1
|
Kietzman HW. Oxytocin Signaling Bridges Social and Appetitive Functions in the Rodent Hippocampus. Biol Psychiatry 2025; 97:425-427. [PMID: 39919887 DOI: 10.1016/j.biopsych.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Affiliation(s)
- Henry W Kietzman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
2
|
Ming X, Luo G, Wang J, Dou H, Li H, Lei Y. Integrating behavioral and neurophysiological insights: High trait anxiety enhances observational fear learning. Neuroimage 2025; 307:121037. [PMID: 39828068 DOI: 10.1016/j.neuroimage.2025.121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Observational fear learning delineates the process by which individuals learn about potential threats through observing others' reactions. Prior research indicates that individuals with high trait anxiety (HTA) manifest pronounced fear responses in direct fear learning scenarios. However, the specific influence of trait anxiety on observational fear learning remains insufficiently explored. This study aimed to fill this gap by examining 64 university students, divided equally between those with HTA and low trait anxiety (LTA), selected from an initial pool of 483 participants. Participants were subjected to observational fear learning tasks, and their behavioral responses, physiological reactions, and brain activations were recorded. Results demonstrated that HTA participants exhibited differentiated skin conductance responses to threat and safety stimuli during the observational fear acquisition phase, notwithstanding prior assurances against shock delivery. Furthermore, during the direct test phase, HTA participants reported significantly elevated fear and shock expectancy ratings for both types of stimuli, in contrast to their LTA counterparts. Neuroimaging data, derived via functional near-infrared spectroscopy (fNIRS) revealed heightened medial prefrontal cortex activation in HTA participants when directly facing threats. This study systematically explores the influence of high trait anxiety on observational fear learning, uncovering that HTA individuals exhibit excessive fear responses. These findings highlight the critical role of trait anxiety as a significant risk factor in the development of anxiety disorders.
Collapse
Affiliation(s)
- Xianchao Ming
- School of Psychology, South China Normal University, Guangzhou, 510631, China; Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Ganzhong Luo
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jinxia Wang
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Haoran Dou
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Hong Li
- School of Psychology, South China Normal University, Guangzhou, 510631, China; Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yi Lei
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China.
| |
Collapse
|
3
|
Quiñones-Labernik P, Blocklinger KL, Bruce MR, Ferri SL. Excess neonatal testosterone causes male-specific social and fear memory deficits in wild-type mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.562939. [PMID: 37905064 PMCID: PMC10614869 DOI: 10.1101/2023.10.18.562939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neurodevelopmental disorders disproportionately affect males compared to females. The biological mechanisms of this male susceptibility or female protection have not been identified. There is evidence that fetal/neonatal gonadal hormones, which play a pivotal role in many aspects of development, may contribute. Here, we investigate the effects of excess testosterone during a critical period of sex-specific brain organization on social approach and fear learning behaviors in C57BL/6J wild-type mice. Male, but not female, mice treated with testosterone on the day of birth (PN0) exhibited decreased social approach as juveniles and decreased contextual fear memory as adults, compared to vehicle-treated controls. These deficits were not driven by anxiety-like behavior or changes in locomotion or body weight. Mice treated with the same dose of testosterone on postnatal day 18 (PN18), which is outside of the critical period of brain masculinization, did not demonstrate impairments compared to the vehicle group. These findings indicate that excess testosterone during a critical period of early development, but not shortly after, induces long-term deficits relevant to the male sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Sarah L Ferri
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Ohnami S, Naito M, Kawase H, Higuchi M, Hasebe S, Takasu K, Kanemaru R, Azuma Y, Yokoyama R, Kochi T, Imado E, Tahara T, Kotake Y, Asano S, Oishi N, Takuma K, Hashimoto H, Ogawa K, Nakamura A, Yamakawa H, Ago Y. Brain region-specific neural activation by low-dose opioid promotes social behavior. JCI Insight 2024; 9:e182060. [PMID: 39641273 PMCID: PMC11623950 DOI: 10.1172/jci.insight.182060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
The opioid system plays crucial roles in modulating social behaviors in both humans and animals. However, the pharmacological profiles of opioids regarding social behavior and their therapeutic potential remain unclear. Multiple pharmacological, behavioral, and immunohistological c-Fos mapping approaches were used to characterize the effects of μ-opioid receptor agonists on social behavior and investigate the mechanisms in naive mice and autism spectrum disorder-like (ASD-like) mouse models, such as prenatally valproic acid-treated mice and Fmr1-KO mice. Here, we report that low-dose morphine, a μ-opioid receptor agonist, promoted social behavior by selectively activating neurons in prosocial brain regions, including the nucleus accumbens, but not those in the dorsomedial periaqueductal gray (dmPAG), which are only activated by analgesic high-dose morphine. Critically, intra-dmPAG morphine injection counteracted the prosocial effect of low-dose morphine, suggesting that dmPAG neural activation suppresses social behavior. Moreover, buprenorphine, a μ-opioid receptor partial agonist with less abuse liability and a well-established safety profile, ameliorated social behavior deficits in two mouse models recapitulating ASD symptoms by selectively activating prosocial brain regions without dmPAG neural activation. Our findings highlight the therapeutic potential of brain region-specific neural activation induced by low-dose opioids for social behavior deficits in ASD.
