1
|
Leite DRA, de Moraes RM, Lopes LW. Different Performances of Machine Learning Models to Classify Dysphonic and Non-Dysphonic Voices. J Voice 2025; 39:577-590. [PMID: 36513560 DOI: 10.1016/j.jvoice.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To analyze the performance of 10 different machine learning (ML) classifiers for discrimination between dysphonic and non-dysphonic voices, using a variance threshold as a method for the selection and reduction of acoustic measurements used in the classifier. METHOD We analyzed 435 samples of individuals (337 female and 98 male), with a mean age of 41.07 ± 13.73 years, of which 384 were dysphonic and 51 were non-dysphonic. From the sustained /ε/ vowel sample, 34 acoustic measurements were extracted, including traditional perturbation and noise measurements, cepstral/spectral measurements, and measurements based on nonlinear models. The variance method was used to select the best set of acoustic measurements. We tested the performance of the best-selected set with 10 ML classifiers using precision, sensitivity, specificity, accuracy, and F1-Score measurements. The kappa coefficient was used to verify the reproducibility between the two datasets (training and testing). RESULTS The naive Bayes (NB) and stochastic gradient descent classifier (SGDC) models performed best in terms of accuracy, AUC, sensitivity, and specificity for a reduced dataset of 15 acoustic measures compared to the full dataset of 34 acoustic measures. SGDC and NB obtained the best performance results, with an accuracy of 0.91 and 0.76, respectively. These two classifiers presented moderate agreement, with a Kappa of 0.57 (SGDC) and 0.45 (NB). CONCLUSION Among the tested models, the NB and SGDC models performed better in discriminating between dysphonic and non-dysphonic voices from a set of 15 acoustic measures.
Collapse
Affiliation(s)
- Danilo Rangel Arruda Leite
- Department of Statistics, Graduate Program in Health Decision Models, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brasil; Brazilian Hospital Services Company- Ebserh, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brasil
| | - Ronei Marcos de Moraes
- Department of Statistics, Graduate Program in Health Decision Models, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brasil; Department of Statistics, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brasil
| | - Leonardo Wanderley Lopes
- Department of Statistics, Graduate Program in Health Decision Models, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brasil; Department of Speech-Language and Hearing Sciences, Graduate Program in Linguistics, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brasil.
| |
Collapse
|
2
|
Sheng J, Lam S, Zhang J, Zhang Y, Cai J. Multi-omics fusion with soft labeling for enhanced prediction of distant metastasis in nasopharyngeal carcinoma patients after radiotherapy. Comput Biol Med 2024; 168:107684. [PMID: 38039891 DOI: 10.1016/j.compbiomed.2023.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Omics fusion has emerged as a crucial preprocessing approach in medical image processing, significantly assisting several studies. One of the challenges encountered in integrating omics data is the unpredictability arising from disparities in data sources and medical imaging equipment. Due to these differences, the distribution of omics futures exhibits spatial heterogeneity, diminishing their capacity to enhance subsequent tasks. To overcome this challenge and facilitate the integration of their joint application to specific medical objectives, this study aims to develop a fusion methodology for nasopharyngeal carcinoma (NPC) distant metastasis prediction to mitigate the disparities inherent in omics data. The multi-kernel late-fusion method can reduce the impact of these differences by mapping the features using the most suiTable single-kernel function and then combining them in a high-dimensional space that can effectively represent the data. The proposed approach in this study employs a distinctive framework incorporating a label-softening technique alongside a multi-kernel-based Radial basis function (RBF) neural network to address these limitations. An efficient representation of the data may be achieved by utilizing the multi-kernel to map the inherent features and then merging them in a space with many dimensions. However, the inflexibility of label fitting poses a constraint on using multi-kernel late-fusion methods in complex NPC datasets, hence affecting the efficacy of general classifiers in dealing with high-dimensional characteristics. The label softening increases the disparity between the two cohorts, providing a more flexible structure for allocating labels. The proposed model is evaluated on multi-omics datasets, and the results demonstrate its strength and effectiveness in predicting distant metastasis of NPC patients.
Collapse
Affiliation(s)
- Jiabao Sheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - SaiKit Lam
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Peng L, Cai Z, Heidari AA, Zhang L, Chen H. Hierarchical Harris hawks optimizer for feature selection. J Adv Res 2023; 53:261-278. [PMID: 36690206 PMCID: PMC10658428 DOI: 10.1016/j.jare.2023.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The main feature selection methods include filter, wrapper-based, and embedded methods. Because of its characteristics, the wrapper method must include a swarm intelligence algorithm, and its performance in feature selection is closely related to the algorithm's quality. Therefore, it is essential to choose and design a suitable algorithm to improve the performance of the feature selection method based on the wrapper. Harris hawks optimization (HHO) is a superb optimization approach that has just been introduced. It has a high convergence rate and a powerful global search capability but it has an unsatisfactory optimization effect on high dimensional problems or complex problems. Therefore, we introduced a hierarchy to improve HHO's ability to deal with complex problems and feature selection. OBJECTIVES To make the algorithm obtain good accuracy with fewer features and run faster in feature selection, we improved HHO and named it EHHO. On 30 UCI datasets, the improved HHO (EHHO) can achieve very high classification accuracy with less running time and fewer features. METHODS We first conducted extensive experiments on 23 classical benchmark functions and compared EHHO with many state-of-the-art metaheuristic algorithms. Then we transform EHHO into binary EHHO (bEHHO) through the conversion function and verify the algorithm's ability in feature extraction on 30 UCI data sets. RESULTS Experiments on 23 benchmark functions show that EHHO has better convergence speed and minimum convergence than other peers. At the same time, compared with HHO, EHHO can significantly improve the weakness of HHO in dealing with complex functions. Moreover, on 30 datasets in the UCI repository, the performance of bEHHO is better than other comparative optimization algorithms. CONCLUSION Compared with the original bHHO, bEHHO can achieve excellent classification accuracy with fewer features and is also better than bHHO in running time.
Collapse
Affiliation(s)
- Lemin Peng
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| | - Zhennao Cai
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Lejun Zhang
- Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China; College of Information Engineering, Yangzhou University, Yangzhou 225127, China; Research and Development Center for E-Learning , Ministry of Education, Beijing 100039, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Yu H, Zhao Z, Heidari AA, Ma L, Hamdi M, Mansour RF, Chen H. An accelerated sine mapping whale optimizer for feature selection. iScience 2023; 26:107896. [PMID: 37860760 PMCID: PMC10582515 DOI: 10.1016/j.isci.2023.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
An improved whale optimization algorithm (SWEWOA) is presented for global optimization issues. Firstly, the sine mapping initialization strategy (SS) is used to generate the population. Secondly, the escape energy (EE) is introduced to balance the exploration and exploitation of WOA. Finally, the wormhole search (WS) strengthens the capacity for exploitation. The hybrid design effectively reinforces the optimization capability of SWEWOA. To prove the effectiveness of the design, SWEWOA is performed in two test sets, CEC 2017 and 2022, respectively. The advantage of SWEWOA is demonstrated in 26 superior comparison algorithms. Then a new feature selection method called BSWEWOA-KELM is developed based on the binary SWEWOA and kernel extreme learning machine (KELM). To verify its performance, 8 high-performance algorithms are selected and experimentally studied in 16 public datasets of different difficulty. The test results demonstrate that SWEWOA performs excellently in selecting the most valuable features for classification problems.
