1
|
Birreci D, Angelini L, Paparella G, Costa D, Cannavacciuolo A, Passaretti M, De Riggi M, Aloisio S, Colella D, Guerra A, Bologna M. Pathophysiological Role of Primary Motor Cortex in Essential Tremor. Mov Disord 2025. [PMID: 40243615 DOI: 10.1002/mds.30197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Essential tremor (ET) is one of the most prevalent movement disorders. However, the complete understanding of ET pathophysiology remains elusive. OBJECTIVE To explore the pathophysiological role of primary motor cortex (M1) in ET, specifically exploring its neurophysiological changes and their correlation with voluntary motor abnormalities. METHODS We recruited 30 ET patients and 18 healthy controls (HC). Evaluations were conducted on patients using clinical scales. Transcranial magnetic stimulation (TMS) was used to assess M1 excitability, including motor thresholds and motor evoked potentials (MEPs) input/output curve, together with intracortical excitability measures. Long-term potentiation (LTP)-like plasticity of M1 was tested using intermittent theta-burst stimulation (iTBS). Objective assessments of tremor and voluntary movement execution during finger-tapping were conducted through kinematic analysis. Finally, we explored the potential relationship between TMS, clinical, and kinematic data. RESULTS Compared with HC, ET patients had lower excitability, intracortical inhibition, and lower LTP-like plasticity of M1. ET patients also exhibited slower finger-tapping performance compared with HC. Among ET patients, the degree of movement slowing during finger-tapping correlated with alterations in corticospinal excitability. Specifically, reduced M1 excitability was associated with lower finger-tapping velocity. No other correlations were found. CONCLUSIONS The study findings reveal neurophysiological alterations of M1 in ET and demonstrate correlations between excitability measures and voluntary motor performance. These results provide novel insight into the pathophysiology of ET, emphasizing the role of M1 changes in this condition. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Simone Aloisio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorder Unit, Study Center on Neurodegeneration (CESNE) Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
2
|
Xu J, Cao N, Qu Y, Shang S, Liu X, Wang X, Hu F, Bai X, Qu Q, Zhang M, Cao H. Protocol for a Phase 2 randomized controlled patient-assessor blinded study: efficacy and safety of combined cortical and cerebellar dual-target transcranial magnetic stimulation for the treatment of essential tremor. Front Neurol 2025; 15:1505154. [PMID: 39845937 PMCID: PMC11750658 DOI: 10.3389/fneur.2024.1505154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Essential tremor (ET) is the most common neurological movement disorder with few treatments and limited therapeutic efficacy, research into noninvasive and effective treatments is critical. Abnormal cerebello-thalamo-cortical (CTC) loop function are thought to be significant pathogenic causes of ET, with the cerebellum and cortex are common targets for ET treatment. In recent years, transcranial magnetic stimulation (TMS) has been recognized as a promising brain research technique owing to its noninvasive nature and safety. In this study, we will use left M1 cortex continuous theta-burst stimulation (cTBS) combined with right cerebellar hemisphere 1 Hz repetitive transcranial magnetic stimulation (rTMS) dual-target stimulation to explore the Safety, feasibility and efficiency of this dual-target stimulation mode, and the mechanism of its therapeutic effect. Methods Twenty-four patients with ET will be randomly assigned to three groups: dual-target stimulation, single-target stimulation, or sham stimulation. The single-target stimulation group will receive stimulation of the right cerebellar hemisphere for 10 days, whereas the dual-target stimulation group will be given stimulation of both the left M1 cortex and the right cerebellar hemisphere. The sham stimulation group will be given sham stimulation for 10 days. Tremor will be assessed using both the subjective The Essential Tremor Rating Assessment Scale (TETRAS) and objective accelerometer-based tremor analysis. at baseline (before stimulation), after the first, fifth, tenth days of treatment (D1, 5, 10), 24 h after 10 days of treatment (D10-24 h), and 1, 2, 3, and 4 weeks after stimulation (W1, 2, 3, 4). Discussion This is a Phase 2 randomized, controlled, patient-assessor blinded clinical trial. The goal of this study is to investigate the Safety, feasibility and efficiency of TMS for the treatment of ET.