Collapse
MESH Headings
- Animals
- Mice
- Social Behavior
- Morphine/pharmacology
- Morphine/administration & dosage
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/administration & dosage
- Male
- Mice, Knockout
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/metabolism
- Disease Models, Animal
- Female
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Buprenorphine/pharmacology
- Buprenorphine/administration & dosage
- Autism Spectrum Disorder/drug therapy
- Fragile X Mental Retardation Protein/genetics
- Fragile X Mental Retardation Protein/metabolism
- Brain/drug effects
- Brain/metabolism
- Behavior, Animal/drug effects
- Valproic Acid/pharmacology
- Valproic Acid/administration & dosage
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Soichiro Ohnami
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
- SK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Megumi Naito
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
| | - Haruki Kawase
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
| | - Momoko Higuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
| | - Shigeru Hasebe
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Department of Social Pharmacy, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Keiko Takasu
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - Ryo Kanemaru
- Shionogi TechnoAdvance Research Co. Ltd., Toyonaka, Osaka, Japan
| | - Yuki Azuma
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
- Department of Cellular and Molecular Pharmacology
| | | | - Eiji Imado
- Department of Cellular and Molecular Pharmacology
- Department of Dental Anesthesiology, and
| | - Takeru Tahara
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yaichiro Kotake
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | | | - Naoya Oishi
- SK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Kazuhiro Takuma
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, Japan
- Division of Bioscience, Institute for Datability Science
- Open and Transdisciplinary Research Initiatives, and
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
- SK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Atsushi Nakamura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
- Shionogi TechnoAdvance Research Co. Ltd., Toyonaka, Osaka, Japan
| | - Hidekuni Yamakawa
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
- SK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- Ping An-Shionogi Co. Ltd., Xuhui District, Shanghai, China
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, and
- Department of Cellular and Molecular Pharmacology
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, and
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Gan R, Qiu Y, Liao J, Zhang Y, Wu J, Peng X, Lee TMC, Huang R. Mapping the mentalizing brain: An ALE meta-analysis to differentiate the representation of social scenes and ages on theory of mind. Neurosci Biobehav Rev 2024; 167:105918. [PMID: 39389437 DOI: 10.1016/j.neubiorev.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Theory of mind (ToM) involves understanding others' mental states and relies on brain regions like the temporoparietal junction (TPJ) and medial prefrontal cortex (mPFC). This meta-analytic review categorizes ToM studies into six sub-components across three pairs: (1) Theory of collective mind (ToCM) and individualized theory of mind (iToM), (2) Social intention ToM and private intention ToM, and (3) ToM in adults and ToM in children. We conducted coordinate-based activation likelihood estimation (ALE) analyses and meta-analytic connectivity modeling (MACM) for each sub-component. We found that the ToM components utilized in social or group situations were associated with both the dorsomedial PFC (dmPFC) and right superior temporal sulcus (STS), whereas the ToM components focused on personal concentration were associated with both the lateral PFC and the left STS. The coactivation patterns for the group and age sub-component pairs showed significant spatial overlap with the language networks. These findings indicate that ToM is a multidimensional construct that is related to distinct functional networks for processing each of the ToM sub-components.
Collapse
Affiliation(s)
- Runchen Gan
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yidan Qiu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jiajun Liao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yuting Zhang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jingyi Wu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Xiaoqi Peng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Tatia Mei-Chun Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China.
