• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698096)   Today's Articles (70)
For: Xiao L, Li S, Yang J, Zhang Z. A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Number Cited by Other Article(s)
1
Cao X, Lou J, Liao B, Peng C, Pu X, Khan AT, Pham DT, Li S. Decomposition based neural dynamics for portfolio management with tradeoffs of risks and profits under transaction costs. Neural Netw 2025;184:107090. [PMID: 39742536 DOI: 10.1016/j.neunet.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/17/2024] [Accepted: 12/22/2024] [Indexed: 01/03/2025]
2
Li H, Liao B, Li J, Li S. A Survey on Biomimetic and Intelligent Algorithms with Applications. Biomimetics (Basel) 2024;9:453. [PMID: 39194432 DOI: 10.3390/biomimetics9080453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]  Open
3
Wang G, Liu Y, Sun Y, Yu J, Sun Z. Generalized zeroing neural dynamics model for online solving time-varying cube roots problem with various external disturbances in different domains. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
4
Different discrete-time noise-suppression Z-type models for online solving time-varying and time-invariant cube roots in real and complex domains: Application to fractals. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
5
Yang M, Zhang Y, Tan N, Mao M, Hu H. 7-Instant Discrete-Time Synthesis Model Solving Future Different-Level Linear Matrix System via Equivalency of Zeroing Neural Network. IEEE TRANSACTIONS ON CYBERNETICS 2022;52:8366-8375. [PMID: 33544686 DOI: 10.1109/tcyb.2021.3051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
6
Wang D, Liu XW. A gradient-type noise-tolerant finite-time neural network for convex optimization. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
7
High-order error function designs to compute time-varying linear matrix equations. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
8
Li H, Shao S, Qin S, Yang Y. Neural networks with finite-time convergence for solving time-varying linear complementarity problem. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
9
Zhang Y, Ming L, Huang H, Chen J, Li Z. Time-varying Schur decomposition via Zhang neural dynamics. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.07.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
10
Yang M, Zhang Y, Hu H, Qiu B. General 7-Instant DCZNN Model Solving Future Different-Level System of Nonlinear Inequality and Linear Equation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:3204-3214. [PMID: 31567101 DOI: 10.1109/tnnls.2019.2938866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
11
New error function designs for finite-time ZNN models with application to dynamic matrix inversion. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
12
Yang C, Zhu X, Qiao J, Nie K. Forward and backward input variable selection for polynomial echo state networks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
13
Guo D, Lin X. Li-Function Activated Zhang Neural Network for Online Solution of Time-Varying Linear Matrix Inequality. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10291-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
14
Zeng Y, Xiao L, Li K, Li J, Li K, Jian Z. Design and analysis of three nonlinearly activated ZNN models for solving time-varying linear matrix inequalities in finite time. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
15
Yang M, Zhang Y, Hu H. Discrete ZNN models of Adams-Bashforth (AB) type solving various future problems with motion control of mobile manipulator. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
16
Li J, Sun Y, Sun Z, Li F, Jin L. Noise-tolerant Z-type neural dynamics for online solving time-varying inverse square root problems: A control-based approach. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
17
Zuo Q, Xiao L, Li K. Comprehensive design and analysis of time-varying delayed zeroing neural network and its application to matrix inversion. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.10.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
18
Jin J, Zhao L, Li M, Yu F, Xi Z. Improved zeroing neural networks for finite time solving nonlinear equations. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04622-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
19
A new noise-tolerant and predefined-time ZNN model for time-dependent matrix inversion. Neural Netw 2019;117:124-134. [PMID: 31158644 DOI: 10.1016/j.neunet.2019.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/08/2019] [Accepted: 05/08/2019] [Indexed: 11/23/2022]
20
Sun Z, Li F, Zhang B, Sun Y, Jin L. Different modified zeroing neural dynamics with inherent tolerance to noises for time-varying reciprocal problems: A control-theoretic approach. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
21
Xiao L, Li K, Tan Z, Zhang Z, Liao B, Chen K, Jin L, Li S. Nonlinear gradient neural network for solving system of linear equations. INFORM PROCESS LETT 2019. [DOI: 10.1016/j.ipl.2018.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
22
Xiao L, Zhang Y, Li K, Liao B, Tan Z. A novel recurrent neural network and its finite-time solution to time-varying complex matrix inversion. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.11.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
23
Finite-time leaderless consensus of uncertain multi-agent systems against time-varying actuator faults. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
24
Xiao L, Zhang Z, Zhang Z, Li W, Li S. Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw 2018;105:185-196. [DOI: 10.1016/j.neunet.2018.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/01/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA