peak. A positive HEP shift was observed in the frontal-central regions (F [1, 82] = 7.402, p = 0.008, partial η2 = 0.009) in patients with schizophrenia (n = 61) when compared with HCs (n = 31) after adjusting for confounders such as age, sex, and heart rate. A cluster-based correction analysis revealed that the HEP around the right frontal area (Fp2, F4, and F8) showed the most significant group differences (F [1, 82] = 10.079, p = 0.002, partial η2 = 0.021), with a peak at the F4 electrode site (F [1, 82] = 12.646, p < 0.001, partial η2 = 0.069). We observed no correlation between HEP and symptoms in patients with schizophrenia. A positive shift of HEP during the late component could reflect a trait abnormality in schizophrenia. Further research is required to determine the association between the altered cortical interoceptive processing indexed with HEP and self-disturbances in schizophrenia.
Collapse
Affiliation(s)
- Akihiro Koreki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan; Department of Psychiatry, National Hospital Organization Chiba-Higashi Hospital, Chiba, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Takenouchi
- Department of Clinical Laboratory Medicine, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Karin Matsushita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Teruki Koizumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Mitsumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Klaassen FH, de Voogd LD, Hulsman AM, O'Reilly JX, Klumpers F, Figner B, Roelofs K. The neurocomputational link between defensive cardiac states and approach-avoidance arbitration under threat. Commun Biol 2024; 7:576. [PMID: 38755409 PMCID: PMC11099143 DOI: 10.1038/s42003-024-06267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Avoidance, a hallmark of anxiety-related psychopathology, often comes at a cost; avoiding threat may forgo the possibility of a reward. Theories predict that optimal approach-avoidance arbitration depends on threat-induced psychophysiological states, like freezing-related bradycardia. Here we used model-based fMRI analyses to investigate whether and how bradycardia states are linked to the neurocomputational underpinnings of approach-avoidance arbitration under varying reward and threat magnitudes. We show that bradycardia states are associated with increased threat-induced avoidance and more pronounced reward-threat value comparison (i.e., a stronger tendency to approach vs. avoid when expected reward outweighs threat). An amygdala-striatal-prefrontal circuit supports approach-avoidance arbitration under threat, with specific involvement of the amygdala and dorsal anterior cingulate (dACC) in integrating reward-threat value and bradycardia states. These findings highlight the role of human freezing states in value-based decision making, relevant for optimal threat coping. They point to a specific role for amygdala/dACC in state-value integration under threat.
Collapse
Affiliation(s)
- Felix H Klaassen
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| | - Lycia D de Voogd
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Leiden University, Institute of Psychology and Leiden Institute for Brain and Cognition (LIBC), Rapenburg 70, 2311 EZ, Leiden, The Netherlands
| | - Anneloes M Hulsman
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Jill X O'Reilly
- Department of Experimental Psychology, University of Oxford, Woodstock Road, OX2 6GG, Oxford, UK
| | - Floris Klumpers
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Bernd Figner
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Karin Roelofs
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Li L, Ishida K, Mizuhara K, Barry RJ, Nittono H. Effects of the cardiac cycle on auditory processing: A preregistered study on mismatch negativity. Psychophysiology 2024; 61:e14506. [PMID: 38149745 DOI: 10.1111/psyp.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
The systolic and diastolic phases of the cardiac cycle are known to affect perception and cognition differently. Higher order processing tends to be facilitated at systole, whereas sensory processing of external stimuli tends to be impaired at systole compared to diastole. The current study aims to examine whether the cardiac cycle affects auditory deviance detection, as reflected in the mismatch negativity (MMN) of the event-related brain potential (ERP). We recorded the intensity deviance response to deviant tones (70 dB) presented among standard tones (60 or 80 dB, depending on blocks) and calculated the MMN by subtracting standard ERP waveforms from deviant ERP waveforms. We also assessed intensity-dependent N1 and P2 amplitude changes by subtracting ERPs elicited by soft standard tones (60 dB) from ERPs elicited by loud standard tones (80 dB). These subtraction methods were used to eliminate phase-locked cardiac-related electric artifacts that overlap auditory ERPs. The endogenous MMN was expected to be larger at systole, reflecting the facilitation of memory-based auditory deviance detection, whereas the exogenous N1 and P2 would be smaller at systole, reflecting impaired exteroceptive sensory processing. However, after the elimination of cardiac-related artifacts, there were no significant differences between systole and diastole in any ERP components. The intensity-dependent N1 and P2 amplitude changes were not obvious in either cardiac phase, probably because of the short interstimulus intervals. The lack of a cardiac phase effect on MMN amplitude suggests that preattentive auditory processing may not be affected by bodily signals from the heart.
