1
|
Duve K, Shkrobot S, Petakh P, Oksenych V, Kamyshnyi O. Clinical, Neuroimaging, and Genetic Markers Associated with Cognitive and Functional Outcomes After Traumatic Brain Injury. J Clin Med 2025; 14:2796. [PMID: 40283626 PMCID: PMC12027744 DOI: 10.3390/jcm14082796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Traumatic brain injury (TBI) is a major cause of long-term disability worldwide, often leading to progressive cognitive and functional impairments. This study aimed to investigate the underlying factors contributing to long-term deterioration in TBI patients. Methods: We conducted a comprehensive evaluation of 145 patients aged 18-66 years with a documented history of TBI and ongoing cognitive and behavioral deficits. Assessments included neuroimaging, laboratory tests, genetic analysis, and standardized tools such as the Montreal Cognitive Assessment (MoCA) and the Barthel Index. Results: Structural brain abnormalities, including ventricular enlargement and gliosis, were observed in a substantial portion of the cohort. Persistent neuroinflammatory markers were also identified. Genetic analysis revealed a significant association between cognitive decline and polymorphisms in the ACE and PON1 genes. Patients carrying these variants were more likely to exhibit reduced cognitive performance and greater functional limitations. Conclusion: These findings suggest that genetic predisposition, chronic neuroinflammation, and structural brain damage collectively contribute to long-term outcomes following TBI. This highlights the potential of genetic and imaging biomarkers in identifying high-risk individuals and supports the need for personalized approaches to diagnosis, monitoring, and treatment in chronic TBI management.
Collapse
Affiliation(s)
- Khrystyna Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Svitlana Shkrobot
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
2
|
Wang H, Zeng R. Aberrant protein aggregation in amyotrophic lateral sclerosis. J Neurol 2024; 271:4826-4851. [PMID: 38869826 DOI: 10.1007/s00415-024-12485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. As its pathological mechanisms are not well understood, there are no efficient therapeutics for it at present. While it is highly heterogenous both etiologically and clinically, it has a common salient hallmark, i.e., aberrant protein aggregation (APA). The upstream pathogenesis and the downstream effects of APA in ALS are sophisticated and the investigation of this pathology would be of consequence for understanding ALS. In this paper, the pathomechanism of APA in ALS and the candidate treatment strategies for it are discussed.
Collapse
Affiliation(s)
- Huaixiu Wang
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China.
- Beijing Ai-Si-Kang Medical Technology Co. Ltd., No. 18 11th St Economical & Technological Development Zone, Beijing, 100176, China.
| | - Rong Zeng
- Department Neurology, Shanxi Provincial Peoples Hospital: Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
3
|
Carnovale B, Choudhary A, Lavadi RS, Shah MJ, Maroon JC. Letter to the Editor Regarding "Assessing Patients Perception: Analyzing the Quality, Reliability, Comprehensibility, and Mentioned Medical Concepts of Traumatic Brain Injury Videos on YouTube". World Neurosurg 2024; 188:232. [PMID: 39010332 DOI: 10.1016/j.wneu.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 07/17/2024]
Affiliation(s)
- Ben Carnovale
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Aditi Choudhary
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Raj Swaroop Lavadi
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Manan J Shah
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Grigg-Damberger MM. Sleep/Wake Disorders After Sports Concussion: Risks, Revelations, and Interventions. J Clin Neurophysiol 2023; 40:417-425. [PMID: 36930200 DOI: 10.1097/wnp.0000000000000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Sleep-wake disturbances (SWDs) are among the most prevalent, persistent, and often disregarded sequelae of traumatic brain injury. Identification and treatment of SWDs in patients with traumatic brain injury is important and can complement other efforts to promote maximum functional recovery. SWDs can accentuate other consequences of traumatic brain injury, negatively affect mood, exacerbate pain, heighten irritability, and diminish cognitive abilities and the potential for recovery. The risk for sports injuries increases when athletes are sleep deprived. Sleep deprivation increases risk-taking behaviors, predisposing to injuries. SWDs are an independent risk factor for prolonged recovery after sports-related concussion. SWDs following sports-related concussion have been shown to impede recovery, rehabilitation, and return to preinjury activities.
