1
|
Islam K, Starnes K, Smith KM, Richner T, Gregg N, Rabinstein AA, Worrell GA, Lundstrom BN. Noninvasive brain stimulation as focal epilepsy treatment in the hospital, clinic, and home. Epilepsia Open 2025. [PMID: 40208019 DOI: 10.1002/epi4.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/12/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVE Noninvasive brain stimulation (NIBS) provides a treatment option for patients not eligible for surgical intervention or who seek low-risk approaches and may be used in the hospital, clinic, and at home. Our objective is to summarize our single-center experience with multiple NIBS approaches for the treatment of focal epilepsy. METHODS A retrospective chart review identified drug-resistant focal epilepsy patients who received NIBS as an epilepsy treatment at Mayo Clinic in Rochester, MN. Patients were typically treated as follows: (1) for TMS, 1 Hz stimulation was applied for five consecutive days in the neuromodulation clinic, (2) for outpatient tDCS, stimulation was applied for five consecutive days in the clinic, followed by optional treatment at home, and (3) for inpatient tDCS, stimulation was applied for three consecutive days. We analyzed continuous EEG data for the inpatient tDCS cohort and available HD-EEG data for outpatient cohorts to quantify changes in interictal epileptiform discharges (IEDs) as a result of stimulation. Outcomes were assessed at 1 month for TMS and outpatient tDCS and 1 week for inpatient tDCS. RESULTS Twenty-four patients were treated with TMS (n = 10) and tDCS (n = 14, 9 as outpatients). The median age was 40 years (range 15-73). The median seizure reduction following stimulation was 50%. Fourteen patients (58%) were responders to treatment (TMS = 4/10, tDCS Outpatient = 7/9, tDCS Inpatient = 3/5). Five outpatient tDCS participants elected to continue treatment at home. Four TMS and four outpatient tDCS patients underwent high-density EEG before and after 5 days of therapy. Following stimulation, IED rate was reduced in 4/5 inpatient tDCS patients, 4/4 outpatient tDCS patients, and 4/4 TMS patients. Two patients experienced an increase in seizure frequency (1 following TMS and 1 following outpatient tDCS), which returned to baseline 4-6 weeks after stimulation treatments were discontinued. SIGNIFICANCE TMS and tDCS are potential treatment approaches for drug-resistant focal epilepsy patients in the hospital, clinic, and home. They have a favorable safety profile and can lead to a reduction in IED rates and seizures. These results suggest further studies are needed to examine NIBS as a treatment for epilepsy. PLAIN LANGUAGE SUMMARY Noninvasive brain stimulation, such as transcranial magnetic stimulation and transcranial direct current stimulation, offers new treatment options for patients with focal seizures. This study reviewed the experience at Mayo Clinic using noninvasive brain stimulation in the hospital, clinic, and at-home settings to treat seizures. The results showed an overall 50% median seizure reduction, and 58% of patients had at least a 50% reduction in seizures. Noninvasive brain stimulation is a promising treatment approach with a favorable safety profile.
Collapse
Affiliation(s)
- Karimul Islam
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith Starnes
- Department of Child and Adolescent Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelsey M Smith
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Richner
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Gregg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
2
|
Islam K, Starnes K, Smith KM, Richner T, Gregg N, Rabinstein AA, Worrell GA, Lundstrom BN. Noninvasive Brain Stimulation as Focal Epilepsy Treatment in the Hospital, Clinic, and Home. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.03.25321406. [PMID: 39974017 PMCID: PMC11838687 DOI: 10.1101/2025.02.03.25321406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Noninvasive brain stimulation (NIBS) provides a treatment option for patients not eligible for surgical intervention or who seek low-risk approaches and may be used in the hospital, clinic and at home. Our objective is to summarize our single-center experience with multiple NIBS approaches for the treatment of focal epilepsy. Methods A retrospective chart review identified drug resistant focal epilepsy patients who received NIBS as an epilepsy treatment at Mayo Clinic in Rochester, MN. Patients were typically treated as follows: (1) for TMS, 1 Hz stimulation was applied for five consecutive days in the neuromodulation clinic, (2) for outpatient tDCS, stimulation was applied for five consecutive days in the clinic, followed by optional treatment at home (3) for inpatient tDCS, stimulation was applied for three consecutive days. We analyzed continuous EEG data for the inpatient tDCS cohort and available HD-EEG data for outpatient cohorts to quantify changes in interictal epileptiform discharges (IEDs) as a result of stimulation. Outcomes were assessed at 1-month for TMS and outpatient tDCS and 1-week for inpatient tDCS. Results 24 patients were treated with TMS (n=10) and tDCS (n=14, 9 as outpatients). The median age was 40 years (range 15-73). The median seizure reduction following stimulation was 50%. 14 patients (58 %) were responders to treatment (TMS=4/10, tDCS Outpatient =7/9, tDCS Inpatient=3/5). Five outpatient tDCS participants elected to continue treatment at home. 4 TMS and 4 outpatient tDCS underwent high density EEG before and after 5 days of therapy. Following stimulation, IED rate was reduced in 4/5 inpatient tDCS patients, 4/4 outpatient tDCS patients, and 4/4 TMS patients. Two patients experienced an increase in seizure frequency (1 following TMS and 1 following outpatient tDCS), which returned to baseline 4-6 weeks after stimulation treatments were discontinued. Conclusions TMS and tDCS are potential treatment approaches for drug resistant focal epilepsy patients in the hospital, clinic, and home. They have a favorable safety profile and can lead to a reduction in IEDs rates and seizures. These results suggest further studies are needed to examine NIBS as treatment for epilepsy.