Collapse
Affiliation(s)
- Lingjun Li
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Kai Ishida
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Keita Mizuhara
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Robert J Barry
- School of Psychology, Brain & Behaviour Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Catrambone V, Candia‐Rivera D, Valenza G. Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes. Hum Brain Mapp 2024; 45:e26677. [PMID: 38656080 PMCID: PMC11041380 DOI: 10.1002/hbm.26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in theδ $$ \delta $$ ,β $$ \beta $$ , andγ $$ \gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP‐HP, Hôpital Pitié‐SalpêtriŕeParisFrance
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|
23
|
Fouragnan EF, Hosking B, Cheung Y, Prakash B, Rushworth M, Sel A. Timing along the cardiac cycle modulates neural signals of reward-based learning. Nat Commun 2024; 15:2976. [PMID: 38582905 PMCID: PMC10998831 DOI: 10.1038/s41467-024-46921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Natural fluctuations in cardiac activity modulate brain activity associated with sensory stimuli, as well as perceptual decisions about low magnitude, near-threshold stimuli. However, little is known about the relationship between fluctuations in heart activity and other internal representations. Here we investigate whether the cardiac cycle relates to learning-related internal representations - absolute and signed prediction errors. We combined machine learning techniques with electroencephalography with both simple, direct indices of task performance and computational model-derived indices of learning. Our results demonstrate that just as people are more sensitive to low magnitude, near-threshold sensory stimuli in certain cardiac phases, so are they more sensitive to low magnitude absolute prediction errors in the same cycles. However, this occurs even when the low magnitude prediction errors are associated with clearly suprathreshold sensory events. In addition, participants exhibiting stronger differences in their prediction error representations between cardiac cycles exhibited higher learning rates and greater task accuracy.
Collapse
Affiliation(s)
- Elsa F Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK.
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Billy Hosking
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Yin Cheung
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Brooke Prakash
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Matthew Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Alejandra Sel
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
24
|
Zhou H, Xiong T, Dai Z, Zou H, Wang X, Tang H, Huang Y, Sun H, You W, Yao Z, Lu Q. Brain-heart interaction disruption in major depressive disorder: disturbed rhythm modulation of the cardiac cycle on brain transient theta bursts. Eur Arch Psychiatry Clin Neurosci 2024; 274:595-607. [PMID: 37318589 DOI: 10.1007/s00406-023-01628-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Brain neurons support arousal and cognitive activity in the form of spectral transient bursts and cooperate with the peripheral nervous system to adapt to the surrounding environment. However, the temporal dynamics of brain-heart interactions have not been confirmed, and the mechanism of brain-heart interactions in major depressive disorder (MDD) remains unclear. This study aimed to provide direct evidence for brain-heart synchronization in temporal dynamics and clarify the mechanism of brain-heart interaction disruption in MDD. Eight-minute resting-state (closed eyes) electroencephalograph and electrocardiogram signals were acquired simultaneously. The Jaccard index (JI) was used to measure the temporal synchronization between cortical theta transient bursts and cardiac cycle activity (diastole and systole) in 90 MDD patients and 44 healthy controls (HCs) at rest. The deviation JI was used to reflect the equilibrium of brain activity between diastole and systole. The results showed that the diastole JI was higher than the systole JI in both the HC and MDD groups; compared to HCs, the deviation JI attenuated at F4, F6, FC2, and FC4 in the MDD patients. The eccentric deviation JI was negatively correlated with the despair factor scores of the HAMD, and after 4 weeks of antidepressant treatment, the eccentric deviation JI was positively correlated with the despair factor scores of the HAMD. It was concluded that brain-heart synchronization existed in the theta band in healthy individuals and that disturbed rhythm modulation of the cardiac cycle on brain transient theta bursts at right frontoparietal sites led to brain-heart interaction disruption in MDD.
Collapse
Affiliation(s)
- Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Tingting Xiong
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Zhongpeng Dai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haowen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xvmiao Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yinghong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, People's Republic of China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, People's Republic of China
| | - Wei You
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
25
|
Biddell H, Solms M, Slagter H, Laukkonen R. Arousal coherence, uncertainty, and well-being: an active inference account. Neurosci Conscious 2024; 2024:niae011. [PMID: 38504827 PMCID: PMC10949961 DOI: 10.1093/nc/niae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Here we build on recent findings which show that greater alignment between our subjective experiences (how we feel) and physiological states (measurable changes in our body) plays a pivotal role in the overall psychological well-being. Specifically, we propose that the alignment or 'coherence' between affective arousal (e.g. how excited we 'feel') and autonomic arousal (e.g. heart rate or pupil dilation) may be key for maintaining up-to-date uncertainty representations in dynamic environments. Drawing on recent advances in interoceptive and affective inference, we also propose that arousal coherence reflects interoceptive integration, facilitates adaptive belief updating, and impacts our capacity to adapt to changes in uncertainty, with downstream consequences to well-being. We also highlight the role of meta-awareness of arousal, a third level of inference, which may permit conscious awareness, learning about, and intentional regulation of lower-order sources of arousal. Practices emphasizing meta-awareness of arousal (like meditation) may therefore elicit some of their known benefits via improved arousal coherence. We suggest that arousal coherence is also likely to be associated with markers of adaptive functioning (like emotional awareness and self-regulatory capacities) and discuss mind-body practices that may increase coherence.