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
6
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
7
|
Cao W, Li H, Luo J. Prefrontal cortical circuits in social behaviors: an overview. J Zhejiang Univ Sci B 2024; 25:941-955. [PMID: 39626878 PMCID: PMC11634449 DOI: 10.1631/jzus.b2300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 12/13/2024]
Abstract
Social behaviors are fundamental and intricate functions in both humans and animals, governed by the interplay of social cognition and emotions. A noteworthy feature of several neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ), is a pronounced deficit in social functioning. Despite a burgeoning body of research on social behaviors, the precise neural circuit mechanisms underpinning these phenomena remain to be elucidated. In this paper, we review the pivotal role of the prefrontal cortex (PFC) in modulating social behaviors, as well as its functional alteration in social disorders in ASD or SCZ. We posit that PFC dysfunction may represent a critical hub in the pathogenesis of psychiatric disorders characterized by shared social deficits. Furthermore, we delve into the intricate connectivity of the medial PFC (mPFC) with other cortical areas and subcortical brain regions in rodents, which exerts a profound influence on social behaviors. Notably, a substantial body of evidence underscores the role of N-methyl-D-aspartate receptors (NMDARs) and the proper functioning of parvalbumin-positive interneurons within the mPFC for social regulation. Our overarching goal is to furnish a comprehensive understanding of these intricate circuits and thereby contribute to the enhancement of both research endeavors and clinical practices concerning social behavior deficits.
Collapse
Affiliation(s)
- Wei Cao
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyi Li
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhong Luo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310013, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Kietzman HW, Trinoskey-Rice G, Seo EH, Guo J, Gourley SL. Neuronal Ensembles in the Amygdala Allow Social Information to Motivate Later Decisions. J Neurosci 2024; 44:e1848232024. [PMID: 38499360 PMCID: PMC11026342 DOI: 10.1523/jneurosci.1848-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Social experiences carry tremendous weight in our decision-making, even when social partners are not present. To determine mechanisms, we trained female mice to respond for two food reinforcers. Then, one food was paired with a novel conspecific. Mice later favored the conspecific-associated food, even in the absence of the conspecific. Chemogenetically silencing projections from the prelimbic subregion (PL) of the medial prefrontal cortex to the basolateral amygdala (BLA) obstructed this preference while leaving social discrimination intact, indicating that these projections are necessary for socially driven choice. Further, mice that performed the task had greater densities of dendritic spines on excitatory BLA neurons relative to mice that did not. We next induced chemogenetic receptors in cells active during social interactions-when mice were encoding information that impacted later behavior. BLA neurons stimulated by social experience were necessary for mice to later favor rewards associated with social conspecifics but not make other choices. This profile contrasted with that of PL neurons stimulated by social experience, which were necessary for choice behavior in social and nonsocial contexts alike. The PL may convey a generalized signal allowing mice to favor particular rewards, while units in the BLA process more specialized information, together supporting choice motivated by social information.
Collapse
Affiliation(s)
- Henry W Kietzman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Esther H Seo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
9
|
Towner TT, Goyden MA, Coleman HJ, Drumm MK, Ritchie IP, Lieb KR, Varlinskaya EI, Werner DF. Determining the neuronal ensembles underlying sex-specific social impairments following adolescent intermittent ethanol exposure. Neuropharmacology 2023; 238:109663. [PMID: 37429543 PMCID: PMC10984351 DOI: 10.1016/j.neuropharm.2023.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Binge drinking during adolescence can have behavioral and neurobiological consequences. We have previously found that adolescent intermittent ethanol (AIE) exposure produces sex-specific social alterations indexed via decreases of social investigation and/or social preference in rats. The prelimbic cortex (PrL) regulates social interaction, and alterations within the PrL resulting from AIE may contribute to social alterations. The current study sought to determine whether AIE-induced PrL dysfunction underlies decreases in social interaction evident in adulthood. We first examined social interaction-induced neuronal activation of the PrL and several other regions of interest (ROIs) implicated in social interaction. Adolescent male and female cFos-LacZ rats were exposed to water (control) or ethanol (4 g/kg, 25% v/v) via intragastric gavage every other day between postnatal day (P) 25 and 45 (total 11 exposures). Since cFos-LacZ rats express β-galactosidase (β-gal) as a proxy for Fos, activated cells that express of β-gal can be inactivated by Daun02. In most ROIs, expression of β-gal was elevated in socially tested adult rats relative to home cage controls, regardless of sex. However, decreased social interaction-induced β-gal expression in AIE-exposed rats relative to controls was evident only in the PrL of males. A separate cohort underwent PrL cannulation surgery in adulthood and was subjected to Daun02-induced inactivation. Inactivation of PrL ensembles previously activated by social interaction reduced social investigation in control males, with no changes evident in AIE-exposed males or females. These findings highlight the role of the PrL in male social investigation and suggest an AIE-associated dysfunction of the PrL that may contribute to reduced social investigation following adolescent ethanol exposure.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Matthew A Goyden
