1
|
Baccega D, Castagno P, Fernández Anta A, Sereno M. Enhancing COVID-19 forecasting precision through the integration of compartmental models, machine learning and variants. Sci Rep 2024; 14:19220. [PMID: 39160264 PMCID: PMC11333698 DOI: 10.1038/s41598-024-69660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Predicting epidemic evolution is essential for making informed decisions and guiding the implementation of necessary countermeasures. Computational models are vital tools that provide insights into illness progression and enable early detection, proactive intervention, and targeted preventive measures. This paper introduces Sybil, a framework that integrates machine learning and variant-aware compartmental models, leveraging a fusion of data-centric and analytic methodologies. To validate and evaluate Sybil's forecasts, we employed COVID-19 data from several European and U.S. states. The dataset included the number of new and recovered cases, fatalities, and variant presence over time. We evaluate the forecasting precision of Sybil in periods in which there is a change in the trend of the pandemic evolution or a new variant appears. Results demonstrate that Sybil outperforms conventional data-centric approaches, being able to forecast accurately the changes in the trend, the magnitude of these changes, and the future prevalence of new variants.
Collapse
Affiliation(s)
- Daniele Baccega
- Computer Science Department, Universitá di Torino, Turin, Italy.
- Laboratorio InfoLife, Consorzio Interuniversitario Nazionale per l'Informatica (CINI), Rome, Italy.
| | - Paolo Castagno
- Computer Science Department, Universitá di Torino, Turin, Italy
| | | | - Matteo Sereno
- Computer Science Department, Universitá di Torino, Turin, Italy
| |
Collapse
|
2
|
Jiang N, Kolozsvary C, Li Y. Artificial Neural Network Prediction of COVID-19 Daily Infection Count. Bull Math Biol 2024; 86:49. [PMID: 38558267 DOI: 10.1007/s11538-024-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
This study addresses COVID-19 testing as a nonlinear sampling problem, aiming to uncover the dependence of the true infection count in the population on COVID-19 testing metrics such as testing volume and positivity rates. Employing an artificial neural network, we explore the relationship among daily confirmed case counts, testing data, population statistics, and the actual daily case count. The trained artificial neural network undergoes testing in in-sample, out-of-sample, and several hypothetical scenarios. A substantial focus of this paper lies in the estimation of the daily true case count, which serves as the output set of our training process. To achieve this, we implement a regularized backcasting technique that utilize death counts and the infection fatality ratio (IFR), as the death statistics and serological surveys (providing the IFR) as more reliable COVID-19 data sources. Addressing the impact of factors such as age distribution, vaccination, and emerging variants on the IFR time series is a pivotal aspect of our analysis. We expect our study to enhance our understanding of the genuine implications of the COVID-19 pandemic, subsequently benefiting mitigation strategies.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Mathematics and Statistics, University of Massachusetts, 710 N Pleasant St, Amherst, 01003, MA, USA
| | - Charles Kolozsvary
- Department of Mathematics and Statistics, University of Massachusetts, 710 N Pleasant St, Amherst, 01003, MA, USA
| | - Yao Li
- Department of Mathematics and Statistics, University of Massachusetts, 710 N Pleasant St, Amherst, 01003, MA, USA.
