1
|
He C, Cai G, Jia Y, Jiang R, Wei X, Tao N. Effect of Diquat on gut health: molecular mechanisms, toxic effects, and protective strategies. Front Pharmacol 2025; 16:1562182. [PMID: 40421207 PMCID: PMC12104255 DOI: 10.3389/fphar.2025.1562182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Diquat is a widely used bipyridyl herbicide that is extensively applied in agricultural production and water management due to its high efficacy in weed control. However, its environmental persistence and the toxic effects it induces have raised widespread concern. Studies show that Diquat primarily enters the body through the digestive tract, leading to poisoning. The core mechanism of its toxicity involves reactive oxygen species (ROS)-induced oxidative stress, which not only directly damages the intestinal barrier function but also exacerbates inflammation and systemic toxicity by disrupting the balance of the gut microbiota and the normal production of metabolic products. This review systematically summarizes the physicochemical properties of Diquat, with a focus on analyzing the mechanisms by which it damages the gut tissue structure, barrier function, and microbiota after digestive tract exposure. The aim is to provide theoretical support for a deeper understanding of Diquat's toxic mechanisms and its digestive tract-centered toxic characteristics, laying a scientific foundation for the development of effective interventions and protective strategies against its toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolan Wei
- Department of Emergency, Suining Central Hospital in Sichuan Province, Suining, Sichuan, China
| | - Ning Tao
- Department of Emergency, Suining Central Hospital in Sichuan Province, Suining, Sichuan, China
| |
Collapse
|
2
|
Figueiredo Godoy AC, Frota FF, Araújo LP, Valenti VE, Pereira EDSBM, Detregiachi CRP, Galhardi CM, Caracio FC, Haber RSA, Fornari Laurindo L, Tanaka M, Barbalho SM. Neuroinflammation and Natural Antidepressants: Balancing Fire with Flora. Biomedicines 2025; 13:1129. [PMID: 40426956 PMCID: PMC12108937 DOI: 10.3390/biomedicines13051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Major depressive disorder (MDD) is a major global health concern that is intimately linked to neuroinflammation, oxidative stress, mitochondrial dysfunction, and complicated metabolic abnormalities. Traditional antidepressants frequently fall short, highlighting the urgent need for new, safer, and more acceptable therapeutic techniques. Phytochemicals, i.e., natural antidepressants derived from plants, are emerging as powerful plant-based therapies capable of targeting many pathogenic pathways at the same time. Summary: This narrative review synthesizes evidence from preclinical and clinical studies on the efficacy of phytochemicals such as curcumin, polyphenols, flavonoids, and alkaloids in lowering depressed symptoms. Consistent data show that these substances have neuroprotective, anti-inflammatory, and antioxidant properties, altering neuroimmune interactions, reducing oxidative damage, and improving mitochondrial resilience. Particularly, polyphenols and flavonoids have great therapeutic potential because of their capacity to penetrate the blood-brain barrier, inhibit cytokine activity, and encourage neuroplasticity mediated by brain-derived neurotrophic factor (BDNF). Despite promising results, the heterogeneity in study designs, phytochemical formulations, and patient demographics highlights the importance of thorough, standardized clinical studies. Conclusions: This review identifies phytochemicals as compelling adjuvant or independent therapies in depression treatment, providing multimodal mechanisms and enhanced tolerability. Additional research into improved dosage, pharmacokinetics, long-term safety, and integrative therapy approaches is essential. Using phytotherapeutics could considerably improve holistic and customized depression care, encouraging new research routes in integrative neuroscience and clinical psychiatry.
Collapse
Affiliation(s)
- Ana Clara Figueiredo Godoy
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
| | - Fernanda Fortes Frota
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
| | - Larissa Parreira Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
| | - Vitor E. Valenti
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-900, SP, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.F.L.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.F.L.)
| | - Cristiano M. Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
| | - Flávia Cristina Caracio
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.F.L.)
- School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Rafael S. A. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
| | - Lucas Fornari Laurindo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.F.L.)
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.P.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil (L.F.L.)