Collapse
Affiliation(s)
- Hannah Biddell
- School of Psychology, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Mark Solms
- Department of Psychology, University of Cape Town, Rondebosch, Western Cape 7701, South Africa
| | - Heleen Slagter
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Institute for Brain and Behaviour, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Ruben Laukkonen
- School of Psychology, Southern Cross University, Gold Coast, QLD 4225, Australia
| |
Collapse
|
26
|
Paci M, Cardellicchio P, Di Luzio P, Perrucci MG, Ferri F, Costantini M. When the heart inhibits the brain: Cardiac phases modulate short-interval intracortical inhibition. iScience 2024; 27:109140. [PMID: 38414850 PMCID: PMC10897847 DOI: 10.1016/j.isci.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
The phasic cardiovascular activity influences the central nervous system through the systolic baroreceptor inputs, inducing widespread inhibitory effects on behavior. Through transcranial magnetic stimulation (TMS) delivered during resting-state over the left primary motor cortex and across the different cardiac phases, we measured corticospinal excitability (CSE) and distinct indices of intracortical motor inhibition: short (SICI) and long (LICI) interval, corresponding to GABAA and GABAB neurotransmission, respectively. We found a significant effect of the cardiac phase on short-intracortical inhibition, without any influence on LICI. Specifically, SICI was stronger at systole compared to diastole. These results show a tight relationship between the cardiac cycle and the inhibitory neurotransmission within M1, and in particular with GABAA-ergic-mediated motor inhibition. We hypothesize that this process requires greater motor control via the gating mechanism and that this, in turn, needs to be recalibrated through the modulation of intracortical inhibition.
Collapse
Affiliation(s)
- Mario Paci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Paolo Di Luzio
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
27
|
Pelentritou A, Pfeiffer C, Schwartz S, De Lucia M. Cardio-audio synchronization elicits neural and cardiac surprise responses in human wakefulness and sleep. Commun Biol 2024; 7:226. [PMID: 38396068 PMCID: PMC10891147 DOI: 10.1038/s42003-024-05895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The human brain can encode auditory regularities with fixed sound-to-sound intervals and with sound onsets locked to cardiac inputs. Here, we investigated auditory and cardio-audio regularity encoding during sleep, when bodily and environmental stimulus processing may be altered. Using electroencephalography and electrocardiography in healthy volunteers (N = 26) during wakefulness and sleep, we measured the response to unexpected sound omissions within three regularity conditions: synchronous, where sound and heartbeat are temporally coupled, isochronous, with fixed sound-to-sound intervals, and a control condition without regularity. Cardio-audio regularity encoding manifested as a heartbeat deceleration upon omissions across vigilance states. The synchronous and isochronous sequences induced a modulation of the omission-evoked neural response in wakefulness and N2 sleep, the former accompanied by background oscillatory activity reorganization. The violation of cardio-audio and auditory regularity elicits cardiac and neural responses across vigilance states, laying the ground for similar investigations in altered consciousness states such as coma and anaesthesia.
Collapse
Affiliation(s)
- Andria Pelentritou
- Laboratoire de Recherche en Neuroimagerie (LREN), Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland.
| | - Christian Pfeiffer
- Robotics and Perception Group, University of Zurich, 8050, Zurich, Switzerland
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, 1202, Geneva, Switzerland
| | - Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie (LREN), Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
28
|
O'Dowd A, Hirst RJ, Setti A, Kenny RA, Newell FN. Individual differences in seated resting heart rate are associated with multisensory perceptual function in older adults. Psychophysiology 2024; 61:e14430. [PMID: 37675755 DOI: 10.1111/psyp.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
There is evidence that cardiovascular function can influence sensory processing and cognition, which are known to change with age. However, whether the precision of unisensory and multisensory temporal perception is influenced by cardiovascular activity in older adults is uncertain. We examined whether seated resting heart rate (RHR) was associated with unimodal visual and auditory temporal discrimination as well as susceptibility to the audio-visual Sound Induced Flash Illusion (SIFI) in a large sample of older adults (N = 3232; mean age = 64.17 years, SD = 7.74, range = 50-93; 56% female) drawn from The Irish Longitudinal Study on Ageing (TILDA). Faster seated RHR was associated with better discretization of two flashes (but not two beeps) and increased SIFI susceptibility when the audio-visual stimuli were presented close together in time but not at longer audio-visual temporal offsets. Our findings suggest a significant relationship between cardiovascular activity and the precision of visual and audio-visual temporal perception in older adults, thereby providing novel evidence for a link between cardiovascular function and perceptual function in aging.