| |
Collapse
|
3
|
Mao J, Han Y, Wang B. MPSTAN: Metapopulation-Based Spatio-Temporal Attention Network for Epidemic Forecasting. ENTROPY (BASEL, SWITZERLAND) 2024; 26:278. [PMID: 38667832 PMCID: PMC11049368 DOI: 10.3390/e26040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Accurate epidemic forecasting plays a vital role for governments to develop effective prevention measures for suppressing epidemics. Most of the present spatio-temporal models cannot provide a general framework for stable and accurate forecasting of epidemics with diverse evolutionary trends. Incorporating epidemiological domain knowledge ranging from single-patch to multi-patch into neural networks is expected to improve forecasting accuracy. However, relying solely on single-patch knowledge neglects inter-patch interactions, while constructing multi-patch knowledge is challenging without population mobility data. To address the aforementioned problems, we propose a novel hybrid model called metapopulation-based spatio-temporal attention network (MPSTAN). This model aims to improve the accuracy of epidemic forecasting by incorporating multi-patch epidemiological knowledge into a spatio-temporal model and adaptively defining inter-patch interactions. Moreover, we incorporate inter-patch epidemiological knowledge into both model construction and the loss function to help the model learn epidemic transmission dynamics. Extensive experiments conducted on two representative datasets with different epidemiological evolution trends demonstrate that our proposed model outperforms the baselines and provides more accurate and stable short- and long-term forecasting. We confirm the effectiveness of domain knowledge in the learning model and investigate the impact of different ways of integrating domain knowledge on forecasting. We observe that using domain knowledge in both model construction and the loss function leads to more efficient forecasting, and selecting appropriate domain knowledge can improve accuracy further.
Collapse
Affiliation(s)
- Junkai Mao
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
| | - Yuexing Han
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
- Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, Shanghai 200444, China
- Zhejiang Laboratory, Hangzhou 311100, China
| | - Bing Wang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
4
|
Tariq MU, Ismail SB. Deep learning in public health: Comparative predictive models for COVID-19 case forecasting. PLoS One 2024; 19:e0294289. [PMID: 38483948 PMCID: PMC10939212 DOI: 10.1371/journal.pone.0294289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on both the United Arab Emirates (UAE) and Malaysia, emphasizing the importance of developing accurate and reliable forecasting mechanisms to guide public health responses and policies. In this study, we compared several cutting-edge deep learning models, including Long Short-Term Memory (LSTM), bidirectional LSTM, Convolutional Neural Networks (CNN), hybrid CNN-LSTM, Multilayer Perceptron's, and Recurrent Neural Networks (RNN), to project COVID-19 cases in the aforementioned regions. These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. Subsequently, the models were re-evaluated to compare their effectiveness. Analytic approaches, both predictive and retrospective in nature, were used to interpret the data. Our primary objective was to determine the most effective model for predicting COVID-19 cases in the United Arab Emirates (UAE) and Malaysia. The findings indicate that the selected deep learning algorithms were proficient in forecasting COVID-19 cases, although their efficacy varied across different models. After a thorough evaluation, the model architectures most suitable for the specific conditions in the UAE and Malaysia were identified. Our study contributes significantly to the ongoing efforts to combat the COVID-19 pandemic, providing crucial insights into the application of sophisticated deep learning algorithms for the precise and timely forecasting of COVID-19 cases. These insights hold substantial value for shaping public health strategies, enabling authorities to develop targeted and evidence-based interventions to manage the virus spread and its impact on the populations of the UAE and Malaysia. The study confirms the usefulness of deep learning methodologies in efficiently processing complex datasets and generating reliable projections, a skill of great importance in healthcare and professional settings.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| | | |
Collapse
|
5
|