- Research Coordinator at UNIMAR Charity Hospital, Marília 17525-902, SP, Brazil
| |
Collapse
|
3
|
Zhang W, Wang T, Li L, Xu J, Wang J, Wang G, Du J. The Role of Mitochondrial Dysfunction-Mediated Changes in Immune Cytokine Expression in the Pathophysiology and Treatment of Major Depressive Disorder. Mol Neurobiol 2025:10.1007/s12035-025-04872-y. [PMID: 40163267 DOI: 10.1007/s12035-025-04872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Recent studies have demonstrated an association between major depressive disorder (MDD) and both mitochondrial dysfunction and alterations in pro-inflammatory cytokine expression, suggesting that such changes may be key drivers of MDD pathogenesis. Mechanistically, changes in mitochondrial function are related to endoplasmic reticulum stress, reactive oxygen species production, oxidative phosphorylation, apoptosis, and disrupted calcium ion homeostasis, all of which trigger the activation of signaling cascades that affect the expression of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin 1, interleukin 6, and interferons. Certain factors present in the gut microbiota ecosystem can influence communication between microorganisms and the brain through the neuroendocrine, immune, and autonomic nervous systems, thereby altering mitochondrial function and cytokine production. This review article explores the means through which mitochondria regulate immune cytokine expression and the role of mitochondrial dysfunction in the pathogenesis and treatment of MDD to provide new perspectives for the diagnosis of this disease and the development of novel therapeutic interventions with greater efficacy and improved safety profiles.
Collapse
Affiliation(s)
- Wanjun Zhang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jiyi Xu
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Jing Du
- National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
5
|
Yu LE, Yang WC, Liang YC. Crosstalk Within the Intestinal Epithelium: Aspects of Intestinal Absorption, Homeostasis, and Immunity. Biomedicines 2024; 12:2771. [PMID: 39767678 PMCID: PMC11673925 DOI: 10.3390/biomedicines12122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs). There are various types of IECs, including enterocytes, Paneth cells, enteroendocrine cells (EECs), goblet cells, tuft cells, M cells, and intestinal epithelial stem cells (IESCs), each with unique 3D structures and IEC distributions. Although the communication between IECs and other cell types, such as immune cells and neurons, has been intensively reviewed, communication between different IECs has rarely been addressed. The present paper overviews the networks among IECs that influence intestinal functions. Intestinal absorption is regulated by incretins derived from EECs that induce nutrient transporter activity in enterocytes. EECs, Paneth cells, tuft cells, and enterocytes release signals to activate Notch signaling, which modulates IESC activity and intestinal homeostasis, including proliferation and differentiation. Intestinal immunity can be altered via EECs, goblet cells, tuft cells, and cytokines derived from IECs. Finally, tools for investigating IEC communication have been discussed, including the novel 3D intestinal cell model utilizing enteroids that can be considered a powerful tool for IEC communication research. Overall, the importance of IEC communication, especially EECs and Paneth cells, which cover most intestinal functional regulating pathways, are overviewed in this paper. Such a compilation will be helpful in developing strategies for maintaining gut health.
Collapse
Affiliation(s)
| | | | - Yu-Chaun Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan; (L.-E.Y.); (W.-C.Y.)
| |
Collapse
|
6
|
Jia H, Gong J, Hu Z, Wen T, Li C, Chen Y, Huang J, He W. Antioxidant Carbon Dots Nanozymes Alleviate Stress-induced Depression by Modulating Gut Microbiota. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19739-19750. [PMID: 39219094 DOI: 10.1021/acs.langmuir.4c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Depression is a debilitating mental illness that severely threatens millions of individuals and public health. Because of the multifactorial etiologies, there is currently no cure for depression; thus, it is urgently imperative to find alternative antidepressants and strategies. Growing evidence underscores the prominent role of oxidative stress as key pathological hallmarks of depression, making oxidative stress a potential therapeutic target. In this study, we report a N-doped carbon dot nanozyme (CDzyme) with excellent antioxidant capacity for treating depression by remodeling redox homeostasis and gut microbiota. The CDzymes prepared via microwave-assisted fast polymerization of histidine and glucose exhibit superior biocompatibility. Benefiting from the unique structure, CDzymes can provide abundant electrons, hydrogen atoms, and protons for reducing reactions, as well as catalytic sites to mimic redox enzymes. These mechanisms collaborating endow CDzymes with broad-spectrum antioxidant capacity to scavenge reactive oxygen and nitrogen species (•OH, O2-•, H2O2, ONOO-), and oxygen/nitrogen centered free radicals. A depression animal model was established by chronic unpredictable mild stress (CUMS) to evaluate the therapeutic efficacy of CDzymes from the behavioral, physiological, and biochemical index and intestinal flora assessments. CDzymes can remarkably improve depression-like behaviors and key neurotransmitters produced in hippocampus tissues and restore the gut microbiota compositions and the amino acid metabolic functions, proving the potential in treating depression through the intestinal-brain axis system. This study will facilitate the development of intestinal flora dysbiosis nanomedicines and treatment strategies for depression and other oxidative stress related multifactorial diseases.
Collapse
Affiliation(s)
- Huimin Jia
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| | - Jiawen Gong
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Zheyuan Hu
- College of Food and Pharmacy, Xuchang University, Xuchang, Henan 461000, P. R. China
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Caixia Li
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| | - Yuyang Chen
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Jihong Huang
- College of Food and Pharmacy, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang, Henan 461000, P. R. China
| |
Collapse
|