Collapse
Affiliation(s)
- Alan O'Dowd
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Rebecca J Hirst
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Annalisa Setti
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- School of Applied Psychology, University College Cork, Cork, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
- Mercer Institute for Successful Ageing, St. James Hospital, Dublin, Ireland
| | - Fiona N Newell
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Koreki A, Garfinkel S, Critchley H, Cope S, Agrawal N, Edwards M, Yogarajah M. Impaired cardiac modulation in patients with functional seizures: Results from a face intensity judgment task. Epilepsia 2023; 64:3073-3081. [PMID: 37611952 PMCID: PMC10952481 DOI: 10.1111/epi.17761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Although interoceptive abnormality in patients with functional seizure (FSs) has been demonstrated using explicit tasks, implicit measurements of interoception such as the effect of interoception on perceptual brain processes have not been investigated. It has been shown that perception is normally modulated by interoceptive signals related to the different phases (systole vs diastole) of the cardiac cycle (cardiac modulation effect). Given our previous findings using explicit measures of interoception, we hypothesized that cardiac modulation would be impaired in FSs. METHODS Thirty-two patients with FSs and 30 age- and sex-matched non-clinical individuals conducted a face intensity judgment task, in which their intensity rating when fearful or neutral faces was presented was compared between systolic and diastolic phases. They also conducted the heartbeat discrimination task as a measure of their capacity to integrate both interoceptive and exteroceptive information. RESULTS Patients with FSs had impaired cardiac modulation of the perception of neutral faces (corrected p = .044). Individual differences in the heartbeat discrimination task predicted the degree to which cardiac modulation occurred across the whole group (p = .028). This cardiac modulation effect was significantly associated with seizure severity (p = .021). Regardless of cardiac phase, patients rated fearful facial expressions as less intense compared to control participants (p = .006). SIGNIFICANCE These findings highlight impaired implicit cardiac modulation effects in patients with FSs. This reflects interoceptive dysfunction in patients with FSs, and an inability of the brain to integrate interoceptive signaling with perceptual processing. This may have implications for our understanding of the pathophysiology in FSs and inform novel diagnostic approaches.
Collapse
Affiliation(s)
- Akihiro Koreki
- Neurosciences Research CentreSt George's University of LondonLondonUK
- Department of PsychiatryNational Hospital Organization Shimofusa Psychiatric Medical CenterChibaJapan
| | | | - Hugo Critchley
- Brighton and Sussex Medical SchoolSussex UniversitySussexUK
| | - Sarah Cope
- Atkinson Morley Regional Neuroscience CentreSt George's HospitalLondonUK
| | - Niruj Agrawal
- Atkinson Morley Regional Neuroscience CentreSt George's HospitalLondonUK
| | - Mark Edwards
- Neurosciences Research CentreSt George's University of LondonLondonUK
- Atkinson Morley Regional Neuroscience CentreSt George's HospitalLondonUK
| | - Mahinda Yogarajah
- Department of Clinical & Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyLondonUK
- NIHR University College London Hospitals Biomedical Research CentreLondonUK
| |
Collapse
|
30
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
31
|
Candia-Rivera D, Raimondo F, Pérez P, Naccache L, Tallon-Baudry C, Sitt JD. Conscious processing of global and local auditory irregularities causes differentiated heartbeat-evoked responses. eLife 2023; 12:e75352. [PMID: 37888955 PMCID: PMC10651171 DOI: 10.7554/elife.75352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
Recent research suggests that brain-heart interactions are associated with perceptual and self-consciousness. In this line, the neural responses to visceral inputs have been hypothesized to play a leading role in shaping our subjective experience. This study aims to investigate whether the contextual processing of auditory irregularities modulates both direct neuronal responses to the auditory stimuli (ERPs) and the neural responses to heartbeats, as measured with heartbeat-evoked responses (HERs). HERs were computed in patients with disorders of consciousness, diagnosed with a minimally conscious state or unresponsive wakefulness syndrome. We tested whether HERs reflect conscious auditory perception, which can potentially provide additional information for the consciousness diagnosis. EEG recordings were taken during the local-global paradigm, which evaluates the capacity of a patient to detect the appearance of auditory irregularities at local (short-term) and global (long-term) levels. The results show that local and global effects produce distinct ERPs and HERs, which can help distinguish between the minimally conscious state and unresponsive wakefulness syndrome patients. Furthermore, we found that ERP and HER responses were not correlated suggesting that independent neuronal mechanisms are behind them. These findings suggest that HER modulations in response to auditory irregularities, especially local irregularities, may be used as a novel neural marker of consciousness and may aid in the bedside diagnosis of disorders of consciousness with a more cost-effective option than neuroimaging methods.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Federico Raimondo
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Pauline Pérez
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- AP-HP, Hôpital de la Pitié Salpêtrière, Neuro ICU, DMU NeurosciencesParisFrance
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Pitié-Salpêtrière Faculty of Medicine, Pierre and Marie Curie University, Sorbonne UniversitiesParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
- Department of Neurology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
- Department of Neurophysiology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
| | - Jacobo D Sitt
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
| |
Collapse
|
32
|
Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci 2023; 26:1670-1684. [PMID: 37697110 DOI: 10.1038/s41593-023-01425-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.