Collapse
Affiliation(s)
- Karimul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Keith Starnes
- Department of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas Richner
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Gregg
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
3
|
Critzer SS, Bosch TJ, Fercho KA, Scholl JL, Baugh LA. Water and brain function: effects of hydration status on neurostimulation with transcranial magnetic stimulation. J Neurophysiol 2024; 132:791-807. [PMID: 39081213 PMCID: PMC11427052 DOI: 10.1152/jn.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
Neurostimulation/neurorecording are tools to study, diagnose, and treat neurological/psychiatric conditions. Both techniques depend on volume conduction between scalp and excitable brain tissue. Here, we examine how neurostimulation with transcranial magnetic stimulation (TMS) is affected by hydration status, a physiological variable that can influence the volume of fluid spaces/cells, excitability, and cellular/global brain functioning. Normal healthy adult participants (32, 9 males) had common motor TMS measures taken in a repeated-measures design from dehydrated (12-h overnight fast/thirst) and rehydrated (identical dehydration protocol followed by rehydration with 1 L water in 1 h) testing days. The target region was left primary motor cortex hand area. Response at the target muscle was recorded with electromyography. Urinalysis confirmed hydration status. Motor hotspot shifted in half of participants. Motor threshold decreased in rehydration, indicating increased excitability. Even after redosing/relocalizing TMS to the new threshold/hotspot, rehydration still showed evidence of increased excitability: recruitment curve measures generally shifted upward and the glutamate-dependent paired-pulse protocol, short intracortical facilitation (SICF), was increased. Short intracortical inhibition (SICI), long intracortical inhibition (LICI), long intracortical facilitation (LICF), and cortical silent period (CSP) were relatively unaffected. The hydration perturbations were mild/subclinical based on the magnitude/speed and urinalysis. Motor TMS measures showed evidence of expected physiological changes of osmotic challenges. Rehydration showed signs of macroscopic and microscopic volume changes including decreased scalp-cortex distance (brain closer to stimulator) and astrocyte swelling-induced glutamate release. Hydration may be a source of variability affecting any techniques dependent on brain volumes/volume conduction. These concepts are important for researchers/clinicians using such techniques or dealing with the wide variety of disease processes involving water balance.NEW & NOTEWORTHY Hydration status can affect brain volumes and excitability, which should affect techniques dependent on electrical volume conduction, including neurostimulation/recording. We test the previously unknown effects of hydration on neurostimulation with TMS and briefly review relevant physiology of hydration. Rehydration showed lower motor threshold, shifted motor hotspot, and generally larger responses even after compensating for threshold/hotspot changes. This is important for clinical and research applications of neurostimulation/neurorecording and the many clinical disorders related to water balance.
Collapse
Affiliation(s)
- Sam S Critzer
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
- Department of Psychiatry, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| | - Taylor J Bosch
- Department of Psychology, University of South Dakota, Vermillion, South Dakota, United States
| | - Kelene A Fercho
- FAA Civil Aerospace Medical Institute, Oklahoma City, Oklahoma, United States
| | - Jamie L Scholl
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
| | - Lee A Baugh
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
| |
Collapse
|
4
|
Skog HM, Määttä S, Säisänen L, Lakka TA, Haapala EA. Associations of physical fitness with cortical inhibition and excitation in adolescents and young adults. Front Neurosci 2024; 18:1297009. [PMID: 38741791 PMCID: PMC11090042 DOI: 10.3389/fnins.2024.1297009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Objective We investigated the longitudinal associations of cumulative motor fitness, muscular strength, and cardiorespiratory fitness (CRF) from childhood to adolescence with cortical excitability and inhibition in adolescence. The other objective was to determine cross-sectional associations of motor fitness and muscular strength with brain function in adolescence. Methods In 45 healthy adolescents (25 girls and 20 boys) aged 16-19 years, we assessed cortical excitability and inhibition by navigated transcranial magnetic stimulation (nTMS), and motor fitness by 50-m shuttle run test and Box and block test, and muscular strength by standing long jump test. These measures of physical fitness and CRF by maximal exercise were assessed also at the ages 7-9, 9-11, and 15-17 years. Cumulative measures of physical measures were computed by summing up sample-specific z-scores at ages 7-9, 9-11, and 15-17 years. Results Higher cumulative motor fitness performance from childhood to adolescence was associated with lower right hemisphere resting motor threshold (rMT), lower silent period threshold (SPt), and lower motor evoked potential (MEP) amplitude in boys. Better childhood-to-adolescence cumulative CRF was also associated with longer silent period (SP) duration in boys and higher MEP amplitude in girls. Cross-sectionally in adolescence, better motor fitness and better muscular strength were associated with lower left and right rMT among boys and better motor fitness was associated with higher MEP amplitude and better muscular strength with lower SPt among girls. Conclusion Physical fitness from childhood to adolescence modifies cortical excitability and inhibition in adolescence. Motor fitness and muscular strength were associated with motor cortical excitability and inhibition. The associations were selective for specific TMS indices and findings were sex-dependent.
Collapse
Affiliation(s)
- Hanna Mari Skog
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo A. Lakka
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Eero A. Haapala
- Department of Physiology, Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
6
|
Noorizadeh N, Varner JA, Birg L, Williard T, Rezaie R, Wheless J, Narayana S. Comparing the efficacy of awake and sedated MEG to TMS in mapping hand sensorimotor cortex in a clinical cohort. Neuroimage Clin 2024; 41:103562. [PMID: 38215622 PMCID: PMC10821581 DOI: 10.1016/j.nicl.2024.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/19/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Non-invasive methods such as Transcranial Magnetic Stimulation (TMS) and magnetoencephalography (MEG) aid in the pre-surgical evaluation of patients with epilepsy or brain tumor to identify sensorimotor cortices. MEG requires sedation in children or patients with developmental delay. However, TMS can be applied to awake patients of all ages with any cognitive abilities. In this study, we compared the efficacy of TMS with MEG (in awake and sedated states) in identifying the hand sensorimotor areas in patients with epilepsy or brain tumors. We identified 153 patients who underwent awake- (n = 98) or sedated-MEG (n = 55), along with awake TMS for hand sensorimotor mapping as part of their pre-surgical evaluation. TMS involved stimulating the precentral gyrus and recording electromyography responses, while MEG identified the somatosensory cortex during median nerve stimulation. Awake-MEG had a success rate of 92.35 % and TMS had 99.49 % (p-value = 0.5517). However, in the sedated-MEG cohort, TMS success rate of 95.61 % was significantly higher compared to MEG's 58.77 % (p-value = 0.0001). Factors affecting mapping success were analyzed. Logistic regression across the entire cohort identified patient sedation as the lone significant predictor, contrary to age, lesion, metal, and number of antiseizure medications (ASMs). A subsequent analysis replaced sedation with anesthetic drug dosage, revealing no significant predictors impacting somatosensory mapping success under sedation. This study yields insights into the utility of TMS and MEG in mapping hand sensorimotor cortices and underscores the importance of considering factors that influence eloquent cortex mapping limitations during sedation.