Collapse
Affiliation(s)
- Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zisong Zhao
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ali Asghar Heidari
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Li Ma
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China
| | - Monia Hamdi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Romany F. Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Zhang M, Wu Q, Chen H, Heidari AA, Cai Z, Li J, Md Abdelrahim E, Mansour RF. Whale optimization with random contraction and Rosenbrock method for COVID-19 disease prediction. Biomed Signal Process Control 2023; 83:104638. [PMID: 36741073 PMCID: PMC9889265 DOI: 10.1016/j.bspc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has hugely impacted global public health. To identify and intervene in critically ill patients early, this paper proposes an efficient, intelligent prediction model based on the machine learning approach, which combines the improved whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier. In order to improve the problem that WOA is prone to fall into local optimum, an improved version named RRWOA is proposed based on the random contraction strategy (RCS) and the Rosenbrock method. To verify the capability of the proposed algorithm, RRWOA is tested against nine classical metaheuristics, nine advanced metaheuristics, and seven well-known WOA variants based on 30 IEEE CEC2014 competition functions, respectively. The experimental results in mean, standard deviation, the Friedman test, and the Wilcoxon signed-rank test are considered, proving that RRWOA won first place on 18, 24, and 25 test functions, respectively. In addition, a binary version of the algorithm, called BRRWOA, is developed for feature selection problems. An efficient prediction model based on BRRWOA and KNN classifier is proposed and compared with seven existing binary metaheuristics based on 15 datasets of UCI repositories. The experimental results show that the proposed algorithm obtains the smallest fitness value in eleven datasets and can solve combinatorial optimization problems, indicating that it still performs well in discrete cases. More importantly, the model was compared with five other algorithms on the COVID-19 dataset. The experiment outcomes demonstrate that the model offers a scientific framework to support clinical diagnostic decision-making. Therefore, RRWOA is an effectively improved optimizer with efficient value.
Collapse
Affiliation(s)
- Meilin Zhang
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Qianxi Wu
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Huiling Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Ali Asghar Heidari
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Zhennao Cai
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Jiaren Li
- Wenzhou People's Hospital, Wenzhou, Zhejiang 325099, China
| | - Elsaid Md Abdelrahim
- Faculty of Science, Northern Border University, Arar, Saudi Arabia.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Romany F Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| |
Collapse
|
6
|
Hou L, Li R, Mafarja M, Heidari AA, Liu L, Jin C, Zhou S, Chen H, Cai Z, Li C. Image segmentation of Intracerebral hemorrhage patients based on enhanced hunger Games search Optimizer. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Biswas SK, Nath Boruah A, Saha R, Raj RS, Chakraborty M, Bordoloi M. Early detection of Parkinson disease using stacking ensemble method. Comput Methods Biomech Biomed Engin 2023; 26:527-539. [PMID: 35587795 DOI: 10.1080/10255842.2022.2072683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder that occurs due to corrosion of the substantianigra, located in the thalamic region of the human brain, and is responsible for the transmission of neural signals throughout the human body using brain chemical, termed as "dopamine." Diagnosis of PD is difficult, as it is often affected by the characteristics of the medical data of the patients, which include the presence of various indicators, imbalance cases of patients' data records, similar cases of healthy/affected persons, etc. Hence, sometimes the process of diagnosis may also be affected by human error. To overcome this problem some intelligent models have been proposed; however, most of them are single classifier-based models and due to this these models cannot handle noisy and imbalanced data properly and thus sometimes overfit the model. To reduce bias and variance, and to avoid overfitting of a single classifier-based model, this paper proposes an ensemble-based PD diagnosis model, named Ensembled Expert System for Diagnosis of Parkinson's Disease (EESDPD) with relevant features and a simple stacking ensemble technique. The proposed EESDPD aggregates diverse assumptions for making the prediction. The performance of the proposed EESDPD is compared with the performances of logistic regression, SVM, Naïve Bayes, Random Forest, XGBoost, simple Decision Tree, B-TDS-PD and B-TESM-PD in terms of classification accuracy, precision, recall and F1-score measures.
Collapse
Affiliation(s)
- Saroj Kumar Biswas
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Arpita Nath Boruah
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Rajib Saha
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Ravi Shankar Raj
- Computer Science and Engineering Department, National Institute of Technology, Silchar, India
| | - Manomita Chakraborty
- School of Computer Science and Engineering, VIT-AP University, Amaravathi, India
| | - Monali Bordoloi
- School of Computer Science and Engineering, VIT-AP University, Amaravathi, India
| |
Collapse
|
8
|
End-to-End Deep Learning Method for Detection of Invasive Parkinson’s Disease. Diagnostics (Basel) 2023; 13:diagnostics13061088. [PMID: 36980396 PMCID: PMC10047182 DOI: 10.3390/diagnostics13061088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Parkinson’s disease directly affects the nervous system are causes a change in voice, lower efficiency in daily routine tasks, failure of organs, and death. As an estimate, nearly ten million people are suffering from Parkinson’s disease worldwide, and this number is increasing day by day. The main cause of an increase in Parkinson’s disease patients is the unavailability of reliable procedures for diagnosing Parkinson’s disease. In the literature, we observed different methods for diagnosing Parkinson’s disease such as gait movement, voice signals, and handwriting tests. The detection of Parkinson’s disease is a difficult task because the important features that can help in detecting Parkinson’s disease are unknown. Our aim in this study is to extract those essential voice features which play a vital role in detecting Parkinson’s disease and develop a reliable model which can diagnose Parkinson’s disease at its early stages. Early diagnostic systems for the detection of Parkinson’s disease are needed to diagnose Parkinson’s disease early so that it can be controlled at the initial stages, but existing models have limitations that can lead to the misdiagnosing of the disease. Our proposed model can assist practitioners in continuously monitoring the Parkinson’s disease rating scale, known as the Total Unified Parkinson’s Disease Scale, which can help practitioners in treating their patients. The proposed model can detect Parkinson’s disease with an error of 0.10 RMSE, which is lower than that of existing models. The proposed model has the capability to extract vital voice features which can help detect Parkinson’s disease in its early stages.
Collapse
|
9
|
Synthesis and Modification of Nanoparticles with Ionic Liquids: a Review. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Ma Z, Bullen C, Chu JTW, Wang R, Wang Y, Singh S. Towards the Objective Speech Assessment of Smoking Status based on Voice Features: A Review of the Literature. J Voice 2023; 37:300.e11-300.e20. [PMID: 33495036 DOI: 10.1016/j.jvoice.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE In smoking cessation clinical research and practice, objective validation of self-reported smoking status is crucial for ensuring the reliability of the primary outcome, that is, smoking abstinence. Speech signals convey important information about a speaker, such as age, gender, body size, emotional state, and health state. We investigated (1) if smoking could measurably alter voice features, (2) if smoking cessation could lead to changes in voice, and therefore (3) if the voice-based smoking status assessment has the potential to be used as an objective smoking cessation validation method. METHODS A systematic review of the scientific literature was conducted to compile studies on smoking status assessment based on voice features. We searched nine scientific databases for original studies involving the effects of smoking on voice features, the effects of smoking cessation on voice features. RESULTS A total of 34 studies were identified for review. We found that fundamental frequency, jitter, shimmer, harmonics to noise ratio, and other voice features are affected by smoking and could be used to assess smoking status. CONCLUSION Speech assessment of smoking status based on voice features has potential as a smoking status validation method, as it is simple, reliable, and less time-consuming. Furthermore, this study provides recommendations for future research on the objective speech assessment of smoking status based on voice features.