Collapse
Affiliation(s)
- Tahnée Engelen
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Marco Solcà
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Catherine Tallon-Baudry
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France.
| |
Collapse
|
33
|
Saltafossi M, Zaccaro A, Perrucci MG, Ferri F, Costantini M. The impact of cardiac phases on multisensory integration. Biol Psychol 2023; 182:108642. [PMID: 37467844 DOI: 10.1016/j.biopsycho.2023.108642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The brain continuously processes information coming from both the external environment and visceral signals generated by the body. This constant information exchange between the body and the brain allows signals originating from the oscillatory activity of the heart, among others, to influence perception. Here, we investigated how the cardiac phase modulates multisensory integration, which is the process that allows information from multiple senses to combine non-linearly to reduce environmental uncertainty. Forty healthy participants completed a Simple Detection Task with unimodal (Auditory, Visual, Tactile) and bimodal (Audio-Tactile, Audio-Visual, Visuo-Tactile) stimuli presented 250 ms and 500 ms after the R-peak of the electrocardiogram, that is, systole and diastole, respectively. First, we found a nonspecific effect of the cardiac cycle phases on detection of both unimodal and bimodal stimuli. Reaction times were faster for stimuli presented during diastole, compared to systole. Then, applying the Race Model Inequality approach to quantify multisensory integration, Audio-Tactile and Visuo-Tactile, but not Audio-Visual stimuli, showed higher integration when presented during diastole than during systole. These findings indicate that the impact of the cardiac phase on multisensory integration may be specific for stimuli including somatosensory (i.e., tactile) inputs. This suggests that the heartbeat-related noise, which according to the interoceptive predictive coding theory suppresses somatosensory inputs, also affects multisensory integration during systole. In conclusion, our data extend the interoceptive predictive coding theory to the multisensory domain. From a more mechanistic view, they may reflect a reduced optimization of neural oscillations orchestrating multisensory integration during systole.
Collapse
Affiliation(s)
- Martina Saltafossi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Andrea Zaccaro
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
34
|
von Mohr M, Finotti G, Esposito G, Bahrami B, Tsakiris M. Social interoception: Perceiving events during cardiac afferent activity makes people more suggestible to other people's influence. Cognition 2023; 238:105502. [PMID: 37336022 DOI: 10.1016/j.cognition.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Our judgements are often influenced by other people's views and opinions. Interoception also influences decision making, but little is known about its role in social influence and particularly, the extent to which other people may influence our decisions. Across two experiments, using different forms of social influence, participants judged the trustworthiness of faces presented either during the systolic phase of the cardiac cycle, when baroreceptors convey information from the heart to the brain, or during diastolic phase, when baroreceptors are quiescent. We quantified the extent to which participants changed their minds (as an index of social influence) following the social feedback, in order to compare two competing hypotheses. According to the Arousal-Confidence Hypothesis, cardiac signals create a context of heightened bodily arousal that increases confidence in perceptual judgements. People should, therefore, be less subject to social influence during systole. By contrast, according to the Uncertainty-Conformity Hypothesis, cardiac signals increase neural noise and sensory attenuation, such that people should display greater effects of social influence during systole, as they then underweight private interoceptive signals in favour of the external social information. Across two studies that used different kind of social interactions, we found that participants changed their minds more when faces were presented at systole. Our results, therefore, support the Uncertainly-Conformity hypothesis and highlight how cardiac afferent signals contribute to shape our social decision-making in different types of social interactions.
Collapse
Affiliation(s)
- Mariana von Mohr
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, UK; Centre for the Politics of Feelings, School of Advanced Study, University of London, UK.