Collapse
Affiliation(s)
- Negar Noorizadeh
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Jackie Austin Varner
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Liliya Birg
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Theresa Williard
- Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Roozbeh Rezaie
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - James Wheless
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Shalini Narayana
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States; Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, United States; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
7
|
Nguyen DTA, Julkunen P, Säisänen L, Määttä S, Rissanen SM, Lintu N, Könönen M, Lakka T, Karjalainen PA. Developmental models of motor-evoked potential features by transcranial magnetic stimulation across age groups from childhood to adulthood. Sci Rep 2023; 13:10604. [PMID: 37391521 PMCID: PMC10313665 DOI: 10.1038/s41598-023-37775-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
To derive the maturation of neurophysiological processes from childhood to adulthood reflected by the change of motor-evoked potential (MEP) features. 38 participants were recruited from four groups (age mean in years [SD in months], number (males)): children (7.3 [4.2], 7(4)), preadolescents (10.3 [6.9], 10(5)), adolescents (15.3 [9.8], 11(5)), and adults (26.9 [46.2], 10(5)). The navigated transcranial magnetic stimulation was performed on both hemispheres at seven stimulation intensity (SI) levels from sub- to supra-threshold and targeted to the representative cortical area of abductor pollicis brevis muscle. MEPs were measured from three hand- and two forearm-muscles. The input-output (I/O) curves of MEP features across age groups were constructed using linear mixed-effect models. Age and SI significantly affected MEP features, whereas the stimulated side had a minor impact. MEP size and duration increased from childhood to adulthood. MEP onset- and peak-latency dropped in adolescence, particularly in hand muscles. Children had the smallest MEPs with the highest polyphasia, whereas I/O curves were similar among preadolescents, adolescents, and adults. This study illustrates some of the changing patterns of MEP features across the ages, suggesting developing patterns of neurophysiological processes activated by TMS, and to motivate studies with larger sample size.
Collapse
Affiliation(s)
- Dao T A Nguyen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
| | - Laura Säisänen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
| | - Saara M Rissanen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, University of Eastern Finland, POB 162, 70211, Kuopio, Finland
| | - Mervi Könönen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, University of Eastern Finland, POB 162, 70211, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Haapaniementie 16, 70100, Kuopio, Finland
| | - Pasi A Karjalainen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| |
Collapse
|
8
|
Demjan M, Säisänen L, Reijonen J, Rissanen S, Määttä S, Julkunen P. Near-threshold recruitment characteristics of motor evoked potentials in transcranial magnetic stimulation. Brain Res 2023; 1805:148284. [PMID: 36796474 DOI: 10.1016/j.brainres.2023.148284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) can induce motor evoked potentials (MEPs). In TMS applications, near-threshold stimulation intensities (SIs) are often used for characterizing corticospinal excitability using MEPs. We aimed to characterize the individual near-threshold recruitment of MEPs and to test the assumptions related to selection of the suprathreshold SI. We utilized MEP data from a right-hand muscle induced at variable SIs. The single-pulse TMS (spTMS) data from previous studies (27 healthy volunteers), as well as data from new measurements (10 healthy volunteers) that included also MEPs modulated by paired-pulse TMS (ppTMS), were included. The probability of MEP (pMEP) was represented with individually fitted cumulative distribution function (CDF) with two parameters: resting motor threshold (rMT) and spread relative to rMT. MEPs were recorded with 110% and 120% of rMT as well as with Mills-Nithi upper threshold (UT). The individual near-threshold characteristics varied with CDF parameters: the rMT and the relative spread (median: 0.052). The rMT was lower with ppTMS than with spTMS (p < 0.001), while the relative spread remained similar (p = 0.812). At suprathreshold SIs, the probability of MEP was similar between UT and 110% of rMT (pMEP > 0.88), and higher for 120% of rMT (pMEP > 0.98). The individual near-threshold characteristics determine how probably MEPs are produced at common suprathreshold SIs. At the population level, the used SIs UT and 110% of rMT produced MEPs at similar probability. The individual variability in the relative spread parameter was large; therefore, the method of determining the proper suprathreshold SI for TMS applications is of crucial importance.
Collapse
Affiliation(s)
- Michal Demjan
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland; Bittium Biosignals Oy, Pioneerinkatu 6, 70800 Kuopio, Finland
| | - Laura Säisänen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Jusa Reijonen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Saara Rissanen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70200 KYS Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, POB 1627, 70210 Kuopio, Finland.
| |
Collapse
|
9
|
Sirkka J, Säisänen L, Julkunen P, Könönen M, Kallioniemi E, Leinonen V, Danner N. The effect of shunt surgery on corticospinal excitability in idiopathic normal pressure hydrocephalus: a transcranial magnetic stimulation study. Fluids Barriers CNS 2022; 19:89. [PMID: 36348424 PMCID: PMC9644524 DOI: 10.1186/s12987-022-00385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a multifactorial disease presenting with a classical symptom triad of cognitive decline, gait disturbance and urinary incontinence. The symptoms can be alleviated with shunt surgery but the etiology of the symptoms remains unclear. Navigated transcranial magnetic stimulation (nTMS) was applied to characterize corticospinal excitability and cortical motor function before and after shunt surgery in order to elucidate the pathophysiology of iNPH. We also aimed to determine, whether nTMS could be applied as a predictive tool in the pre-surgical work-up of iNPH. Methods 24 patients with possible or probable iNPH were evaluated at baseline, after cerebrospinal fluid drainage test (TAP test) and three months after shunt surgery (follow-up). Symptom severity was evaluated on an iNPH scale and with clinical tests (walking test, Box & Block test, grooved pegboard). In the nTMS experiments, resting motor threshold (RMT), silent period (SP), input–output curve (IO-curve), repetition suppression (RS) and mapping of cortical representation areas of hand and foot muscles were assessed. Results After shunt surgery, all patients showed improved performance in gait and upper limb function. The nTMS parameters showed an increase in the RMTs (hand and foot) and the maximum value of the IO-curve increased in subject with a good surgical outcome. The improvement in gait correlated with an increase in the maximum value of the IO-curve. SP, RS and mapping remained unchanged. Conclusion The excitability of the motor cortex and the corticospinal tract increased in iNPH patients after shunt surgery. A favorable clinical outcome of shunt surgery is associated with a higher ability to re-form and maintain neuronal connectivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00385-1.