Collapse
Affiliation(s)
- Zhizhong Ma
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand.
| | - Joanna Ting Wai Chu
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Ruili Wang
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Yingchun Wang
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Satwinder Singh
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
11
|
Li Y, Zhao D, Xu Z, Heidari AA, Chen H, Jiang X, Liu Z, Wang M, Zhou Q, Xu S. bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease. Front Neuroinform 2023; 16:1063048. [PMID: 36726405 PMCID: PMC9884708 DOI: 10.3389/fninf.2022.1063048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Atopic dermatitis (AD) is an allergic disease with extreme itching that bothers patients. However, diagnosing AD depends on clinicians' subjective judgment, which may be missed or misdiagnosed sometimes. Methods This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. In SRWPSO, the Sobol sequence is introduced into particle swarm optimization (PSO) to make the particle distribution of the initial population more uniform, thus improving the population's diversity and traversal. At the same time, this study also adds a random replacement strategy and adaptive weight strategy to the population updating process of PSO to overcome the shortcomings of poor convergence accuracy and easily fall into the local optimum of PSO. In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO. Results To prove that the study has scientific significance, this paper first successfully demonstrates the core advantages of SRWPSO in well-known algorithms through benchmark function validation experiments. Secondly, this article demonstrates that the bSRWPSO-FKNN has practical medical significance and effectiveness through nine public and medical datasets. Discussion The 10 times 10-fold cross-validation experiments demonstrate that bSRWPSO-FKNN can pick up the key features of AD, including the content of lymphocytes (LY), Cat dander, Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod, and Total IgE. Therefore, the established bSRWPSO-FKNN method practically aids in the diagnosis of AD.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China,*Correspondence: Dong Zhao,
| | - Zhangze Xu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China,Huiling Chen,
| | - Xinyu Jiang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhifang Liu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Mengmeng Wang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qiongyan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Suling Xu,
| |
Collapse
|
12
|
Li C, Hou L, Pan J, Chen H, Cai X, Liang G. Tuberculous pleural effusion prediction using ant colony optimizer with grade-based search assisted support vector machine. Front Neuroinform 2022; 16:1078685. [PMID: 36601381 PMCID: PMC9806141 DOI: 10.3389/fninf.2022.1078685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Although tuberculous pleural effusion (TBPE) is simply an inflammatory response of the pleura caused by tuberculosis infection, it can lead to pleural adhesions and cause sequelae of pleural thickening, which may severely affect the mobility of the chest cavity. Methods In this study, we propose bGACO-SVM, a model with good diagnostic power, for the adjunctive diagnosis of TBPE. The model is based on an enhanced continuous ant colony optimization (ACOR) with grade-based search technique (GACO) and support vector machine (SVM) for wrapped feature selection. In GACO, grade-based search greatly improves the convergence performance of the algorithm and the ability to avoid getting trapped in local optimization, which improves the classification capability of bGACO-SVM. Results To test the performance of GACO, this work conducts comparative experiments between GACO and nine basic algorithms and nine state-of-the-art variants as well. Although the proposed GACO does not offer much advantage in terms of time complexity, the experimental results strongly demonstrate the core advantages of GACO. The accuracy of bGACO-predictive SVM was evaluated using existing datasets from the UCI and TBPE datasets. Discussion In the TBPE dataset trial, 147 TBPE patients were evaluated using the created bGACO-SVM model, showing that the bGACO-SVM method is an effective technique for accurately predicting TBPE.
Collapse
Affiliation(s)
- Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingxian Hou
- Department of Rehabilitation, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Jingye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China,Collaborative Innovation Center for Intelligence Medical Education, Wenzhou, Zhejiang, China,Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China,Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, China,*Correspondence: Huiling Chen,
| | - Xueding Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Xueding Cai,
| | - Guoxi Liang
- Department of Information Technology, Wenzhou Polytechnic, Wenzhou, China
| |
Collapse
|
13
|
Su H, Han Z, Fu Y, Zhao D, Yu F, Heidari AA, Zhang Y, Shou Y, Wu P, Chen H, Chen Y. Detection of pulmonary embolism severity using clinical characteristics, hematological indices, and machine learning techniques. Front Neuroinform 2022; 16:1029690. [PMID: 36590906 PMCID: PMC9800512 DOI: 10.3389/fninf.2022.1029690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Pulmonary embolism (PE) is a cardiopulmonary condition that can be fatal. PE can lead to sudden cardiovascular collapse and is potentially life-threatening, necessitating risk classification to modify therapy following the diagnosis of PE. We collected clinical characteristics, routine blood data, and arterial blood gas analysis data from all 139 patients. METHODS Combining these data, this paper proposes a PE risk stratified prediction framework based on machine learning technology. An improved algorithm is proposed by adding sobol sequence and black hole mechanism to the cuckoo search algorithm (CS), called SBCS. Based on the coupling of the enhanced algorithm and the kernel extreme learning machine (KELM), a prediction framework is also proposed. RESULTS To confirm the overall performance of SBCS, we run benchmark function experiments in this work. The results demonstrate that SBCS has great convergence accuracy and speed. Then, tests based on seven open data sets are carried out in this study to verify the performance of SBCS on the feature selection problem. To further demonstrate the usefulness and applicability of the SBCS-KELM framework, this paper conducts aided diagnosis experiments on PE data collected from the hospital. DISCUSSION The experiment findings show that the indicators chosen, such as syncope, systolic blood pressure (SBP), oxygen saturation (SaO2%), white blood cell (WBC), neutrophil percentage (NEUT%), and others, are crucial for the feature selection approach presented in this study to assess the severity of PE. The classification results reveal that the prediction model's accuracy is 99.26% and its sensitivity is 98.57%. It is expected to become a new and accurate method to distinguish the severity of PE.
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Zhengyuan Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yujie Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Fanhua Yu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Yu Zhang
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Yeqi Shou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Liu L, Kuang F, Li L, Xu S, Liang Y. An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer. Comput Biol Med 2022; 151:106227. [PMID: 36368112 DOI: 10.1016/j.compbiomed.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 12/27/2022]
Abstract
Due to the terrible manifestations of skin cancer, it seriously disturbs the quality of life status and health of patients, so we needs treatment plans to detect it early and avoid it causing more harm to patients. Medical disease image threshold segmentation technique can well extract the region of interest and effectively assist in disease recognition. Moreover, in multi-threshold image segmentation, the selection of the threshold set determines the image segmentation quality. Among the common threshold selection methods, the selection based on metaheuristic algorithm has the advantages of simplicity, easy implementation and avoidable local optimization. However, different algorithms have different performances for different medical disease images. For example, the Whale Optimization Algorithm (WOA) does not give a satisfactory performance for thresholding skin cancer images. We propose an improved WOA (LCWOA) in which the Levy operator and chaotic random mutation strategy are introduced to enhance the ability of the algorithm to jump out of the local optimum and to explore the search space. Comparing with different existing WOA variants on the CEC2014 function set, our proposed and improved algorithm improves the efficiency of the search. Experimental results show that our method outperforms the extant WOA variants in terms of optimization performances, improving the convergence accuracy and velocity. The method is also applied to solve the threshold selection in the skin cancer image segmentation problem, and LCWOA also gives excellent performance in obtaining optimal segmentation results.