| | - Gianluca Finotti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Italy
| | | | - Bahador Bahrami
- Department of Psychology, Ludwig Maximilian University, Munich, Germany; Department of Psychology, Royal Holloway, University of London, UK
| | - Manos Tsakiris
- Lab of Action and Body, Department of Psychology, Royal Holloway, University of London, UK; Centre for the Politics of Feelings, School of Advanced Study, University of London, UK
| |
Collapse
|
35
|
Wang NN, Yu SF, Dang P, Hu QL, Su R, Li H, Ma HL, Liu M, Zhang DL. Association between the acceleration of access to visual awareness of grating orientation with higher heart rate at high-altitude. Physiol Behav 2023; 268:114235. [PMID: 37178854 DOI: 10.1016/j.physbeh.2023.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Many studies have indicated a strong relationship between cardiac and brain activities, both of which are sensitive to high-altitude exposure. This study combined a consciousness access task and electrocardiograms (ECG) to uncover conscious awareness in response to high-altitude exposure and its relation to cardiac activity. When compared with the low-altitude groups, the behavioral results showed that the high-altitude participants shortened the time of access to visual awareness of grating orientation, which was accompanied by a faster heart rate, excluding the influence of pre-stimulus heart rate, extent of cardiac deceleration after presenting the stimulus, and task difficulty. Although there were post-stimulation cardiac deceleration and post-response acceleration at both high and low altitudes, a slight increase in heart rate after stimulation at high altitudes may indicate that participants at high altitudes could quickly readjust their attention to the target stimulus. More importantly, the drift diffusion model (DDM) was used to fit the access time distribution of all participants. These results suggest that shorter time at high altitudes might be due to the lower threshold, suggesting that less evidence in high-altitude participants was required to access visual consciousness. The participants' heart rates also negatively predicted the threshold through a hierarchical drift diffusion modeling (HDDM) regression. These findings imply that individuals with higher heart rates at high altitudes have a greater cognitive burden.
Collapse
Affiliation(s)
- Nian-Nian Wang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000 Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Si-Fang Yu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Peng Dang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000 Guangzhou 510631, China
| | - Quan-Ling Hu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000 Guangzhou 510631, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000 Guangzhou 510631, China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000 Guangzhou 510631, China.
| | - Ming Liu
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000 Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - De-Long Zhang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850000 Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China; School of Educational Sciences, Kashi University, China.
| |
Collapse
|
36
|
Candia-Rivera D, Norouzi K, Ramsøy TZ, Valenza G. Dynamic fluctuations in ascending heart-to-brain communication under mental stress. Am J Physiol Regul Integr Comp Physiol 2023; 324:R513-R525. [PMID: 36802949 PMCID: PMC10026986 DOI: 10.1152/ajpregu.00251.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Dynamical information exchange between central and autonomic nervous systems, as referred to functional brain-heart interplay, occurs during emotional and physical arousal. It is well documented that physical and mental stress lead to sympathetic activation. Nevertheless, the role of autonomic inputs in nervous system-wise communication under mental stress is yet unknown. In this study, we estimated the causal and bidirectional neural modulations between electroencephalogram (EEG) oscillations and peripheral sympathetic and parasympathetic activities using a recently proposed computational framework for a functional brain-heart interplay assessment, namely the sympathovagal synthetic data generation model. Mental stress was elicited in 37 healthy volunteers by increasing their cognitive demands throughout three tasks associated with increased stress levels. Stress elicitation induced an increased variability in sympathovagal markers, as well as increased variability in the directional brain-heart interplay. The observed heart-to-brain interplay was primarily from sympathetic activity targeting a wide range of EEG oscillations, whereas variability in the efferent direction seemed mainly related to EEG oscillations in the γ band. These findings extend current knowledge on stress physiology, which mainly referred to top-down neural dynamics. Our results suggest that mental stress may not cause an increase in sympathetic activity exclusively as it initiates a dynamic fluctuation within brain-body networks including bidirectional interactions at a brain-heart level. We conclude that directional brain-heart interplay measurements may provide suitable biomarkers for a quantitative stress assessment and bodily feedback may modulate the perceived stress caused by increased cognitive demand.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| | - Kian Norouzi
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Management, University of Tehran, Tehran, Iran
| | - Thomas Zoëga Ramsøy
- Department of Applied Neuroscience, Neurons, Inc., Taastrup, Denmark
- Faculty of Neuroscience, Singularity University, Santa Clara, California, United States
| | - Gaetano Valenza
- Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
37
|
Arslanova I, Kotsaris V, Tsakiris M. Perceived time expands and contracts within each heartbeat. Curr Biol 2023; 33:1389-1395.e4. [PMID: 36905931 DOI: 10.1016/j.cub.2023.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
Perception of passing time can be distorted.1 Emotional experiences, particularly arousal, can contract or expand experienced duration via their interactions with attentional and sensory processing mechanisms.2,3 Current models suggest that perceived duration can be encoded from accumulation processes4,5 and from temporally evolving neural dynamics.6,7 Yet all neural dynamics and information processing ensue at the backdrop of continuous interoceptive signals originating from within the body. Indeed, phasic fluctuations within the cardiac cycle impact neural and information processing.8,9,10,11,12,13,14,15 Here, we show that these momentary cardiac fluctuations distort experienced time and that their effect interacts with subjectively experienced arousal. In a temporal bisection task, durations (200-400 ms) of an emotionally neutral visual shape or auditory tone (experiment 1) or of an image displaying happy or fearful facial expressions (experiment 2) were categorized as short or long.16 Across both experiments, stimulus presentation was time-locked to systole, when the heart contracts and baroreceptors fire signals to the brain, and to diastole, when the heart relaxes, and baroreceptors are quiescent. When participants judged the duration of emotionally neural stimuli (experiment 1), systole led to temporal contraction, whereas diastole led to temporal expansion. Such cardiac-led distortions were further modulated by the arousal ratings of the perceived facial expressions (experiment 2). At low arousal, systole contracted while diastole expanded time, but as arousal increased, this cardiac-led time distortion disappeared, shifting duration perception toward contraction. Thus, experienced time contracts and expands within each heartbeat-a balance that is disrupted under heightened arousal.