Collapse
|
10
|
He W, Huang Y, He L, Liu L, Zeng P, Qiu H, Wang X, Zhou H, Chen Z, Xu Y, Zhao J, Wang W, Tang H, Xu K. Safety and effects of transcranial direct current stimulation on hand function in preschool children with hemiplegic cerebral palsy: A pilot study. Front Behav Neurosci 2022; 16:925122. [PMID: 36160682 PMCID: PMC9500382 DOI: 10.3389/fnbeh.2022.925122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has shown a promising prospect in improving function and spasticity in school-aged children with cerebral palsy, but little is known in preschool children. The aim of this study was to explore the safety and effects of tDCS on hand function in preschool children (aged 3–6 years) with hemiplegic cerebral palsy (HCP). We designed a crossover, single-blind, sham-controlled study in 30 preschool children with HCP, who were recruited to receive one session of sham and one session of active anodal tDCS (1.5 mA, 20 min) on the primary motor cortex of the affected hemisphere, with a 24-h interval between the two sessions. Questionnaire was completed by each participant and their attendants immediately, 90 min, and 24 h after each session to monitor common adverse events of tDCS, such as skin irritation, skin erythema, burning sensation, headache, dizziness, etc. Box and Block Test, Selective Control of the Upper Extremity Scale, Modified Ashworth Scale, and Melbourne Assessment 2 were conducted at baseline, immediately, and 90 min after each session. No severe adverse event occurred during the study and only a few of them felt transient and slight discomfort. Results also showed that all participants performed better at Box and Block Test of the hemiplegic hand immediately after a single anodal tDCS (P < 0.05) and this improvement lasted at least 90 min and more than 24 h. However, there was no significant improvement in Selective Control of the Upper Extremity Scale of both hands, Box and Block Test of the non-hemiplegic hand, Modified Ashworth Scale, and Melbourne Assessment 2 of the hemiplegic upper limb (P > 0.05). Shortly, this study supported the safety and effects of a single anodal tDCS on improving the manual dexterity of the hemiplegic hand for preschool children with HCP. Further researches with larger samples about the optimal dose and treatment cycle of tDCS for preschool children with HCP are warranted. This study gained the approval of ethics committee of the organization and was registered at chictr.org (ChiCTR2000031141).
Collapse
Affiliation(s)
- Wenjie He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peishan Zeng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiying Qiu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyue Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenda Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Hongmei Tang
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Kaishou Xu
| |
Collapse
|
11
|
WOODS STACEY, O’MAHONEY CARAGH, MAYNARD JAMES, DOTAN RAFFY, TENENBAUM GERSHON, FILHO EDSON, FALK BAREKET. Increase in Volitional Muscle Activation from Childhood to Adulthood: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2022; 54:789-799. [PMID: 34967802 PMCID: PMC9012528 DOI: 10.1249/mss.0000000000002853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Children's maximal muscle strength is consistently lower than adults', even when normalized to body size. Lower volitional muscle activation (VA) in children is often considered one of the main reasons for age-related differences in muscular performance. However, some recent studies have reported similar VA in children and adults, bringing into question whether there is indeed an age-related increase in VA. The purpose of this review was to determine the effect of age on VA during maximal isometric contractions. METHODS Literature examining VA differences, using twitch interpolation in children (7-14 yr) and adults (16-28 yr), was systematically reviewed. Of the 1915 studies initially identified, 19 data sets were eligible for inclusion in the qualitative analysis and 14 in the quantitative meta-analysis (comprising 207 children and 193 adults). RESULTS Significantly lower VA in children was reported in 9/19 (47%) studies. A random-effects meta-analysis found a strong effect of age on VA, supporting lower VA in children compared with adults (Hedges' g = 1.55; confidence interval: 0.9-2.13). Moderator analysis included muscle group, sex, children's age, stimulation number (singlet, multiple), type (electric, magnetic), and location (muscle, nerve), of which only muscle group was significant (P < 0.001). A significant Egger's regression test and asymmetrical funnel plot suggest that publication bias may be present. CONCLUSIONS Overall, these findings suggest that compared with adults, children activate their motor-unit pool less compared with adults. Moreover, that the degree of VA increase with age may be influenced by the muscle examined (upper vs lower extremity). However, more research is needed to elucidate the influence of this possible factor, as the current review contains limited data from upper body muscles. The developmental mechanism responsible for children's lower VA requires further research.
Collapse
Affiliation(s)
- STACEY WOODS
- Department of Kinesiology, Brock University, St. Catharines, ON, CANADA
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, CANADA
| | - CARAGH O’MAHONEY
- Department of Kinesiology, Brock University, St. Catharines, ON, CANADA
| | - JAMES MAYNARD
- Department of Kinesiology, Brock University, St. Catharines, ON, CANADA
| | - RAFFY DOTAN
- Department of Kinesiology, Brock University, St. Catharines, ON, CANADA
| | - GERSHON TENENBAUM
- B. Ivcher School of Psychology, Reichman University, Herzliya, ISRAEL
| | - EDSON FILHO
- Wheelock College of Education and Human Development, Boston University, Boston, MA
| | - BAREKET FALK
- Department of Kinesiology, Brock University, St. Catharines, ON, CANADA
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, CANADA
| |
Collapse
|
12
|
Tekgul H, Saz U, Polat M, Kose T, Tekgul N, Kitis O. A transcranial magnetic stimulation study for the characterization of corticospinal pathway plasticity in children with neurological disorders. J Clin Neurosci 2021; 96:1-7. [PMID: 34942536 DOI: 10.1016/j.jocn.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
We aimed to investigate cortical and radicular TMS-evoked motor evoked potentials (MEPs) in children with neurological disorders (n = 57, mean age: 5.45 years) and agematched healthy controls (n = 46). Four TMS parameters were analyzed: MEP amplitudes, the latencies of MEP, the latency jump (cortical MEP latency at rest - cortical active-MEP latency at with slightly contracted targeted muscle), and central motor conduction time. Children with neurological disorders were categorized according to the two major types of neuronal plasticity; excessive plasticity: 29 children with cerebral palsy and impaired plasticity: 28 children with neurodegenerative diseases, stroke, and central nervous system infections. The active-MEP abnormalities (absent and prolonged latencies) were correlated with the location of cortical involvement on MRI patterns. We obtained a significantly increased rate of abnormal cortical active-MEPs in children with impaired plasticity (21/28, 75%) compared with excessive plasticity (18/29, 62%). The rate of absent MEP response is three times more in children with impaired plasticity (43%) than in children with excessive plasticity (14%). A more reduced latency jump was measured in children with impaired plasticity compared to children with excessive plasticity. TMS-evoked active-MEPs and latency jumping are valuable parameters for characterizing neuronal plasticity in children with neurological disorders.