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Harper J Coleman
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Mary K Drumm
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Isabella P Ritchie
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Kayla R Lieb
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
10
|
Guo M, Sun L. From rodents to humans: Rodent behavioral paradigms for social behavioral disorders. Brain Circ 2023; 9:154-161. [PMID: 38020957 PMCID: PMC10679632 DOI: 10.4103/bc.bc_48_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 12/01/2023] Open
Abstract
Social cognition guides social behavior. Subjects with proper social cognition should be able to: (1) have reasonable social motivation, (2) recognize other people and infer their intentions, and (3) weigh social hierarchies and other values. The choice of appropriate behavioral paradigms enables the use of rodents to study social behavior disorders in humans, thus enabling research to go deeper into neural mechanisms. This paper reviews commonly used rodent behavioral paradigms in studies of social behavior disorders. We focused specifically on sorting out ways to transfer the study of human social behavior to rodents through behavioral paradigms.
Collapse
Affiliation(s)
- Mingyue Guo
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University, Beijing, China
| | - Le Sun
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Mohapatra AN, Wagner S. The role of the prefrontal cortex in social interactions of animal models and the implications for autism spectrum disorder. Front Psychiatry 2023; 14:1205199. [PMID: 37409155 PMCID: PMC10318347 DOI: 10.3389/fpsyt.2023.1205199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Social interaction is a complex behavior which requires the individual to integrate various internal processes, such as social motivation, social recognition, salience, reward, and emotional state, as well as external cues informing the individual of others' behavior, emotional state and social rank. This complex phenotype is susceptible to disruption in humans affected by neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces of convergent evidence collected from studies of humans and rodents suggest that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, disruption of the PFC circuitry results in social behavior deficits symptomatic of ASD. Here, we review this evidence and describe various ethologically relevant social behavior tasks which could be employed with rodent models to study the role of the PFC in social interactions. We also discuss the evidence linking the PFC to pathologies associated with ASD. Finally, we address specific questions regarding mechanisms employed by the PFC circuitry that may result in atypical social interactions in rodent models, which future studies should address.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
12
|
Towner TT, Goyden MA, Coleman HJ, Drumm MK, Ritchie IP, Lieb KR, Varlinskaya EI, Werner DF. Determining the neuronal ensembles underlying sex-specific social impairments following adolescent intermittent ethanol exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533653. [PMID: 36993252 PMCID: PMC10055268 DOI: 10.1101/2023.03.21.533653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Binge drinking during adolescence can have behavioral and neurobiological consequences. We have previously found that adolescent intermittent ethanol (AIE) exposure produces a sex-specific social impairment in rats. The prelimbic cortex (PrL) regulates social behavior, and alterations within the PrL resulting from AIE may contribute to social impairments. The current study sought to determine whether AIE-induced PrL dysfunction underlies social deficits in adulthood. We first examined social stimulus-induced neuronal activation of the PrL and several other regions of interest implicated in social behavior. Male and female cFos-LacZ rats were exposed to water (control) or ethanol (4 g/kg, 25% v/v) via intragastric gavage every other day between postnatal day (P) 25 and 45 (total 11 exposures). Since cFos-LacZ rats express β-galactosidase (β-gal) as a proxy for cFos, activated cells that express of β-gal can be inactivated by Daun02. β-gal expression in most ROIs was elevated in socially tested adult rats relative to home cage controls, regardless of sex. However, differences in social stimulus-induced β-gal expression between controls and AIE-exposed rats was evident only in the PrL of males. A separate cohort underwent PrL cannulation surgery in adulthood and were subjected to Daun02-induced inactivation. Inactivation of PrL ensembles previously activated by a social stimulus led to a reduction of social behavior in control males, with no changes evident in AIE-exposed males or females. These findings highlight the role of the PrL in male social behavior and suggest an AIE-associated dysfunction of the PrL may contribute to social deficits following adolescent ethanol exposure.
Collapse
|