Collapse
Affiliation(s)
- Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Fangjun Kuang
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Lingzhi Li
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yingqi Liang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
15
|
A review of recent advances in carbon dioxide absorption–stripping by employing a gas–liquid hollow fiber polymeric membrane contactor. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Yang Q, Li B, Wang P, Xie J, Feng Y, Liu Z, Zhu F. LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data. Brief Bioinform 2022; 23:bbac455. [PMID: 36274234 DOI: 10.1093/bib/bbac455] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 12/14/2022] Open
Abstract
Large-scale metabolomics is a powerful technique that has attracted widespread attention in biomedical studies focused on identifying biomarkers and interpreting the mechanisms of complex diseases. Despite a rapid increase in the number of large-scale metabolomic studies, the analysis of metabolomic data remains a key challenge. Specifically, diverse unwanted variations and batch effects in processing many samples have a substantial impact on identifying true biological markers, and it is a daunting challenge to annotate a plethora of peaks as metabolites in untargeted mass spectrometry-based metabolomics. Therefore, the development of an out-of-the-box tool is urgently needed to realize data integration and to accurately annotate metabolites with enhanced functions. In this study, the LargeMetabo package based on R code was developed for processing and analyzing large-scale metabolomic data. This package is unique because it is capable of (1) integrating multiple analytical experiments to effectively boost the power of statistical analysis; (2) selecting the appropriate biomarker identification method by intelligent assessment for large-scale metabolic data and (3) providing metabolite annotation and enrichment analysis based on an enhanced metabolite database. The LargeMetabo package can facilitate flexibility and reproducibility in large-scale metabolomics. The package is freely available from https://github.com/LargeMetabo/LargeMetabo.
Collapse
Affiliation(s)
- Qingxia Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jicheng Xie
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yuhao Feng
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ziqiang Liu
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
17
|
Yang X, Ye X, Zhao D, Heidari AA, Xu Z, Chen H, Li Y. Multi-threshold image segmentation for melanoma based on Kapur’s entropy using enhanced ant colony optimization. Front Neuroinform 2022; 16:1041799. [PMID: 36387585 PMCID: PMC9663822 DOI: 10.3389/fninf.2022.1041799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Melanoma is a malignant tumor formed by the cancerous transformation of melanocytes, and its medical images contain much information. However, the percentage of the critical information in the image is small, and the noise is non-uniformly distributed. We propose a new multi-threshold image segmentation model based on the two-dimensional histogram approach to the above problem. We present an enhanced ant colony optimization for continuous domains (EACOR) in the proposed model based on the soft besiege and chase strategies. Further, EACOR is combined with two-dimensional Kapur’s entropy to search for the optimal thresholds. An experiment on the IEEE CEC2014 benchmark function was conducted to measure the reliable global search capability of the EACOR algorithm in the proposed model. Moreover, we have also conducted several sets of experiments to test the validity of the image segmentation model proposed in this paper. The experimental results show that the segmented images from the proposed model outperform the comparison method in several evaluation metrics. Ultimately, the model proposed in this paper can provide high-quality samples for subsequent analysis of melanoma pathology images.
Collapse
Affiliation(s)
- Xiao Yang
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiaojia Ye
- School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai, China
- *Correspondence: Xiaojia Ye,
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
- Dong Zhao,
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhangze Xu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Yangyang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Yangyang Li,
| |
Collapse
|
18
|
Ji Y, Shi B, Li Y. An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes. Comput Biol Med 2022; 150:106189. [PMID: 37859284 DOI: 10.1016/j.compbiomed.2022.106189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 11/26/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis.
Collapse
Affiliation(s)
- Yazhou Ji
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.
| | - Beibei Shi
- Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212000, China.
| | - Yuanyuan Li
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.
| |
Collapse
|
19
|
GC-CNNnet: Diagnosis of Alzheimer’s Disease with PET Images Using Genetic and Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7413081. [PMID: 35983158 PMCID: PMC9381254 DOI: 10.1155/2022/7413081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
There is a wide variety of effects of Alzheimer's disease (AD), a neurodegenerative disease that can lead to cognitive decline, deterioration of daily life, and behavioral and psychological changes. A polymorphism of the ApoE gene ε 4 is considered a genetic risk factor for Alzheimer's disease. The purpose of this paper is to demonstrate that single-nucleotide polymorphic markers (SNPs) have a causal relationship with quantitative PET imaging traits. Additionally, the classification of AD is based on the frequency of brain tissue variations in PET images using a combination of k-nearest-neighbor (KNN), support vector machine (SVM), linear discrimination analysis (LDA), and convolutional neural network (CNN) techniques. According to the results, the suggested SNPs appear to be associated with quantitative traits more strongly than the SNPs in the ApoE genes. Regarding the classification result, the highest accuracy is obtained by the CNN with 91.1%. These results indicate that the KNN and CNN methods are beneficial in diagnosing AD. Nevertheless, the LDA and SVM are demonstrated with a lower level of accuracy.
Collapse
|
20
|
Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022; 148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022]
Abstract
Multiomics is a powerful technique in molecular biology that facilitates the identification of new associations among different molecules (genes, proteins & metabolites). It has attracted tremendous research interest from the scientists worldwide and has led to an explosive number of published studies. Most of these studies are based on the regulation data provided in available databases. Therefore, it is essential to have molecular regulation data that are strictly validated in the living systems of various cell lines and in vivo models. However, no database has been developed yet to provide comprehensive molecular regulation information validated by living systems. Herein, a new database, Molecular Regulation Data of Living System Facilitating Multiomics Study (REGLIV) is introduced to describe various types of molecular regulation tested by the living systems. (1) A total of 2996 regulations describe the changes in 1109 metabolites triggered by alterations in 284 genes or proteins, and (2) 1179 regulations describe the variations in 926 proteins induced by 125 endogenous metabolites. Overall, REGLIV is unique in (a) providing the molecular regulation of a clearly defined regulatory direction other than simple correlation, (b) focusing on molecular regulations that are validated in a living system not simply in an in vitro test, and (c) describing the disease/tissue/species specific property underlying each regulation. Therefore, REGLIV has important implications for the future practice of not only multiomics, but also other fields relevant to molecular regulation. REGLIV is freely accessible at: https://idrblab.org/regliv/.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kuerbannisha Amahong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
21
|
Modeling the efficacy of different anti-angiogenic drugs on treatment of solid tumors using 3D computational modeling and machine learning. Comput Biol Med 2022; 146:105511. [DOI: 10.1016/j.compbiomed.2022.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
|
22
|
Li F, Yin J, Lu M, Yang Q, Zeng Z, Zhang B, Li Z, Qiu Y, Dai H, Chen Y, Zhu F. ConSIG: consistent discovery of molecular signature from OMIC data. Brief Bioinform 2022; 23:6618243. [PMID: 35758241 DOI: 10.1093/bib/bbac253] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The discovery of proper molecular signature from OMIC data is indispensable for determining biological state, physiological condition, disease etiology, and therapeutic response. However, the identified signature is reported to be highly inconsistent, and there is little overlap among the signatures identified from different biological datasets. Such inconsistency raises doubts about the reliability of reported signatures and significantly hampers its biological and clinical applications. Herein, an online tool, ConSIG, was constructed to realize consistent discovery of gene/protein signature from any uploaded transcriptomic/proteomic data. This tool is unique in a) integrating a novel strategy capable of significantly enhancing the consistency of signature discovery, b) determining the optimal signature by collective assessment, and c) confirming the biological relevance by enriching the disease/gene ontology. With the increasingly accumulated concerns about signature consistency and biological relevance, this online tool is expected to be used as an essential complement to other existing tools for OMIC-based signature discovery. ConSIG is freely accessible to all users without login requirement at https://idrblab.org/consig/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
23
|
Yu R, Tian Y, Gao J, Liu Z, Wei X, Jiang H, Huang Y, Li X. Feature discretization-based deep clustering for thyroid ultrasound image feature extraction. Comput Biol Med 2022; 146:105600. [DOI: 10.1016/j.compbiomed.2022.105600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023]
|
24
|
Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022; 145:105465. [PMID: 35366467 DOI: 10.1016/j.compbiomed.2022.105465] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Bioinformatic annotation of protein function is essential but extremely sophisticated, which asks for extensive efforts to develop effective prediction method. However, the existing methods tend to amplify the representativeness of the families with large number of proteins by misclassifying the proteins in the families with small number of proteins. That is to say, the ability of the existing methods to annotate proteins in the 'rare classes' remains limited. Herein, a new protein function annotation strategy, PFmulDL, integrating multiple deep learning methods, was thus constructed. First, the recurrent neural network was integrated, for the first time, with the convolutional neural network to facilitate the function annotation. Second, a transfer learning method was introduced to the model construction for further improving the prediction performances. Third, based on the latest data of Gene Ontology, the newly constructed model could annotate the largest number of protein families comparing with the existing methods. Finally, this newly constructed model was found capable of significantly elevating the prediction performance for the 'rare classes' without sacrificing that for the 'major classes'. All in all, due to the emerging requirements on improving the prediction performance for the proteins in 'rare classes', this new strategy would become an essential complement to the existing methods for protein function prediction. All the models and source codes are freely available and open to all users at: https://github.com/idrblab/PFmulDL.