Collapse
Affiliation(s)
- Hasan Tekgul
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Child Neurology, Izmir, Turkey.
| | - Ulas Saz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey.
| | - Muzaffer Polat
- Ege University Faculty of Medicine, Department of Pediatrics, Division of Child Neurology, Izmir, Turkey.
| | - Timur Kose
- Department of Biostatistics, Ege University, Faculty of Medicine, Izmir, Turkey.
| | - Nurdan Tekgul
- Izmir University of Health Sciences, Tepecik Training and Research Hospital, Clinic of Family Medicine, Izmir, Turkey.
| | - Omer Kitis
- Ege University Medical School, Department of Radiology, Division of Neuroradiology, Izmir, Turkey.
| |
Collapse
|
13
|
Valkama AM, Rytky SO, Olsén PM. Bilateral Motor Responses to Transcranial Magnetic Stimulation in Preterm Children at 9 Years of Age. Neuropediatrics 2021; 52:268-273. [PMID: 33706405 DOI: 10.1055/s-0041-1726127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study was aimed to evaluate motor tracts integrity in nondisabled preterm-born (PT) children at 9 years of age. METHODS Overall, 18 PT and 13 term-born (T) children without motor disability were assessed by transcranial magnetic stimulation (TMS). Motor-evoked potentials (MEPs) were measured bilaterally from the abductor pollicis brevis (APB) and the tibialis anterior (TA) muscles. Muscle responses could be stimulated from all patients. RESULTS Overall, 83.3 and 23.1% of PT and T children, respectively, had mild clumsiness (p = 0.001). One PT and three T children had immediate bilateral responses in the upper extremities. Seven PT children had delayed ipsilateral APB responses after left and ten after right TMS. Three controls had delayed ipsilateral responses. Ipsilateral lower extremity responses were seen in one PT after right and two PT children and one T child after left TMS. The results did not correlate to groups, genders, clumsiness, or handedness. CONCLUSION Children of PT and T may have bilateral motor responses after TMS at 9 years of age. Ipsilateral conduction emerges immediately or more often slightly delayed and more frequently in upper than in lower extremities. SIGNIFICANCE Bilateral motor conduction reflects developmental and neurophysiological variability in children at 9 years of age. MEPs can be used as a measure of corticospinal tract integrity in PT children.
Collapse
Affiliation(s)
- A Marita Valkama
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Seppo O Rytky
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Päivi M Olsén
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Center, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci 2021; 11:brainsci11070897. [PMID: 34356131 PMCID: PMC8305823 DOI: 10.3390/brainsci11070897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) has developed into a reliable non-invasive clinical and scientific tool over the past decade. Specifically, it has undergone several validating clinical trials that demonstrated high agreement with intraoperative direct electrical stimulation (DES), which paved the way for increasing application for the purpose of motor mapping in patients harboring motor-eloquent intracranial neoplasms. Based on this clinical use case of the technique, in this article we review the evidence for the feasibility of motor mapping and derived models (risk stratification and prediction, nTMS-based fiber tracking, improvement of clinical outcome, and assessment of functional plasticity), and provide collected sets of evidence for the applicability of quantitative mapping with nTMS. In addition, we provide evidence-based demonstrations on factors that ensure methodological feasibility and accuracy of the motor mapping procedure. We demonstrate that selection of the stimulation intensity (SI) for nTMS and spatial density of stimuli are crucial factors for applying motor mapping accurately, while also demonstrating the effect on the motor maps. We conclude that while the application of nTMS motor mapping has been impressively spread over the past decade, there are still variations in the applied protocols and parameters, which could be optimized for the purpose of reliable quantitative mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA 94143, USA
- Correspondence:
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
15
|
Mohammad Mahdi Alavi S, Goetz SM, Saif M. Input-output slope curve estimation in neural stimulation based on optimal sampling principles . J Neural Eng 2021; 18:10.1088/1741-2552/abffe5. [PMID: 33975287 PMCID: PMC8384062 DOI: 10.1088/1741-2552/abffe5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022]
Abstract
This paper discusses some of the practical limitations and issues, which exist for the input-output (IO) slope curve estimation (SCE) in neural, brain and spinal, stimulation techniques. The drawbacks of the SCE techniques by using existing uniform sampling and Fisher-information-based optimal IO curve estimation (FO-IOCE) methods are elaborated. A novel IO SCE technique is proposed with a modified sampling strategy and stopping rule which improve the SCE performance compared to these methods. The effectiveness of the proposed IO SCE is tested on 1000 simulation runs in transcranial magnetic stimulation (TMS), with a realistic model of motor evoked potentials. The results show that the proposed IO SCE method successfully satisfies the stopping rule, before reaching the maximum number of TMS pulses in 79.5% of runs, while the estimation based on the uniform sampling technique never converges and satisfies the stopping rule. At the time of successful termination, the proposed IO SCE method decreases the 95th percentile (mean value in the parentheses) of the absolute relative estimation errors (AREs) of the slope curve parameters up to 7.45% (2.2%), with only 18 additional pulses on average compared to that of the FO-IOCE technique. It also decreases the 95th percentile (mean value in the parentheses) of the AREs of the IO slope curve parameters up to 59.33% (16.71%), compared to that of the uniform sampling method. The proposed IO SCE also identifies the peak slope with higher accuracy, with the 95th percentile (mean value in the parentheses) of AREs reduced by up to 9.96% (2.01%) compared to that of the FO-IOCE method, and by up to 46.29% (13.13%) compared to that of the uniform sampling method.