de Souza GN, Mendes AGB, Costa JDS, Oliveira MDS, Lima PVC, de Moraes VN, Silva DCC, da Rocha JEC, Botelho MDN, Araujo FA, Fernandes RDS, Souza DL, Braga MDB. Deep learning framework for epidemiological forecasting: A study on COVID-19 cases and deaths in the Amazon state of Pará, Brazil. PLoS One 2023; 18:e0291138. [PMID: 37976312 PMCID: PMC10656034 DOI: 10.1371/journal.pone.0291138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023] Open
Abstract
Modeling time series has been a particularly challenging aspect due to the need for constant adjustments in a rapidly changing environment, data uncertainty, dependencies between variables, volatile fluctuations, and the need to identify ideal hyperparameters. The present study presents a Framework capable of making projections from time series related to cases and deaths by COVID-19 in the Amazonian state of Pará, in Brazil. For the first time, deep learning models such as TCN, TRANSFORMER, TFT, N-BEATS, and N-HiTS were assessed for this purpose. The ARIMA statistical model was also used in post-processing for residual adjustment and short-term smoothing of the generated forecasts. The Framework generates probabilistic forecasts, with multivariate support, considering the following variables: daily cases per day of the first symptom, cases published daily, the occurrence of deaths, deaths published daily, and percentage of daily vaccination. The generated predictions are statistically evaluated by determining the best model for 7-day moving average projections using evaluating metrics such as MSE, RMSE, MAPE, sMAPE, r2, Coefficient of Variation, and residual analysis. As a result, the generated projections showed an average error of 5.4% for Cases Publication, 8.0% for Cases Symptoms, 11.12% for Deaths Publication, and 4.6% for Deaths Occurrence, with the N-HiTS and N-BEATS models obtaining better results. In general terms, the use of deep learning models to predict cases and deaths from COVID-19 has proven to be a valuable practice for analyzing the spread of the virus, which allows health managers to better understand and respond to this kind of pandemic outbreak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Daniel Leal Souza
- Computer Science Institute, Centro Universitário do Estado do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
6
|
He M, Tang S, Xiao Y. Combining the dynamic model and deep neural networks to identify the intensity of interventions during COVID-19 pandemic. PLoS Comput Biol 2023; 19:e1011535. [PMID: 37851640 PMCID: PMC10584194 DOI: 10.1371/journal.pcbi.1011535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
During the COVID-19 pandemic, control measures, especially massive contact tracing following prompt quarantine and isolation, play an important role in mitigating the disease spread, and quantifying the dynamic contact rate and quarantine rate and estimate their impacts remain challenging. To precisely quantify the intensity of interventions, we develop the mechanism of physics-informed neural network (PINN) to propose the extended transmission-dynamics-informed neural network (TDINN) algorithm by combining scattered observational data with deep learning and epidemic models. The TDINN algorithm can not only avoid assuming the specific rate functions in advance but also make neural networks follow the rules of epidemic systems in the process of learning. We show that the proposed algorithm can fit the multi-source epidemic data in Xi'an, Guangzhou and Yangzhou cities well, and moreover reconstruct the epidemic development trend in Hainan and Xinjiang with incomplete reported data. We inferred the temporal evolution patterns of contact/quarantine rates, selected the best combination from the family of functions to accurately simulate the contact/quarantine time series learned by TDINN algorithm, and consequently reconstructed the epidemic process. The selected rate functions based on the time series inferred by deep learning have epidemiologically reasonable meanings. In addition, the proposed TDINN algorithm has also been verified by COVID-19 epidemic data with multiple waves in Liaoning province and shows good performance. We find the significant fluctuations in estimated contact/quarantine rates, and a feedback loop between the strengthening/relaxation of intervention strategies and the recurrence of the outbreaks. Moreover, the findings show that there is diversity in the shape of the temporal evolution curves of the inferred contact/quarantine rates in the considered regions, which indicates variation in the intensity of control strategies adopted in various regions.