Collapse
Affiliation(s)
- Irena Arslanova
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK.
| | | | - Manos Tsakiris
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EY, UK; Centre for the Politics of Feeling, School of Advanced Study, University of London, London WC1E 7HU, UK
| |
Collapse
|
38
|
Mizuhara K, Nittono H. Effects of respiratory phases on the processing of emotional and non-emotional visual stimuli. Psychophysiology 2023; 60:e14261. [PMID: 36715139 DOI: 10.1111/psyp.14261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
The number of studies investigating the relationship between respiratory phases and cognitive/neural processing of external events has been increasing, but the findings remain controversial. This registered report examined the effect of the respiratory phase on the discrimination accuracy of visual stimuli in the emotional and non-emotional domains. Forty-two healthy young participants were asked to choose fearful over neutral facial expressions and to choose high-contrast over low-contrast Gabor patches during spontaneous nasal respiration. Event-related potentials (ERPs) were also recorded for each type of stimulus presented during each respiratory phase. It was hypothesized that discrimination accuracy would be higher when the stimuli were presented during inhalation than during exhalation. It was also hypothesized that the amplitudes of ERPs elicited by the stimuli would be greater during inhalation than during exhalation. For comparison, the effect of the cardiac phase was examined, with the expectation that discrimination accuracy would be higher when the stimuli were presented during systole than during diastole. It was also hypothesized that the amplitudes of ERPs elicited by the stimuli would be greater during systole than during diastole. As expected, the results indicated that fear discrimination accuracy was higher during inhalation than exhalation and during systole than diastole. However, this was not the case for contrast discrimination. No differences in ERPs were observed between respiratory phases in either task. These results suggest that natural breathing in through the nose facilitates the discrimination of emotional stimuli, possibly via subcortical processes.
Collapse
Affiliation(s)
- Keita Mizuhara
- Graduate School of Human Sciences, Osaka University, Osaka, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroshi Nittono
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
39
|
Cardiac cycle affects risky decision-making. Biol Psychol 2023; 176:108471. [PMID: 36464201 DOI: 10.1016/j.biopsycho.2022.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
This study investigates whether decision-making under uncertainty is influenced by the cardiac cycle. To test this hypothesis, we examined the influence of the cardiac cycle on an individual's decision-making process in a gambling experiment. Participants were asked to choose one option with a sure payout or uncertain option with varying degrees of winning probability, ambiguity, and monetary amounts. The onset of presentation of the options is timed to coincide with either cardiac ventricular systole or diastole. The results show that, for most participants, the risk aversion score was lower in the systole trial than in the diastole trial. Model-based exploratory analysis revealed that the higher propensity to take risks in the systole trial compared with that in the diastole trial could be captured better by the change in the gambling bias against the utility of the risky options, rather than by a change in risk attitude. The results provide evidence that the natural fluctuation of cardiac afferent signals can affect risky decision-making.
Collapse
|
40
|
Zaccaro A, Perrucci MG, Parrotta E, Costantini M, Ferri F. Brain-heart interactions are modulated across the respiratory cycle via interoceptive attention. Neuroimage 2022; 262:119548. [PMID: 35964864 DOI: 10.1016/j.neuroimage.2022.119548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Respiration and heartbeat continuously interact within the living organism at many different levels, representing two of the main oscillatory rhythms of the body and providing major sources of interoceptive information to the brain. Despite the modulatory effect of respiration on exteroception and cognition has been recently established in humans, its role in shaping interoceptive perception has been scarcely investigated so far. In two independent studies, we investigated the effect of spontaneous breathing on cardiac interoception by assessing the Heartbeat Evoked Potential (HEP) in healthy humans. In Study 1, we compared HEP activity for heartbeats occurred during inhalation and exhalation in 40 volunteers at rest. We found higher HEP amplitude during exhalation, compared to inhalation, over fronto-centro-parietal areas. This suggests increased brain-heart interactions and improved cortical processing of the heartbeats during exhalation. Further analyses revealed that this effect was moderated by heart rate changes. In Study 2, we tested the respiratory phase-dependent modulation of HEP activity in 20 volunteers during Exteroceptive and Interoceptive conditions of the Heartbeat Detection (HBD) task. In these conditions, participants were requested to tap at each heartbeat, either listened to or felt, respectively. Results showed higher HEP activity and higher detection accuracy at exhalation than inhalation in the Interoceptive condition only. Direct comparisons of Interoceptive and Exteroceptive conditions confirmed stronger respiratory phase-dependent modulation of HEP and accuracy when attention was directed towards the interoceptive stimuli. Moreover, HEP changes during the Interoceptive condition were independent of heart physiology, but were positively correlated with higher detection accuracy at exhalation than inhalation. This suggests a link between optimization of cortical processing of cardiac signals and detection of heartbeats across the respiratory cycle. Overall, we provide data showing that respiration shapes cardiac interoception at the neurophysiological and behavioural levels. Specifically, exhalation may allow attentional shift towards the internal bodily states.
Collapse
Affiliation(s)
- Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies ‑ ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Parrotta
- School of Psychology, University of Aberdeen, Aberdeen, United Kingdom
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies ‑ ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies ‑ ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
41
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
42
|
Magnon V, Vallet GT, Benson A, Mermillod M, Chausse P, Lacroix A, Bouillon-Minois JB, Dutheil F. Does heart rate variability predict better executive functioning? A systematic review and meta-analysis. Cortex 2022; 155:218-236. [DOI: 10.1016/j.cortex.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 12/20/2022]
|
43
|
Held LK, Vink JM, Vitaro F, Brendgen M, Dionne G, Provost L, Boivin M, Ouellet-Morin I, Roelofs K. The gene environment aetiology of freezing and its relationship with internalizing symptoms during adolescence. EBioMedicine 2022; 81:104094. [PMID: 35696830 PMCID: PMC9194596 DOI: 10.1016/j.ebiom.2022.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The freezing response is a universal response to threat, linked to attentive immobility and action preparation. It is relevant for acute stress coping in animals and humans, and subtle deviations in toddler freezing duration (absence of, or excessively long reactions) have been linked to higher risk for internalizing symptoms in adolescence. Yet, while individual freezing tendencies are relatively stable throughout life, little is known about their gene-environment aetiology. METHODS We investigated the heritability of toddler freezing in the Quebec Newborn Twin Study (QNTS; n=508 twins) by fitting behavioural genetic models to video-coded freezing responses during a robot confrontation. Furthermore, we examined the predictive associations between toddler freezing and internalizing symptoms (anxiety and depressive symptoms), as they unfold during adolescence (ages 12-19 years) using linear mixed-effects models. FINDINGS Freezing was found to be moderately heritable (45% of the variance accounted for by genetic factors). The remaining variance was explained by unique environmental factors, including measurement error. No significant contribution of shared environmental factors was noted. Additionally, shorter freezing was associated with more internalizing symptoms in adolescence at trend level, a pattern that was significant for depressive but not anxiety symptoms. INTERPRETATION Freezing is an adaptive coping mechanism in early childhood, which is partly driven by genetic factors. Crucially, the absence or shorter duration of these behaviours may signal vulnerability to depressive problems later in life. FUNDING Canadian Institutes of Health Research and Research Fund of Quebec-Health and Society and Culture. Consolidator grant from the European Research Council (ERC_CoG-2017_772337).
Collapse
Affiliation(s)
- Leslie K Held
- Donders Institute for Brain Cognition and Behaviour: Centre for Cognitive Neuroimaging (DCCN). Kapitelweg 29, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands; Behavioural Science Institute, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, Netherlands.
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, Netherlands
| | - Frank Vitaro
- School of Psychoeducation, University of Montreal, Pavillon Marie-Victorin 90, av. Vincent-d'Indy Outremont QC, H2V 2S9 Montreal, Canada
| | - Mara Brendgen
- Department of Psychology, University of Quebec at Montreal, Case postale 8888, succursale Centre-ville Montréal, H3C 3P8, Canada
| | - Ginette Dionne
- School of Psychology, Laval University, Université Laval, 2325, rue de l'Université Québec (Québec), G1V 0A6 Quebec city, Canada
| | - Lysandre Provost
- School of Psychology, Laval University, Université Laval, 2325, rue de l'Université Québec (Québec), G1V 0A6 Quebec city, Canada
| | - Michel Boivin
- School of Psychology, Laval University, Université Laval, 2325, rue de l'Université Québec (Québec), G1V 0A6 Quebec city, Canada
| | - Isabelle Ouellet-Morin
- School of Criminology, University of Montreal & Research Center of the Montreal Mental Health University Institute, Pavillon Lionel-Groulx C. P. 6128, succ. Centre-ville Montréal (Québec) H3C 3J7, Canada
| | - Karin Roelofs
- Donders Institute for Brain Cognition and Behaviour: Centre for Cognitive Neuroimaging (DCCN). Kapitelweg 29, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands; Behavioural Science Institute, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, Netherlands
| |
Collapse
|