Collapse
Affiliation(s)
- Seyed Mohammad Mahdi Alavi
- Department of Applied Computing and Engineering, School of Technologies, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Stefan M Goetz
- Departments of Psychiatry and Behavioral Sciences, Electrical and Computer Engineering, and Neurosurgery as well as the Duke Brain Initiative, Duke University, Durham, NC 27708, United States of America
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Mehrdad Saif
- Department of Electrical Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
16
|
Zeugin D, Ionta S. Anatomo-Functional Origins of the Cortical Silent Period: Spotlight on the Basal Ganglia. Brain Sci 2021; 11:705. [PMID: 34071742 PMCID: PMC8227635 DOI: 10.3390/brainsci11060705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The so-called cortical silent period (CSP) refers to the temporary interruption of electromyographic signal from a muscle following a motor-evoked potential (MEP) triggered by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). The neurophysiological origins of the CSP are debated. Previous evidence suggests that both spinal and cortical mechanisms may account for the duration of the CSP. However, contextual factors such as cortical fatigue, experimental procedures, attentional load, as well as neuropathology can also influence the CSP duration. The present paper summarizes the most relevant evidence on the mechanisms underlying the duration of the CSP, with a particular focus on the central role of the basal ganglia in the "direct" (excitatory), "indirect" (inhibitory), and "hyperdirect" cortico-subcortical pathways to manage cortical motor inhibition. We propose new methods of interpretation of the CSP related, at least partially, to the inhibitory hyperdirect and indirect pathways in the basal ganglia. This view may help to explain the respective shortening and lengthening of the CSP in various neurological disorders. Shedding light on the complexity of the CSP's origins, the present review aims at constituting a reference for future work in fundamental research, technological development, and clinical settings.
Collapse
Affiliation(s)
| | - Silvio Ionta
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology, University of Lausanne, 1002 Lausanne, Switzerland
| |
Collapse
|
17
|
Säisänen L, Könönen M, Niskanen E, Lakka T, Lintu N, Vanninen R, Julkunen P, Määttä S. Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults. Neuroimage 2020; 228:117702. [PMID: 33385558 DOI: 10.1016/j.neuroimage.2020.117702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023] Open
Abstract
The development of the organization of the motor representation areas in children and adolescents is not well-known. This cross-sectional study aimed to provide an understanding for the development of the functional motor areas of the upper extremity muscles by studying healthy right-handed children (6-9 years, n = 10), preadolescents (10-12 years, n = 13), adolescents (15-17 years, n = 12), and adults (22-34 years, n = 12). The optimal representation site and resting motor threshold (rMT) for the abductor pollicis brevis (APB) were assessed in both hemispheres using navigated transcranial magnetic stimulation (nTMS). Motor mapping was performed at 110% of the rMT while recording the EMG of six upper limb muscles in the hand and forearm. The association between the motor map and manual dexterity (box and block test, BBT) was examined. The mapping was well-tolerated and feasible in all but the youngest participant whose rMT exceeded the maximum stimulator output. The centers-of-gravity (CoG) for individual muscles were scattered to the greatest extent in the group of preadolescents and centered and became more focused with age. In preadolescents, the CoGs in the left hemisphere were located more laterally, and they shifted medially with age. The proportion of hand compared to arm representation increased with age (p = 0.001); in the right hemisphere, this was associated with greater fine motor ability. Similarly, there was less overlap between hand and forearm muscles representations in children compared to adults (p<0.001). There was a posterior-anterior shift in the APB hotspot coordinate with age, and the APB coordinate in the left hemisphere exhibited a lateral to medial shift with age from adolescence to adulthood (p = 0.006). Our results contribute to the elucidation of the developmental course in the organization of the motor cortex and its associations with fine motor skills. It was shown that nTMS motor mapping in relaxed muscles is feasible in developmental studies in children older than seven years of age.
Collapse
Affiliation(s)
- Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
18
|
Cortical Excitability, Synaptic Plasticity, and Cognition in Benign Epilepsy With Centrotemporal Spikes: A Pilot TMS-EMG-EEG Study. J Clin Neurophysiol 2020; 37:170-180. [PMID: 32142025 DOI: 10.1097/wnp.0000000000000662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Children with benign epilepsy with centrotemporal spikes have rare seizures emerging from the motor cortex, which they outgrow in adolescence, and additionally may have language deficits of unclear etiology. We piloted the use of transcranial magnetic stimulation paired with EMG and EEG (TMS-EMG, TMS-EEG) to test the hypotheses that net cortical excitability decreases with age and that use-dependent plasticity predicts learning. METHODS We assessed language and motor learning in 14 right-handed children with benign epilepsy with centrotemporal spikes. We quantified two TMS metrics of left motor cortex excitability: the resting motor threshold (measure of neuronal membrane excitability) and amplitude of the N100-evoked potential (an EEG measure of GABAergic tone). To test plasticity, we applied 1 Hz repetitive TMS to the motor cortex to induce long-term depression-like changes in EMG- and EEG-evoked potentials. RESULTS Children with benign epilepsy with centrotemporal spikes tolerate TMS; no seizures were provoked. Resting motor threshold decreases with age but is elevated above maximal stimulator output for half the group. N100 amplitude decreases with age after controlling for resting motor threshold. Motor cortex plasticity correlates significantly with language learning and at a trend level with motor learning. CONCLUSIONS Transcranial magnetic stimulation is safe and feasible for children with benign epilepsy with centrotemporal spikes, and TMS-EEG provides more reliable outcome measures than TMS-EMG in this group because many children have unmeasurably high resting motor thresholds. Net cortical excitability decreases with age, and motor cortex plasticity predicts not only motor learning but also language learning, suggesting a mechanism by which motor cortex seizures may interact with language development.