Collapse
Affiliation(s)
- Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jiebin Fang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
25
|
Lima AA, Mridha MF, Das SC, Kabir MM, Islam MR, Watanobe Y. A Comprehensive Survey on the Detection, Classification, and Challenges of Neurological Disorders. BIOLOGY 2022; 11:469. [PMID: 35336842 PMCID: PMC8945195 DOI: 10.3390/biology11030469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
Abstract
Neurological disorders (NDs) are becoming more common, posing a concern to pregnant women, parents, healthy infants, and children. Neurological disorders arise in a wide variety of forms, each with its own set of origins, complications, and results. In recent years, the intricacy of brain functionalities has received a better understanding due to neuroimaging modalities, such as magnetic resonance imaging (MRI), magnetoencephalography (MEG), and positron emission tomography (PET), etc. With high-performance computational tools and various machine learning (ML) and deep learning (DL) methods, these modalities have discovered exciting possibilities for identifying and diagnosing neurological disorders. This study follows a computer-aided diagnosis methodology, leading to an overview of pre-processing and feature extraction techniques. The performance of existing ML and DL approaches for detecting NDs is critically reviewed and compared in this article. A comprehensive portion of this study also shows various modalities and disease-specified datasets that detect and records images, signals, and speeches, etc. Limited related works are also summarized on NDs, as this domain has significantly fewer works focused on disease and detection criteria. Some of the standard evaluation metrics are also presented in this study for better result analysis and comparison. This research has also been outlined in a consistent workflow. At the conclusion, a mandatory discussion section has been included to elaborate on open research challenges and directions for future work in this emerging field.
Collapse
Affiliation(s)
- Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - M. Firoz Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
26
|
Automated methods for diagnosis of Parkinson’s disease and predicting severity level. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Ali L, Chakraborty C, He Z, Cao W, Imrana Y, Rodrigues JJPC. A novel sample and feature dependent ensemble approach for Parkinson’s disease detection. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractParkinson’s disease (PD) is a neurological disease that has been reported to have affected most people worldwide. Recent research pointed out that about 90% of PD patients possess voice disorders. Motivated by this fact, many researchers proposed methods based on multiple types of speech data for PD prediction. However, these methods either face the problem of low rate of accuracy or lack generalization. To develop an approach that will be free of these issues, in this paper we propose a novel ensemble approach. These paper contributions are two folds. First, investigating feature selection integration with deep neural network (DNN) and validating its effectiveness by comparing its performance with conventional DNN and other similar integrated systems. Second, development of a novel ensemble model namely EOFSC (Ensemble model with Optimal Features and Sample Dependant Base Classifiers) that exploits the findings of recently published studies. Recent research pointed out that for different types of voice data, different optimal models are obtained which are sensitive to different types of samples and subsets of features. In this paper, we further consolidate the findings by utilizing the proposed integrated system and propose the development of EOFSC. For multiple types of vowel phonations, multiple base classifiers are obtained which are sensitive to different subsets of features. These features and sample-dependent base classifiers are integrated, and the proposed EOFSC model is constructed. To evaluate the final prediction of the EOFSC model, the majority voting methodology is adopted. Experimental results point out that feature selection integration with neural networks improves the performance of conventional neural networks. Additionally, feature selection integration with DNN outperforms feature selection integration with conventional machine learning models. Finally, the newly developed ensemble model is observed to improve PD detection accuracy by 6.5%.
Collapse
|
28
|
Hu J, Han Z, Heidari AA, Shou Y, Ye H, Wang L, Huang X, Chen H, Chen Y, Wu P. Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine. Comput Biol Med 2022; 142:105166. [PMID: 35077935 PMCID: PMC8701842 DOI: 10.1016/j.compbiomed.2021.105166] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.
Collapse
Affiliation(s)
- Jiao Hu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Zhengyuan Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yeqi Shou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Hua Ye
- Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
29
|
Salari N, Kazeminia M, Sagha H, Daneshkhah A, Ahmadi A, Mohammadi M. The performance of various machine learning methods for Parkinson’s disease recognition: a systematic review. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02949-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Syah R, Bateni A, Valizadeh K, Elveny M, Shaeban Jahanian M, Ramdan D, Davarpanah A. Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Improving the thermal efficiency of shell-tube heat exchangers is essential in industries related to these heat exchangers. Installing heat transfer boosters on the side of the converter tube is one of the most appropriate ways to enhance heat transfer and increase the efficiency of this equipment. In this article, spring turbulence is studied using the computational fluid dynamics tool. The displacement heat transfer coefficient and the friction coefficient were selected as the primary target parameters, and the effect of using spring tabulators on them was investigated. The ratio of torsion step length to turbulence pipe length, wire diameter to pipe diameter ratio, and flow regime was studied as the main simulation variables, and the simulation results were compared with a simple pipe. The effect of water-acting fluid, R22, and copper Nanofluid on tubes containing turbidity was compared and investigated. This study showed that due to the pressure drop, the pipe with a torsional pitch to pipe length ratio of 0.17, a turbulent diameter to pipe diameter ratio of 0.15, and a Reynolds number of 50,000 with fluid R22 has the best performance for heat transfer.
Collapse
Affiliation(s)
- Rahmad Syah
- Data Science & Computational Intelligence Research Group , Universitas Medan Area , Medan , Indonesia
| | - Amir Bateni
- Department of Chemical Engineering , Arak Branch, Islamic Azad University , Arak , Iran
| | - Kamran Valizadeh
- Department of Chemical Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Marischa Elveny
- Data Science & Computational Intelligence Research Group, Universitas Sumatera Utara , Medan , Indonesia
| | - Mehdi Shaeban Jahanian
- Department of Chemical Engineering , Tehran South Branch, Islamic Azad University , Tehran , Iran
| | - Dadan Ramdan
- Data Science & Computational Intelligence Research Group , Universitas Medan Area , Medan , Indonesia
| | - Afshin Davarpanah
- Department of Petroleum Engineering , Science and Research Branch, Islamic Azad University , Tehran , Iran
| |
Collapse
|
31
|
Valizadeh A, Shariatee M. The Progress of Medical Image Semantic Segmentation Methods for Application in COVID-19 Detection. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7265644. [PMID: 34840563 PMCID: PMC8611358 DOI: 10.1155/2021/7265644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
Image medical semantic segmentation has been employed in various areas, including medical imaging, computer vision, and intelligent transportation. In this study, the method of semantic segmenting images is split into two sections: the method of the deep neural network and previous traditional method. The traditional method and the published dataset for segmentation are reviewed in the first step. The presented aspects, including all-convolution network, sampling methods, FCN connector with CRF methods, extended convolutional neural network methods, improvements in network structure, pyramid methods, multistage and multifeature methods, supervised methods, semiregulatory methods, and nonregulatory methods, are then thoroughly explored in current methods based on the deep neural network. Finally, a general conclusion on the use of developed advances based on deep neural network concepts in semantic segmentation is presented.
Collapse
Affiliation(s)
- Amin Valizadeh
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Morteza Shariatee
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
32
|
Ouchani M, Gharibzadeh S, Jamshidi M, Amini M. A Review of Methods of Diagnosis and Complexity Analysis of Alzheimer's Disease Using EEG Signals. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5425569. [PMID: 34746303 PMCID: PMC8566072 DOI: 10.1155/2021/5425569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023]
Abstract
This study will concentrate on recent research on EEG signals for Alzheimer's diagnosis, identifying and comparing key steps of EEG-based Alzheimer's disease (AD) detection, such as EEG signal acquisition, preprocessing function extraction, and classification methods. Furthermore, highlighting general approaches, variations, and agreement in the use of EEG identified shortcomings and guidelines for multiple experimental stages ranging from demographic characteristics to outcomes monitoring for future research. Two main targets have been defined based on the article's purpose: (1) discriminative (or detection), i.e., look for differences in EEG-based features across groups, such as MCI, moderate Alzheimer's disease, extreme Alzheimer's disease, other forms of dementia, and stable normal elderly controls; and (2) progression determination, i.e., look for correlations between EEG-based features and clinical markers linked to MCI-to-AD conversion and Alzheimer's disease intensity progression. Limitations mentioned in the reviewed papers were also gathered and explored in this study, with the goal of gaining a better understanding of the problems that need to be addressed in order to advance the use of EEG in Alzheimer's disease science.
Collapse
Affiliation(s)
- Mahshad Ouchani
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Gharibzadeh
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahdieh Jamshidi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Morteza Amini
- Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
33
|
Rahman W, Lee S, Islam MS, Antony VN, Ratnu H, Ali MR, Mamun AA, Wagner E, Jensen-Roberts S, Waddell E, Myers T, Pawlik M, Soto J, Coffey M, Sarkar A, Schneider R, Tarolli C, Lizarraga K, Adams J, Little MA, Dorsey ER, Hoque E. Detecting Parkinson Disease Using a Web-Based Speech Task: Observational Study. J Med Internet Res 2021; 23:e26305. [PMID: 34665148 PMCID: PMC8564663 DOI: 10.2196/26305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 08/07/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Access to neurological care for Parkinson disease (PD) is a rare privilege for millions of people worldwide, especially in resource-limited countries. In 2013, there were just 1200 neurologists in India for a population of 1.3 billion people; in Africa, the average population per neurologist exceeds 3.3 million people. In contrast, 60,000 people receive a diagnosis of PD every year in the United States alone, and similar patterns of rising PD cases-fueled mostly by environmental pollution and an aging population-can be seen worldwide. The current projection of more than 12 million patients with PD worldwide by 2040 is only part of the picture given that more than 20% of patients with PD remain undiagnosed. Timely diagnosis and frequent assessment are key to ensure timely and appropriate medical intervention, thus improving the quality of life of patients with PD. OBJECTIVE In this paper, we propose a web-based framework that can help anyone anywhere around the world record a short speech task and analyze the recorded data to screen for PD. METHODS We collected data from 726 unique participants (PD: 262/726, 36.1% were women; non-PD: 464/726, 63.9% were women; average age 61 years) from all over the United States and beyond. A small portion of the data (approximately 54/726, 7.4%) was collected in a laboratory setting to compare the performance of the models trained with noisy home environment data against high-quality laboratory-environment data. The participants were instructed to utter a popular pangram containing all the letters in the English alphabet, "the quick brown fox jumps over the lazy dog." We extracted both standard acoustic features (mel-frequency cepstral coefficients and jitter and shimmer variants) and deep learning-based embedding features from the speech data. Using these features, we trained several machine learning algorithms. We also applied model interpretation techniques such as Shapley additive explanations to ascertain the importance of each feature in determining the model's output. RESULTS We achieved an area under the curve of 0.753 for determining the presence of self-reported PD by modeling the standard acoustic features through the XGBoost-a gradient-boosted decision tree model. Further analysis revealed that the widely used mel-frequency cepstral coefficient features and a subset of previously validated dysphonia features designed for detecting PD from a verbal phonation task (pronouncing "ahh") influence the model's decision the most. CONCLUSIONS Our model performed equally well on data collected in a controlled laboratory environment and in the wild across different gender and age groups. Using this tool, we can collect data from almost anyone anywhere with an audio-enabled device and help the participants screen for PD remotely, contributing to equity and access in neurological care.
Collapse
Affiliation(s)
- Wasifur Rahman
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| | - Sangwu Lee
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| | - Md Saiful Islam
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| | - Victor Nikhil Antony
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| | - Harshil Ratnu
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| | - Mohammad Rafayet Ali
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| | - Abdullah Al Mamun
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| | - Ellen Wagner
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Stella Jensen-Roberts
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Emma Waddell
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Taylor Myers
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Meghan Pawlik
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Julia Soto
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Madeleine Coffey
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Aayush Sarkar
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ruth Schneider
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher Tarolli
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Karlo Lizarraga
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jamie Adams
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Max A Little
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - E Ray Dorsey
- Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ehsan Hoque
- Department of Computer Science, University of Rochester, Rochester, NY, United States
| |
Collapse
|
34
|
Tribological characterization of graphene oxide by laser ablation as a grease additive. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this work, the structural and tribological behavior of graphene oxide samples as a grease addi-tive was studied. By Nd:YAG laser ablation system and using graphite target at two laser energy of 0.3 W and 0.6 W, graphene oxide (GO) samples were successfully prepared. GO samples were characterized using Raman spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDAX). Also, tribological behaviors of the lubricating grease, with and without the graphene oxide in grease, by the pin-on disc tribometer were determined. The Raman spectroscopy measurements showed D and G bound, which confirmed the successful synthesis of the graphene oxide sample and also the I
D/I
G, decreased by increasing laser power due to decreasing disorder in graphene oxide structure. FESEM images show that by ablating carbon atoms from graphite target in water, particles assemble to form a GO micro-cluster due to thermodynamically agglomeration with average size of about 3–4 µm, which the size of them depends on the laser pulse energy. Based on FTIR and EDAX analysis, GO sample which prepared at lower laser energy possessed the highest content of oxygen and oxygen functional groups. In addition, the results of tribological behavior showed that the friction-reducing ability and antiwear property of the grease can be improved effectively with the addition of GO. However, it is revealed that the small size GO has a better lubricating performance and therefore cluster size appears to play a role in the degree of wear protection due to its impact on the physical and chemical properties. The results of this study indicate that the GO sample prepared at lower laser energy (0.3 W) has a smaller size and the higher the oxygen content therefore provide better friction-reducing and anti-wear effect. Also, additive of graphene oxide in lubricating grease decreases coefficient of friction as well as wear. Based on our results, the application of GO as an additive in grease leads to increased performance of the lubricated kinematic machine.
