1
|
Taverne M, Khonsari RH. [Development and growth of the forehead]. ANN CHIR PLAST ESTH 2024; 69:489-495. [PMID: 39542532 DOI: 10.1016/j.anplas.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 11/17/2024]
Abstract
Craniofacial development involves processes leading to the positioning and early growth of the frontal ossification centers. Growth then occurs, mostly secondary to the activity of the sutures, with major interactions with the functional environment, mostly consisting in the growing brain, based on mechanosensation and mechanotransduction mechanisms. Here, we review these processes and assess their relevance in the understanding of craniofacial malformations.
Collapse
Affiliation(s)
- M Taverne
- Laboratoire Forme et croissance du crâne, Institut Imagine, Paris, France
| | - R H Khonsari
- Laboratoire Forme et croissance du crâne, Institut Imagine, Paris, France; Service de chirurgie maxillofaciale et chirurgie plastique, Hôpital Necker-Enfants malades, AP-HP, Paris, France; CRMR CRANIOST, Filière TeteCou ; ERN CRANIO; Faculté de médecine, Université Paris-Cité, Paris, France.
| |
Collapse
|
2
|
Bordoni B, Escher AR. Rethinking the Origin of the Primary Respiratory Mechanism. Cureus 2023; 15:e46527. [PMID: 37808591 PMCID: PMC10552882 DOI: 10.7759/cureus.46527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
Spheno-occipital synchondrosis (SOS) is the joint regarded as the most important foundation for understanding cranial osteopathy and craniosacral therapy. SOS is the origin of the primary respiratory mechanism (PRM), a movement between the posterior surface of the body of the sphenoid bone and the anterior surface of the base of the occipital bone. From the PRM perspective, an alteration of the position between the two bone surfaces would create cranial and/or craniosacral dysfunction. These positional alterations of the SOS (in adults and children) would determine specific and schematical movements of the bones of the entire skull, whose movements are recognizable by palpation by trained operators. PRM expression is influenced by other elements, such as movement of the cranial bones, inherent movement of the central nervous system, cyclic movement of cerebrospinal fluid (CSF), mechanical tension of the cranial meninges, and passive movement of the sacral bone between the iliac bones. The article reviews the most up-to-date information on the evolution of cranial sutures/joints and meninges in adulthood, the fluctuations of the CSF, brain, and spinal mass movements. Research should reconsider the motivations that induce the operator to discriminate the palpable cranial rhythmic impulse, and probably, to rethink new cranial dysfunctional patterns.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
3
|
Gaca PJ, Lewandowicz M, Lipczynska-Lewandowska M, Simon M, Matos PAW, Doulis A, Rokohl AC, Heindl LM. Embryonic Development of the Orbit. Klin Monbl Augenheilkd 2022; 239:19-26. [PMID: 35120374 DOI: 10.1055/a-1709-1310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The embryonic and fetal development of the orbit comprises a series of sequential events, starting with the fertilization of the ovum and extending until birth. Most of the publications dealing with orbital morphogenesis describe the sequential development of each germinal layer, the ectoderm with its neuroectoderm derivative and the mesoderm. This approach provides a clear understanding of the mode of development of each layer but does not give the reader a general picture of the structure of the orbit within any specified time frame. In order to enhance our understanding of the developmental anatomy of the orbit, the authors have summarized the recent developments in orbital morphogenesis, a temporally precise and morphogenetically intricate process. Understanding this multidimensional process of development in prenatal life, identifying and linking signaling cascades, as well as the regulatory genes linked to existing diseases, may pave the way for advanced molecular diagnostic testing, developing minimally invasive interventions, and the use of progenitor/stem cell and even regenerative therapy.
Collapse
Affiliation(s)
- Piotr Jakub Gaca
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Lewandowicz
- Department of Oncological Surgery, Multidisciplinary M. Copernicus Voivodeship Center for Oncology and Traumatology, Lodz, Poland
| | - Malgorzata Lipczynska-Lewandowska
- Clinic and Policlinic of Dental and Maxillofacial Surgery, Central Clinical Hospital of the Medical University of Lodz, Lodz, Poland
| | - Michael Simon
- Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne, Duesseldorf, Cologne, Germany
| | - Philomena A Wawer Matos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexandros Doulis
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander C Rokohl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ludwig M Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne, Duesseldorf, Cologne, Germany
| |
Collapse
|
4
|
Bordoni B, Escher AR, Tobbi F, Pranzitelli A, Pianese L. Fascial Nomenclature: Update 2021, Part 1. Cureus 2021; 13:e13339. [PMID: 33643754 PMCID: PMC7885767 DOI: 10.7759/cureus.13339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
The fascial continuum is a topic for which all clinicians and other healthcare professionals come into contact on a daily basis, both consciously and without having the idea that the tissues they deal with can fall within the concept of fascia. The Foundation of Osteopathic Research and Clinical Endorsement (FORCE) organization includes many clinicians and health professionals, as well as researchers in different scientific disciplines. The goal is to dissect some concepts related to daily practice, such as fascial tissue, from a scientific point of view and impartially. Proof of the impartiality of FORCE is the fact that it does not sell any fascial products, no tools, and, above all, all the fascial terminology used has no copyright: research and knowledge are the right of anyone who wishes improvement for the good of the patient. The article aims to review the themes that could add new elements for a broader view of the meaning and nomenclature of the fascial system.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Anesthesiology and Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Filippo Tobbi
- Osteopathy, Poliambulatorio Medico e Odontoiatrico, Varese, ITA
| | | | - Luigi Pianese
- Physical Medicine and Rehabilitation, 3C+A Health and Rehabilitation, Roma, ITA
| |
Collapse
|
5
|
Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, Tang S, Cen S, Ye G, Li Z, Yu W, Wang P, Wu Y, Shen H. GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. eLife 2020; 9:e59079. [PMID: 33006314 PMCID: PMC7609060 DOI: 10.7554/elife.59079] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a common systemic skeletal disorder resulting in bone fragility and increased fracture risk. It is still necessary to explore its detailed mechanisms and identify novel targets for the treatment of osteoporosis. Previously, we found that a lncRNA named GAS5 in human could negatively regulate the lipoblast/adipocyte differentiation. However, it is still unclear whether GAS5 affects osteoblast differentiation and whether GAS5 is associated with osteoporosis. Our current research found that GAS5 was decreased in the bones and BMSCs, a major origin of osteoblast, of osteoporosis patients. Mechanistically, GAS5 promotes the osteoblast differentiation by interacting with UPF1 to degrade SMAD7 mRNA. Moreover, a decreased bone mass and impaired bone repair ability were observed in Gas5 heterozygous mice, manifesting in osteoporosis. The systemic supplement of Gas5-overexpressing adenoviruses significantly ameliorated bone loss in an osteoporosis mouse model. In conclusion, GAS5 promotes osteoblast differentiation by targeting the UPF1/SMAD7 axis and protects against osteoporosis.
Collapse
Affiliation(s)
- Ming Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Su'an Tang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Shuizhong Cen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
- Department of Orthopedics, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Zhaofeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Yanfeng Wu
- Center for Biotherapy,The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|