Collapse
|
19
|
Sirkka J, Säisänen L, Julkunen P, Könönen M, Kallioniemi E, Leinonen V, Danner N. Corticospinal excitability in idiopathic normal pressure hydrocephalus: a transcranial magnetic stimulation study. Fluids Barriers CNS 2020; 17:6. [PMID: 32063230 PMCID: PMC7025402 DOI: 10.1186/s12987-020-0167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a neurodegenerative disease with an unknown etiology. Disturbed corticospinal inhibition of the motor cortex has been reported in iNPH and can be evaluated in a noninvasive and painless manner using navigated transcranial magnetic stimulation (nTMS). This is the first study to characterize the immediate impact of cerebrospinal fluid (CSF) drainage on corticospinal excitability. Methods Twenty patients with possible or probable iNPH (16 women and 4 men, mean age 74.4 years, range 67–84 years), presenting the classical symptom triad and radiological findings, were evaluated with motor function tests (10-m walk test, Grooved Pegboard and Box & Block test) and nTMS (silent period, SP, resting motor threshold, RMT and input–output curve, IO-curve). Evaluations were performed at baseline and repeated immediately after CSF drainage via lumbar puncture. Results At baseline, iNPH patients presented shorter SPs (p < 0.001) and lower RMTs (p < 0.001) as compared to normative values. Positive correlation was detected between SP duration and Box & Block test (rho = 0.64, p = 0.002) in iNPH patients. CSF drainage led to an enhancement in gait velocity (p = 0.002) and a steeper IO-curve slope (p = 0.049). Conclusions Shorter SPs and lower RMTs in iNPH suggest impaired corticospinal inhibition and corticospinal hyperexcitability. The steeper IO-slope in patients who improve their gait velocity after CSF drainage may indicate a higher recovery potential. Corticospinal excitability correlated with the motor function of the upper limbs implying that the disturbance in motor performance in iNPH extends beyond the classically reported gait impairment.
Collapse
Affiliation(s)
- Jani Sirkka
- Neurocenter, Neurosurgery, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ville Leinonen
- Neurocenter, Neurosurgery, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.,Unit of Clinical Neuroscience, Neurosurgery, University of Oulu and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Nils Danner
- Neurocenter, Neurosurgery, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Tsuboyama M, Lee Kaye H, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation of the Motor Cortex in Epilepsy. Front Integr Neurosci 2019; 13:57. [PMID: 31736722 PMCID: PMC6837164 DOI: 10.3389/fnint.2019.00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is associated with numerous neurodevelopmental disorders. Transcranial magnetic stimulation (TMS) of the motor cortex coupled with electromyography (EMG) enables biomarkers that provide measures of cortical excitation and inhibition that are particularly relevant to epilepsy and related disorders. The motor threshold (MT), cortical silent period (CSP), short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) are among TMS-derived metrics that are modulated by antiepileptic drugs. TMS may have a practical role in optimization of antiepileptic medication regimens, as studies demonstrate dose-dependent relationships between TMS metrics and acute medication administration. A close association between seizure freedom and normalization of cortical excitability with long-term antiepileptic drug use highlights a plausible utility of TMS in measures of anti-epileptic drug efficacy. Finally, TMS-derived biomarkers distinguish patients with various epilepsies from healthy controls and thus may enable development of disorder-specific biomarkers and therapies both within and outside of the epilepsy realm.
Collapse
Affiliation(s)
- Melissa Tsuboyama
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Harper Lee Kaye
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Alexander Rotenberg
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
21
|
Julkunen P. Mobile Application for Adaptive Threshold Hunting in Transcranial Magnetic Stimulation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1504-1510. [PMID: 31265403 DOI: 10.1109/tnsre.2019.2925904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Application of transcranial magnetic stimulation (TMS) is expanding with many studies applying adaptive threshold hunting to determine a motor threshold (MT). In addition to being a measure of corticospinal excitability, the MT is used as a baseline stimulation intensity (SI) to which following investigative or modulatory SIs are referenced to. Currently available tools for determining MTs include system-integrated tools and third-party stand-alone software. System-integrated MT-tools are still rarely available and the stand-alone software usually demand a separate computer, and hence possess additional space-requirements. I introduce and validate a free Android-based mobile application ("ATH-tool") for adaptive threshold hunting of the MT. The objective is to allow for a simple and validated recording of MTs with sharing capabilities for logs. For comparison, I applied Motor Threshold Assessment Tool 2.0, to compare the MT-values determined with the new application, as it applies closely the same routine. Computational validation with known true threshold values confirmed that the new application captured the true MT at high precision (error ≤ 0.9%). Previously published data on motor evoked potentials (MEPs) were used to simulate realistic response occurrence by considering experimental data from 15 healthy subjects at different stimulation intensities. The MTs of the different methods agreed well (ICC ≥ 0.971, ). There was no significant difference between the MTs determined with the different methods ( p ≥ 0.151 ). The novel mobile application should make it easier for researchers and clinicians to determine MTs and log the results.
Collapse
|
22
|
Papadelis C, Kaye H, Shore B, Snyder B, Grant PE, Rotenberg A. Maturation of Corticospinal Tracts in Children With Hemiplegic Cerebral Palsy Assessed by Diffusion Tensor Imaging and Transcranial Magnetic Stimulation. Front Hum Neurosci 2019; 13:254. [PMID: 31396066 PMCID: PMC6668599 DOI: 10.3389/fnhum.2019.00254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: To assess changes in the developmental trajectory of corticospinal tracts (CST) maturation in children with hemiplegic cerebral palsy (HCP). Methods: Neuroimaging data were obtained from 36 children with HCP for both the more affected (MA) and less affected (LA) hemispheres, and, for purposes of direct comparison, between groups, 15 typically developing (TD) children. With diffusion tensor imaging (DTI), we estimated the mean fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) of the corticospinal tract, parameters indicative of factors including myelination and axon density. Transcranial magnetic stimulation (TMS) was performed as a neurophysiologic measure of corticospinal tract integrity and organization. Resting motor threshold (rMT) was obtained per hemisphere, per patient. Results: We observed a significant AD and MD developmental trajectory, both of which were inversely related to age (decrease in AD and diffusivity corresponding to increased age) in both hemispheres of TD children (p < 0.001). This maturation process was absent in both MA and LA hemispheres of children with HCP. Additionally, the TMS-derived previously established rMT developmental trajectory was preserved in the LA hemisphere of children with HCP (n = 26; p < 0.0001) but this trajectory was absent in the MA hemisphere. Conclusions: Corticospinal tract maturation arrests in both hemispheres of children with HCP, possibly reflecting perinatal disruption of corticospinal tract myelination and axonal integrity.