Collapse
|
35
|
Pourasad Y, Zarouri E, Salemizadeh Parizi M, Salih Mohammed A. Presentation of Novel Architecture for Diagnosis and Identifying Breast Cancer Location Based on Ultrasound Images Using Machine Learning. Diagnostics (Basel) 2021; 11:1870. [PMID: 34679568 PMCID: PMC8534593 DOI: 10.3390/diagnostics11101870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the main causes of death among women worldwide. Early detection of this disease helps reduce the number of premature deaths. This research aims to design a method for identifying and diagnosing breast tumors based on ultrasound images. For this purpose, six techniques have been performed to detect and segment ultrasound images. Features of images are extracted using the fractal method. Moreover, k-nearest neighbor, support vector machine, decision tree, and Naïve Bayes classification techniques are used to classify images. Then, the convolutional neural network (CNN) architecture is designed to classify breast cancer based on ultrasound images directly. The presented model obtains the accuracy of the training set to 99.8%. Regarding the test results, this diagnosis validation is associated with 88.5% sensitivity. Based on the findings of this study, it can be concluded that the proposed high-potential CNN algorithm can be used to diagnose breast cancer from ultrasound images. The second presented CNN model can identify the original location of the tumor. The results show 92% of the images in the high-performance region with an AUC above 0.6. The proposed model can identify the tumor's location and volume by morphological operations as a post-processing algorithm. These findings can also be used to monitor patients and prevent the growth of the infected area.
Collapse
Affiliation(s)
- Yaghoub Pourasad
- Department of Electrical Engineering, Urmia University of Technology (UUT), Urmia 57166-93188, Iran
| | - Esmaeil Zarouri
- School of Electrical Engineering, Electronic Engineering, Iran University of Science and Technology—IUST, Tehran 16846-13114, Iran;
| | | | - Amin Salih Mohammed
- Department of Computer Engineering, College of Engineering and Computer Science, Lebanese French University, Erbil 44001, Iraq;
- Department of Software and Informatics Engineering, Salahaddin University, Erbil 44002, Iraq
| |
Collapse
|
36
|
A dual-branch model for diagnosis of Parkinson’s disease based on the independent and joint features of the left and right gait. APPL INTELL 2021. [DOI: 10.1007/s10489-020-02182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Incorporation of Bi2O3 Residuals with Metallic Bi as High Performance Electrocatalyst toward Hydrogen Evolution Reaction. Catalysts 2021. [DOI: 10.3390/catal11091099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nanostructured Bismuth-based materials are promising electrodes for highly efficient electrochemical reduction processes such as hydrogen evolution reaction (HER). In this work, a novel sort of nanocomposite made up of partially reduced Bi2O3 into metallic Bi anchored on a 3D network of Ni-foam as a high-performance catalyst for electrochemical hydrogen reduction. The application of the hybrid material for HER is shown. The high catalytic activity of the fabricated electrocatalyst arises from the co-operative effect of Bi/Bi2O3 and Ni-foam which provides a highly effective surface area combined with the highly porous structure of Ni-foam for efficient charge and mass transport. The advantages of the electrode for the electrochemical reduction processes such as high current density, low overpotential, and high stability of the electrode are revealed. An overall comparison of our as-prepared electrocatalyst with recently reported works on related work is done.
Collapse
|
38
|
Forecasting Daily Electricity Price by Hybrid Model of Fractional Wavelet Transform, Feature Selection, Support Vector Machine and Optimization Algorithm. ELECTRONICS 2021. [DOI: 10.3390/electronics10182214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper proposes a novel hybrid forecasting model with three main parts to accurately forecast daily electricity prices. In the first part, where data are divided into high- and low-frequency data using the fractional wavelet transform, the best data with the highest relevancy are selected, using a feature selection algorithm. The second part is based on a nonlinear support vector network and auto-regressive integrated moving average (ARIMA) method for better training the previous values of electricity prices. The third part optimally adjusts the proposed support vector machine parameters with an error-base objective function, using the improved grey wolf and particle swarm optimization. The proposed method is applied to forecast electricity markets, and the results obtained are analyzed with the help of the criteria based on the forecast errors. The results demonstrate the high accuracy in the MAPE index of forecasting the electricity price, which is about 91% as compared to other forecasting methods.
Collapse
|
39
|
The Economic Evaluation of Methanol and Propylene Production from Natural Gas at Petrochemical Industries in Iran. SUSTAINABILITY 2021. [DOI: 10.3390/su13179990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This investigation scrutinizes the economic features and potential of propylene and methanol production from natural gas in Iran because greenhouse gas emissions released by natural gas-based production processes are lower than coal-based ones. Considering the advantage of Iran’s access to natural gas, this study evaluates and compares the economic value of different plans to complete the value chain of propylene production from natural gas and methanol in the form of four units based on three price scenarios, namely, optimistic, realistic, and pessimistic, using the COMFAR III software. Iran has been ranked as the second most prosperous country globally based on its natural gas reserves. Methanol and propylene production processes via natural gas will lower the release of greenhouse gas. This, increasing the investment and accelerating the development of methanol and propylene production units driven by natural gas will lead the world to a low emission future compared to coal-based plants. The economic evaluation and sensitivity analysis results revealed that the conversion of methanol to propylene is more attractive for investment than the sale of crude methanol. The development of methanol to propylene units is more economical than constructing a new gas to propylene unit because of the lower investment costs.
Collapse
|
40
|
Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks. SUSTAINABILITY 2021. [DOI: 10.3390/su13179898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Predicting the level of dissolved oxygen (DO) is an important issue ensuring the sustainability of the inhabitants of a river. A prediction model can predict the DO level using a historical dataset with regard to water temperature, pH, and specific conductance for a given river. The model can be built using sophisticated computational procedures such as multi-layer perceptron-based artificial neural networks. Different types of networks can be constructed for this purpose. In this study, the authors constructed three networks, namely, multi-verse optimizer (MVO), black hole algorithm (BHA), and shuffled complex evolution (SCE). The networks were trained using the datasets collected from the Klamath River Station, Oregon, USA, for the period 2015–2018. We found that the trained networks could predict the DO level of 2019. We also found that both BHA- and SCE-based networks could predict the level of DO using a relatively simple configuration compared to that of MVO. From the viewpoints of absolute errors and Pearson’s correlation coefficient, MVO- and SCE-based networks performed better than BHA-based networks. In synopsis, the authors recommend MVO- and MLP-based artificial neural networks for predicting the DO level of a river.
Collapse
|
41
|
Hamzenejad A, Ghoushchi SJ, Baradaran V. Clustering of Brain Tumor Based on Analysis of MRI Images Using Robust Principal Component Analysis (ROBPCA) Algorithm. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5516819. [PMID: 34504897 PMCID: PMC8423553 DOI: 10.1155/2021/5516819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Automated detection of brain tumor location is essential for both medical and analytical uses. In this paper, we clustered brain MRI images to detect tumor location. To obtain perfect results, we presented an unsupervised robust PCA algorithm to clustered images. The proposed method clusters brain MR image pixels to four leverages. The algorithm is implemented for five brain diseases such as glioma, Huntington, meningioma, Pick, and Alzheimer's. We used ten images of each disease to validate the optimal identification rate. According to the results obtained, 2% of the data in the bad leverage part of the image were determined, which acceptably discerned the tumor. Results show that this method has the potential to detect tumor location for brain disease with high sensitivity. Moreover, results show that the method for the Glioma images has approximately better results than others. However, according to the ROC curve for all selected diseases, the present method can find lesion location.
Collapse
Affiliation(s)
- Ali Hamzenejad
- Department of Industrial Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | | | - Vahid Baradaran
- Department of Industrial Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
42
|
Day-ahead electricity price forecasting using WPT, VMI, LSSVM-based self adaptive fuzzy kernel and modified HBMO algorithm. Sci Rep 2021; 11:17375. [PMID: 34462448 PMCID: PMC8405824 DOI: 10.1038/s41598-021-96501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
Due to focal liberality in electricity market projection, researchers try to suggest powerful and successful price forecasting algorithms. Since, the accurate information of future makes best way for market participants so as to increases their profit using bidding strategies, here suggests an algorithm for electricity price anticipation. To cover this goal, separate an algorithm into three steps, namely; pre-processing, learning and tuning. The pre-processing part consists of Wavelet Packet Transform (WPT) to analyze price signal to high and low frequency subseries and Variational Mutual Information (VMI) to select valuable input data in order to helps the learning part and decreases the computation burden. Owing to the learning part, a new Least squares support vector machine based self-adaptive fuzzy kernel (LSSVM-SFK) is proposed to extract best map pattern from input data. A new modified HBMO is introduced to optimally set LSSVM-SFK variables such as bias, weight, etc. To improve the performances of HBMO, two modifications are proposed that has high stability in HBMO. Suggested forecasting algorithm is examined on electricity markets that has acceptable efficiency than other models.