Collapse
Affiliation(s)
- Jing Xu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Na Cao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Yan Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Xincheng Liu
- College of Mechanical Engineering, Xi'an Jiaotong University, Xi’an, China
| | - Xuexin Wang
- College of Mechanical Engineering, Xi'an Jiaotong University, Xi’an, China
| | - Fangfang Hu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Xuerong Bai
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Meng Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Hongmei Cao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Are there differences in cortical excitability between akinetic-rigid and tremor-dominant subtypes of Parkinson's disease? Neurophysiol Clin 2021; 51:443-453. [PMID: 34588134 DOI: 10.1016/j.neucli.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To assess by transcranial magnetic stimulation (TMS) the excitability of various cortical circuits in akinetic-rigid and tremor-dominant subtypes of Parkinson's disease (PD). METHODS The study included 92 patients with PD according to UK Brain Bank criteria, with akinetic-rigid (n = 64) or tremor-dominant (n = 28) subtype. Cortical excitability study, including resting and active motor thresholds (rMT and aMT), input-output curve of motor evoked potentials, contralateral and ipsilateral silent periods (cSP and iSP), short and long-interval intracortical inhibition (SICI and LICI), and intracortical facilitation (ICF) were measured. The results obtained were compared to a control group of 30 age- and sex-matched healthy subjects. RESULTS The patients in the tremor group had significantly lower rMT and aMT compared to controls and akinetic-rigid patients and significantly shorter iSP duration compared to akinetic-rigid patients, while iSP latency tended to be longer in akinetic-rigid patients compared to controls. There were no significant differences between the two PD subgroups regarding other cortical excitability parameters, including paired-pulse TMS parameters. CONCLUSIONS Only subtle differences of cortical excitability were found between patients with akinetic-rigid vs. tremor-dominant subtype of PD. SIGNIFICANCE The clinical heterogeneity of PD patients probably has an impact on cortical excitability measures, far beyond the akinetic-rigid versus tremor-dominant profile.
Collapse
|
4
|
Frey J, Hess CW, Kugler L, Wajid M, Wagle Shukla A. Transcranial Magnetic Stimulation in Tremor Syndromes: Pathophysiologic Insights and Therapeutic Role. Front Neurol 2021; 12:700026. [PMID: 34512517 PMCID: PMC8426899 DOI: 10.3389/fneur.2021.700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a painless, non-invasive, and established brain stimulation technique to investigate human brain function. Over the last three decades, TMS has shed insight into the pathophysiology of many neurological disorders. Tremor is an involuntary, rhythmic oscillatory movement disorder commonly related to pathological oscillations propagated via the cerebello-thalamo-cortical pathway. Although tremor is the most common movement disorder and recent imaging studies have enhanced our understanding of the critical pathogenic networks, the underlying pathophysiology of different tremor syndromes is complex and still not fully understood. TMS has been used as a tool to further our understanding of tremor pathophysiology. In addition, repetitive TMS (rTMS) that can modulate brain functions through plasticity effects has been targeted to the tremor network to gain potential therapeutic benefits. However, evidence is available for only a few studies that included small patient samples with limited clinical follow-up. This review aims to discuss the role of TMS in advancing the pathophysiological understanding as well as emerging applications of rTMS for treating individual tremor syndromes. The review will focus on essential tremor, Parkinson's disease tremor, dystonic tremor syndrome, orthostatic tremor, and functional tremor.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Christopher W Hess
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Liam Kugler
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Manahil Wajid
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
A double-blind randomized clinical trial of high frequency rTMS over the DLPFC on nicotine dependence, anxiety and depression. Sci Rep 2021; 11:1640. [PMID: 33452340 PMCID: PMC7810712 DOI: 10.1038/s41598-020-80927-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