Collapse
Affiliation(s)
- Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Harper Kaye
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Benjamin Shore
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Brian Snyder
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
23
|
Määttä S, Säisänen L, Kallioniemi E, Lakka TA, Lintu N, Haapala EA, Koskenkorva P, Niskanen E, Ferreri F, Könönen M. Maturation changes the excitability and effective connectivity of the frontal lobe: A developmental TMS-EEG study. Hum Brain Mapp 2019; 40:2320-2335. [PMID: 30648321 DOI: 10.1002/hbm.24525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
The combination of transcranial magnetic stimulation with simultaneous electroencephalography (TMS-EEG) offers direct neurophysiological insight into excitability and connectivity within neural circuits. However, there have been few developmental TMS-EEG studies to date, and they all have focused on primary motor cortex stimulation. In the present study, we used navigated high-density TMS-EEG to investigate the maturation of the superior frontal cortex (dorsal premotor cortex [PMd]), which is involved in a broad range of motor and cognitive functions known to develop with age. We demonstrated that reactivity to frontal cortex TMS decreases with development. We also showed that although frontal cortex TMS elicits an equally complex TEP waveform in all age groups, the statistically significant between-group differences in the topography of the TMS-evoked peaks and differences in current density maps suggest changes in effective connectivity of the right PMd with maturation. More generally, our results indicate that direct study of the brain's excitability and effective connectivity via TMS-EEG co-registration can also be applied to pediatric populations outside the primary motor cortex, and may provide useful information for developmental studies and studies on developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sara Määttä
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Timo A Lakka
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.,Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Niina Lintu
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Päivi Koskenkorva
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Florinda Ferreri
- Department of Neuroscience, Unit of Neurology and Neurophysiology, University of Padua, Padua, Italy
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
24
|
Functional and structural asymmetry in primary motor cortex in Asperger syndrome: a navigated TMS and imaging study. Brain Topogr 2019; 32:504-518. [PMID: 30949863 PMCID: PMC6477009 DOI: 10.1007/s10548-019-00704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
Motor functions are frequently impaired in Asperger syndrome (AS). In this study, we examined the motor cortex structure and function using navigated transcranial magnetic stimulation (nTMS) and voxel-based morphometry (VBM) and correlated the results with the box and block test (BBT) of manual dexterity and physical activity in eight boys with AS, aged 8–11 years, and their matched controls. With nTMS, we found less focused cortical representation areas of distinct hand muscles in AS. There was hemispheric asymmetry in the motor maps, silent period duration and active MEP latency in the AS group, but not in controls. Exploratory VBM analysis revealed less gray matter in the left postcentral gyrus, especially in the face area, and less white matter in the precentral area in AS as compared to controls. On the contrary, in the right leg area, subjects with AS displayed an increased density of gray matter. The structural findings of the left hemisphere correlated negatively with BBT score in controls, whereas the structure of the right hemisphere in the AS group correlated positively with motor function as assessed by BBT. These preliminary functional (neurophysiological and behavioral) findings are indicative of asymmetry, and co-existing structural alterations may reflect the motor impairments causing the deteriorations in manual dexterity and other motor functions commonly encountered in children with AS.
Collapse
|
25
|
Influence of the Montage of Stimulation Electrodes for Intraoperative Neuromonitoring During Orthopedic Spine Surgery. J Clin Neurophysiol 2018; 35:419-425. [PMID: 30024455 DOI: 10.1097/wnp.0000000000000498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In transcranial electrical stimulation, induced motor evoked potentials (MEPs) are influenced by the montage of stimulation electrodes. Differences are to be examined between coronal and sagittal stimulation. METHODS Forty-five patients with idiopathic scoliosis were included. Coronal and sagittal montages were obtained by electrode placement at C3C4 and Cz'F using large contact electrodes. Corkscrew and short needle electrodes were additionally placed at C3C4 in five patients. Voltage motor thresholds (MTvoltage) and MEP amplitudes at 2 times MTvoltage (MEP2MTvoltage) were obtained of upper and lower extremity muscles. Differences of MTvoltage and MEP2MTvoltage at Cz'F and C3C4 and between electrodes were analyzed. RESULTS MEP2MTvoltage benefits from coronal positioning. Correlations between MTvoltage and impedance were not significant for large electrodes at Cz'F, very low for C3C4, and high for short needles or corkscrew electrodes. MTvoltage of short needles and corkscrews was up to 200% higher compared with MTvoltage of long needles. MTcurrent is increased by 20% to 30% and 2% to 10% for the arm and leg muscles, respectively. CONCLUSIONS Biphasic stimulation at C3C4 is advised when constant voltage stimulation is used to monitor the spinal cord during orthopedic spine surgery. MTvoltage of corkscrew and small needle electrodes are highly sensitive to electrode impedances.
Collapse
|
26
|
EMG breakthrough during cortical silent period in congenital hemiparesis: a descriptive case series. Braz J Phys Ther 2018; 24:20-29. [PMID: 30471965 DOI: 10.1016/j.bjpt.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The cortical silent period is a transient suppression of electromyographic activity after a transcranial magnetic stimulation pulse, attributed to spinal and supraspinal inhibitory mechanisms. Electromyographic breakthrough activity has been observed in healthy adults as a result of a spinal reflex response within the cortical silent period. OBJECTIVES The objective of this case series is to report the ipsilesional and contralesional cortical silent period and the electromyographic breakthrough activity of 7 children with congenital hemiparesis. METHODS TMS was delivered over the ipsilesional and contralesional primary motor cortices with resting motor threshold and cortical silent period measures recorded from first dorsal interosseous muscle. RESULTS Seven children (13±2 years) were included. Ipsilesional and contralesional resting motor thresholds ranged from 49 to 80% and from 38 to 63% of maximum stimulator output, respectively. Ipsilesional (n=4) and contralesional (n=7) cortical silent period duration ranged from 49 to 206ms and 81 to 150ms, respectively. Electromyographic breakthrough activity was observed ipsilesionally in 3/4 (75%) and contralesionally in 3/7 (42.8%) participants. In the 3 children with ipsilesional breakthrough activity during the cortical silent period, all testing trials showed breakthrough. Contralesional breakthrough activity was observed in only one of the analyzable trials in each of those 3 participants. The mean peak amplitude of breakthrough activity ranged from 45 to 214μV (ipsilesional) and from 23 to 93μV (contralesional). CONCLUSION Further research is warranted to understand the mechanisms and significance of electromyographic breakthrough activity within the cortical silent period in congenital hemiparesis. Understanding these mechanisms may lead to the design of tailored neuromodulation interventions for physical rehabilitation. TRIAL REGISTRATION NCT02250092 (https://clinicaltrials.gov/ct2/show/NCT02250092).
Collapse
|