Collapse
|
43
|
Isola LA, Chen TC, Elveny M, Alkaim AF, Thangavelu L, Kianfar E. Application of micro and porous materials as nano-reactors. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In general, nanostructured materials with specific size, shape and geometry have unique and different properties from bulk materials. Using reaction media with nanometer and micrometer dimensions, they can produce new nanomaterials with interesting and remarkable properties. In general, nano-reactors are nanometer-sized chambers in which chemical reactions can take place. of course, nanoreactors are somehow part of the reaction, and this is the main difference between them and micro-reactors. One of the useful solutions to achieve the environment of nanoreactors is the use of porous materials, so due to the importance of nanoreactors, porous structures of silicate and zeolite are among the most prominent and widely used compounds in this group.
Collapse
Affiliation(s)
- Lawal Adedoyin Isola
- Department of Accounting and Finance , Landmark University , Omu-Aran , Nigeria
- Sustainable Development Goal 17 (Partnership for the Goals) Research Cluster, Landmark University , Omu-Aran , Nigeria
- SDG1 (Zero Hunger) Research Cluster, Landmark University , Omu-Aran , Nigeria
- SDG6 (Clean Energy) Research Cluster, Landmark University , Omu-Aran , Nigeria
| | | | - Marischa Elveny
- Data Science & Computational Intelligence Research Group , Universitas Sumatera Utara , Medan , Indonesia
| | - Ayad F. Alkaim
- Chemistry Department , College of Science for Women, University of Babylon , Hillah , Iraq
| | - Lakshmi Thangavelu
- Department of Pharmacology , Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University , Chennai , India
| | - Ehsan Kianfar
- SDG 8 (Decent Work and Economic Growth) Research Cluster, Landmark University , Omu-Aran , Nigeria
- Department of Chemical Engineering , Arak Branch, Islamic Azad University , Arak , Iran
- Young Researchers and Elite Club , Gachsaran Branch, Islamic Azad University , Gachsaran , Iran
| |
Collapse
|
44
|
Bollipo LM, K V K. Fast and robust supervised machine learning approach for classification and prediction of Parkinson’s disease onset. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1941262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lavanya Madhuri Bollipo
- Department of Computer Science and Engineering, National Institute of Technology Warangal, Warangal, India
| | - Kadambari K V
- Department of Computer Science and Engineering, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
45
|
Nanoreactors: properties, applications and characterization. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nanoreactors are a type of chemical reactor that is used mostly in nanotechnology and nanobiotechnology. These unique reactors are critical to the operation of a nano foundry, which is essentially a foundry that produces goods on a nanoscale. Active sites, such as transitional metal species, can also be added to nanoreactors. In this situation, the NR’s limited area might impact reaction rate and mechanism by increasing the contacts between reactants and active sites and changing the concentration of the reactant at the active site. Immobilization of chiral active centers inside porous materials has received a lot of interest in this context, and there have been a lot of publications proving the benefits of nano space confinement in chemical processes. The specific mechanism in which enantioselectivities are strengthened has been clarified using molecular dynamics simulations. Nanoreactors are nanometer-sized chambers with the potential to improve chemical conversions by shielding catalysts from external effects and encapsulating reactors and catalysts in a tiny space for an extended period of time. Natural and synthetic nanoreactors are the two types of nanoreactors that can be found in general. The first group has a more selective function while also having a more complicated structure, whereas the second group has more variation and a simpler structure. Synthetic nanoreactors have so far been made with a variety of molecules and large types of molecules. The space inside the nanoreactors is a good environment for the production of various nanostructures, in addition to a wide range of chemical reactions. When chemical reactions are carried out in confined spaces with nanometer dimensions and micrometer volumes, the kinetics and the entire process path are altered. Nanoreactors are restricted areas used to execute specialized chemical processes. In the cells of living organisms, numerous simultaneous reactions are based on the same concept. As a result, various biological and chemical structures with nanoreactor characteristics are used in this strategy.
Collapse
|
46
|
Reconfigurable and scalable 2,4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Sci Rep 2021; 11:13628. [PMID: 34211041 PMCID: PMC8249391 DOI: 10.1038/s41598-021-93167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Reconfigurable and scalable plasmonics demultiplexers have attracted increasing attention due to its potential applications in the nanophotonics. Therefore, here, a novel method to design compact plasmonic wavelength demultiplexers (DEMUXes) is proposed. The designed structures (two, four, and six-channel DEMUXes) consist of symmetrical rectangular resonators (RRs) incorporating metal nano-rod defects (NRDs). In the designed structures, the RRs are laterally coupled to metal-insulator-metal (MIM) waveguides. The wavelengths of the output channels depend on the numbers and radii of the metal NRDs in the RRs. The results obtained from various device geometries, with either a single or multiple output ports, are performed utilizing a single structure, showing real reconfigurability. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. The metal and insulator used for the realization of the proposed DEMUXes are silver and air, respectively. The silver's permittivity is characterized by the well-known Drude model. The basic plasmonic filter which is used to design plasmonic DEMUXes is a single-mode filter. A single-mode filter is easier to cope with in circuits with higher complexity such as DEMUXes. Also, different structural parameters of the basic filter are swept and their effects on the filter's frequency response are presented, to provide a better physical insight. Taking into account the compact sizes of the proposed DEMUXes (considering the six-channel DEMUX), they can be used in integrated optical circuits for optical communication purposes.
Collapse
|
47
|
|
48
|
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19:159. [PMID: 34051806 PMCID: PMC8164776 DOI: 10.1186/s12951-021-00896-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.
Collapse
Affiliation(s)
- Ehsan Kianfar
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
49
|
Mei D, Liu Q. A New Algorithm for Analysis of MiRNA Expression Profiles—SVM-RFE-FKNN. J Imaging Sci Technol 2021. [DOI: 10.2352/j.imagingsci.technol.2021.65.3.030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
50
|
Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings. ENERGIES 2021. [DOI: 10.3390/en14061649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Early prediction of thermal loads plays an essential role in analyzing energy-efficient buildings’ energy performance. On the other hand, stochastic algorithms have recently shown high proficiency in dealing with this issue. These are the reasons that this study is dedicated to evaluating an innovative hybrid method for predicting the cooling load (CL) in buildings with residential usage. The proposed model is a combination of artificial neural networks and stochastic fractal search (SFS–ANNs). Two benchmark algorithms, namely the grasshopper optimization algorithm (GOA) and firefly algorithm (FA) are also considered to be compared with the SFS. The non-linear effect of eight independent factors on the CL is analyzed using each model’s optimal structure. Evaluation of the results outlined that all three metaheuristic algorithms (with more than 90% correlation) can adequately optimize the ANN. In this regard, this tool’s prediction error declined by nearly 23%, 18%, and 36% by applying the GOA, FA, and SFS techniques. Moreover, all used accuracy criteria indicated the superiority of the SFS over the benchmark schemes. Therefore, it is inferred that utilizing the SFS along with ANN provides a reliable hybrid model for the early prediction of CL.
Collapse
|