Collapse
|
5
|
Iverson GL, Castellani RJ, Cassidy JD, Schneider GM, Schneider KJ, Echemendia RJ, Bailes JE, Hayden KA, Koerte IK, Manley GT, McNamee M, Patricios JS, Tator CH, Cantu RC, Dvorak J. Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: a systematic review of case-control and cohort studies. Br J Sports Med 2023; 57:810-821. [PMID: 37316187 DOI: 10.1136/bjsports-2023-106890] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Concern exists about possible problems with later-in-life brain health, such as cognitive impairment, mental health problems and neurological diseases, in former athletes. We examined the future risk for adverse health effects associated with sport-related concussion, or exposure to repetitive head impacts, in former athletes. DESIGN Systematic review. DATA SOURCES Search of MEDLINE, Embase, Cochrane, CINAHL Plus and SPORTDiscus in October 2019 and updated in March 2022. ELIGIBILITY CRITERIA Studies measuring future risk (cohort studies) or approximating that risk (case-control studies). RESULTS Ten studies of former amateur athletes and 18 studies of former professional athletes were included. No postmortem neuropathology studies or neuroimaging studies met criteria for inclusion. Depression was examined in five studies in former amateur athletes, none identifying an increased risk. Nine studies examined suicidality or suicide as a manner of death, and none found an association with increased risk. Some studies comparing professional athletes with the general population reported associations between sports participation and dementia or amyotrophic lateral sclerosis (ALS) as a cause of death. Most did not control for potential confounding factors (eg, genetic, demographic, health-related or environmental), were ecological in design and had high risk of bias. CONCLUSION Evidence does not support an increased risk of mental health or neurological diseases in former amateur athletes with exposure to repetitive head impacts. Some studies in former professional athletes suggest an increased risk of neurological disorders such as ALS and dementia; these findings need to be confirmed in higher quality studies with better control of confounding factors. PROSPERO REGISTRATION NUMBER CRD42022159486.
Collapse
Affiliation(s)
- Grant L Iverson
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - J David Cassidy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Geoff M Schneider
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri-Kansas City, Kansas City, Missouri, USA
- University Orthopedic Centre, Concussion Care Clinic, State College, Pennsylvania, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Neurosurgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - K Alix Hayden
- Libraries and Cultural Resources, University of Calgary, Calgary, Alberta, Canada
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Mass General Brigham, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey T Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Michael McNamee
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles H Tator
- Department of Surgery and Division of Neurosurgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Robert C Cantu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Robert C. Cantu Concussion Center, Emerson Hospital, Concord, Massachusetts, USA
| | - Jiri Dvorak
- Schulthess Clinic Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Clergue-Duval V, Coulbault L, Questel F, Cabé N, Laniepce A, Delage C, Boudehent C, Bloch V, Segobin S, Naassila M, Pitel AL, Vorspan F. Alcohol Withdrawal Is an Oxidative Stress Challenge for the Brain: Does It Pave the Way toward Severe Alcohol-Related Cognitive Impairment? Antioxidants (Basel) 2022; 11:2078. [PMID: 36290801 PMCID: PMC9598168 DOI: 10.3390/antiox11102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol use is a leading cause of mortality, brain morbidity, neurological complications and minor to major neurocognitive disorders. Alcohol-related neurocognitive disorders are consecutive to the direct effect of chronic and excessive alcohol use, but not only. Indeed, patients with severe alcohol use disorders (AUD) associated with pharmacological dependence suffer from repetitive events of alcohol withdrawal (AW). If those AW are not managed by adequate medical and pharmacological treatment, they may evolve into severe AW, or be complicated by epileptic seizure or delirium tremens (DT). In addition, we suggest that AW favors the occurrence of Wernicke's encephalopathy (WE) in patients with known or unknown thiamine depletion. We reviewed the literature on oxidative stress as a core mechanism in brain suffering linked with those conditions: AW, epileptic seizure, DT and WE. Thus, we propose perspectives to further develop research projects aiming at better identifying oxidative stress brain damage related to AW, assessing the effect of repetitive episodes of AW, and their long-term cognitive consequences. This research field should develop neuroprotective strategies during AW itself or during the periwithdrawal period. This could contribute to the prevention of severe alcohol-related brain damage and cognitive impairments.
Collapse
Affiliation(s)
- Virgile Clergue-Duval
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- Resalcog (Réseau Pour la Prise en Charge Des Troubles Cognitifs Liés à L’alcool), F-75017 Paris, France
| | - Laurent Coulbault
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
| | - Frank Questel
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- Resalcog (Réseau Pour la Prise en Charge Des Troubles Cognitifs Liés à L’alcool), F-75017 Paris, France
| | - Nicolas Cabé
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Service d’Addictologie, Centre Hospitalier Universitaire de Caen, F-14000 Caen, France
| | - Alice Laniepce
- Normandie Univ, UNIROUEN, CRFDP (EA 7475), Rouen F-76000, France
| | - Clément Delage
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service de Pharmacie, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- UFR de Pharmacie, Université Paris Cité, F-75006 Paris, France
| | - Céline Boudehent
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
| | - Vanessa Bloch
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- Service de Pharmacie, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- UFR de Pharmacie, Université Paris Cité, F-75006 Paris, France
| | - Shailendra Segobin
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Normandie Univ, UNICAEN, PSL Université Paris Cité, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, F-14074 Caen, France
| | - Mickael Naassila
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Inserm UMRS-1247 Groupe de Recherche Sur L’alcool et Les Pharmacodépendances, Université de Picardie Jules Verne, F-80000 Amiens, France
- UFR de Pharmacie, Université de Picardie Jules Verne, F-80000 Amiens, France
| | - Anne-Lise Pitel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen-Normandie, Cyceron, F-14074 Caen, France
- FHU Améliorer le Pronostic Des Troubles Addictifs et Mentaux Par Une Médecine Personnalisée (A2M2P), F-14074 Caen, France
- Normandie Univ, UNICAEN, PSL Université Paris Cité, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, F-14074 Caen, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP Nord–Université Paris Cité, APHP, F-75010 Paris, France
- Inserm UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), F-75006 Paris, France
- UFR de Médecine, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
7
|
Cai S, Lu Z. Effect of Mild Hypothermia after Craniotomy on the Function of Related Organs in Patients with Traumatic Brain Injury. Emerg Med Int 2021; 2021:4105406. [PMID: 34659832 PMCID: PMC8519674 DOI: 10.1155/2021/4105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate the effect of mild hypothermia after craniotomy on the function of related organs in patients with traumatic brain injury. METHOD A total of 240 patients with craniocerebral injury from January 2017 to December 2020 were retrospectively analyzed. Patients were randomly divided into a control group and an experimental group, with 120 cases in each group. The control group was treated with craniotomy decompression, and the experimental group was treated with early mild hypothermia based on craniotomy decompression. Patients' venous blood was collected before operation (T 0), at the end of operation (T 1), 24 h after operation (T 2), and 2 weeks after operation (T 3) to detect the serum levels of the beta-subunit of S100 protein (S100-β); soluble growth stimulation expressed gene 2 (sST2), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin 6 (IL-6). The prognostic effect was evaluated after 2 weeks of treatment. RESULTS After mild hypothermia treatment after craniotomy and decompression, the patients' serum S100-β, sST2, NGAL, and IL-6 levels at different time points were significantly lower than the control group, and the total effective rate was higher than that of the control group. CONCLUSION The treatment of mild hypothermia after craniotomy can reduce the related organs function damage indicators and inflammatory stress response, thus improving clinical efficacy and prognosis.
Collapse
Affiliation(s)
- Shu Cai
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Haian 226600, Nantong, Jiangsu, China
| | - Zheng Lu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Haian 226600, Nantong, Jiangsu, China
| |
Collapse
|
8
|
McCarty MF, Lerner A. The second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Rev Neurother 2021; 21:559-570. [PMID: 33749495 DOI: 10.1080/14737175.2021.1907182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION A delayed second wave of brain trauma is mediated in large part by microglia that are activated to a pro-inflammatory M1 phenotype by DAMP proteins released by dying neurons. These microglia can promote apoptosis or necrosis in neighboring neurons by producing a range of pro-inflammatory cytokines and the deadly oxidant peroxynitrite. This second wave could therefore be mitigated with agents that blunt the post-traumatic M1 activation of microglia and that preferentially promote a pro-healing M2 phenotype. AREAS COVERED The literature on nutraceuticals that might have clinical potential in this regard. EXPERT OPINION The chief signaling pathway whereby DAMPs promote M1 microglial activation involves activation of toll-like receptor 4 (TLR4), NADPH oxidase, NF-kappaB, and the stress activated kinases JNK and p38. The green tea catechin EGCG can suppress TLR4 expression. Phycocyanobilin can inhibit NOX2-dependent NADPH oxidase, ferulate and melatonin can oppose pro-inflammatory signal modulation by NADPH oxidase-derived oxidants. Long-chain omega-3 fatty acids, the soy isoflavone genistein, the AMPK activator berberine, glucosamine, and ketone bodies can down-regulate NF-kappaB activation. Vitamin D activity can oppose JNK/p38 activation. A sophisticated program of nutraceutical supplementation may have important potential for mitigating the second phase of neuronal death and aiding subsequent healing.
Collapse
Affiliation(s)
- Mark F McCarty
- Department of research, Catalytic Longevity Foundation, San Diego, California, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|