High frequency repetitive transcranial magnetic stimulation (HF-rTMS) over the left dorsolateral prefrontal cortex (L-DLPFC) is a widely applied treatment protocol for chronic smoking and major depressive disorder. However, no previous study has measured the effects of rTMS on both nicotine consumption and anxiety/depression in the same volunteers despite the relationship between them. The aim of this work was to evaluate the efficacy of 10 daily sessions of HF-rTMS over the L-DLPFC in chronic cigarette smokers' addiction and investigate the possible beneficial effects of this treatment procedure on symptoms of depression and anxiety in the same subjects. The study included 40 treatment-seeking nicotine-dependent cigarette smokers. Onset/duration of smoking, number of cigarettes/day, Fagerstrom Test of Nicotine Dependence (FTND), Tobacco Craving Questionnaire-Short Form (TCQ-SF), Hamilton depression and anxiety scales (HAM-D and HAM-A) were recorded. Participants were randomly assigned to the active or the sham treatment group. Those in the active group received 10 trains of 20 Hz stimulation, at 80% of the resting motor threshold (rMT) for 10 consecutive working days over L-DLPFC. Participants were reassessed immediately after treatment, and then 3 months later using all rating scales. There were no differences between active and sham groups at baseline. The cigarette consumption/day, and scores on FTND, and TCQ decreased significantly in both groups (p = 0.0001 for each) immediately after treatment. However, improvement persisted to 3 months in the active group but not in the sham group. Moreover, there was a significant reduction in HAM-D and HAM-A scores immediately after treatment in the active but not the sham group. Subjects with a longer history of smoking had a lower percent improvement in FTND (p = 0.005). Our findings revealed that HF-rTMS over L-DLPCF for 10 days reduced cigarette consumption, craving, dependence, and improved associated symptoms of anxiety and depression.ClinicalTrials.gov Identifier: NCT03264755 registered at 29/08/2017.
Collapse
|
6
|
Does Essential Tremor Alter the Axonal Excitability Properties of Lower Motor Neurons? J Clin Neurophysiol 2020; 39:492-496. [PMID: 33369992 DOI: 10.1097/wnp.0000000000000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Automated nerve excitability testing has identified that the altered excitability of lower motor neuron (LMN) axons in central diseases is because of trans-synaptic plasticity. Essential tremor (ET) is considered a central disorder caused by an altered cerebellar circuit. This study aimed to identify alterations in the excitability of distal motor axons in subjects with ET, with the intention of clarifying whether a trans-synaptic mechanism or LMN adaptation for tremor affects the LMNs of subjects with ET. METHODS Twenty-one consecutive patients diagnosed with ET underwent a clinical and electrophysiological evaluation. For the enrolled cases and 45 age- and gender-matched healthy controls, automated nerve excitability testing with threshold tracking techniques (QTRACS software with TRONDF multiple-excitability protocol) was used to evaluate multiple nerve excitability indices in distal median nerve motor axons. RESULTS The automated protocol calculated the strength-duration time constant, parameters of threshold electrotonus and current-threshold relationship, and the recovery cycle of excitability. Comparisons of the automated nerve excitability testing parameters revealed no significant differences between the ET and control groups in any of strength-duration time constant, threshold electrotonus, current-threshold relationship, and recovery cycle, whereas the rheobase was higher in the ET group (3.4 ± 1.1 vs. 2.3 ± 1.1, mean ± standard error mean; P < 0.01). CONCLUSIONS With the exception of an increased rheobase in ET subjects, no significant differences were observed in LMN excitability between the ET subjects and their controls. The extent of plasticity or adaptation in LMNs may be limited to a major change in central processes that exert marked effects on the pool of LMNs.
Collapse
|
7
|
Khedr EM, Tony AA, Abdelwarith A, Safwat M. Effect of chronic nicotine consumption on motor cortical excitability: A transcranial magnetic stimulation study. Neurophysiol Clin 2020; 50:33-39. [DOI: 10.1016/j.neucli.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
|