Collapse
Affiliation(s)
- Mengqi He
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, China
| | - Yanni Xiao
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
He M, Tang B, Xiao Y, Tang S. Transmission dynamics informed neural network with application to COVID-19 infections. Comput Biol Med 2023; 165:107431. [PMID: 37696183 DOI: 10.1016/j.compbiomed.2023.107431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Since the end of 2019 the COVID-19 repeatedly surges with most countries/territories experiencing multiple waves, and mechanism-based epidemic models played important roles in understanding the transmission mechanism of multiple epidemic waves. However, capturing temporal changes of the transmissibility of COVID-19 during the multiple waves keeps ill-posed problem for traditional mechanism-based epidemic compartment models, because that the transmission rate is usually assumed to be specific piecewise functions and more parameters are added to the model once multiple epidemic waves involved, which poses a huge challenge to parameter estimation. Meanwhile, data-driven deep neural networks fail to discover the driving factors of repeated outbreaks and lack interpretability. In this study, aiming at developing a data-driven method to project time-dependent parameters but also merging the advantage of mechanism-based models, we propose a transmission dynamics informed neural network (TDINN) by encoding the SEIRD compartment model into deep neural networks. We show that the proposed TDINN algorithm performs very well when fitting the COVID-19 epidemic data with multiple waves, where the epidemics in the United States, Italy, South Africa, and Kenya, and several outbreaks the Omicron variant in China are taken as examples. In addition, the numerical simulation shows that the trained TDINN can also perform as a predictive model to capture the future development of COVID-19 epidemic. We find that the transmission rate inferred by the TDINN frequently fluctuates, and a feedback loop between the epidemic shifting and the changes of transmissibility drives the occurrence of multiple waves. We observe a long response delay to the implementation of control interventions in the four countries, while the decline of the transmission rate in the outbreaks in China usually happens once the implementation of control interventions. The further simulation show that 17 days' delay of the response to the implementation of control interventions lead to a roughly four-fold increase in daily reported cases in one epidemic wave in Italy, which suggest that a rapid response to policies that strengthen control interventions can be effective in flattening the epidemic curve or avoiding subsequent epidemic waves. We observe that the transmission rate in the outbreaks in China is already decreasing before enhancing control interventions, providing the evidence that the increasing of the epidemics can drive self-conscious behavioural changes to protect against infections.
Collapse
Affiliation(s)
- Mengqi He
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - Biao Tang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China.
| | - Yanni Xiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
8
|
Pisano F, Cannas B, Fanni A, Pasella M, Canetto B, Giglio SR, Mocci S, Chessa L, Perra A, Littera R. Decision trees for early prediction of inadequate immune response to coronavirus infections: a pilot study on COVID-19. Front Med (Lausanne) 2023; 10:1230733. [PMID: 37601789 PMCID: PMC10433226 DOI: 10.3389/fmed.2023.1230733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Few artificial intelligence models exist to predict severe forms of COVID-19. Most rely on post-infection laboratory data, hindering early treatment for high-risk individuals. Methods This study developed a machine learning model to predict inherent risk of severe symptoms after contracting SARS-CoV-2. Using a Decision Tree trained on 153 Alpha variant patients, demographic, clinical and immunogenetic markers were considered. Model performance was assessed on Alpha and Delta variant datasets. Key risk factors included age, gender, absence of KIR2DS2 gene (alone or with HLA-C C1 group alleles), presence of 14-bp polymorphism in HLA-G gene, presence of KIR2DS5 gene, and presence of KIR telomeric region A/A. Results The model achieved 83.01% accuracy for Alpha variant and 78.57% for Delta variant, with True Positive Rates of 80.82 and 77.78%, and True Negative Rates of 85.00% and 79.17%, respectively. The model showed high sensitivity in identifying individuals at risk. Discussion The present study demonstrates the potential of AI algorithms, combined with demographic, epidemiologic, and immunogenetic data, in identifying individuals at high risk of severe COVID-19 and facilitating early treatment. Further studies are required for routine clinical integration.
Collapse
Affiliation(s)
- Fabio Pisano
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Barbara Cannas
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Alessandra Fanni
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Manuela Pasella
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | | | - Sabrina Rita Giglio
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
- Centre for Research University Services (CeSAR, Centro Servizi di Ateneo per la Ricerca), University of Cagliari, Cagliari, Monserrato, Italy
| | - Stefano Mocci
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Centre for Research University Services (CeSAR, Centro Servizi di Ateneo per la Ricerca), University of Cagliari, Cagliari, Monserrato, Italy
| | - Luchino Chessa
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Andrea Perra
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Roberto Littera
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Zhang J, Zheng N, Liu M, Yao D, Wang Y, Wang J, Xin J. Multi-weight susceptible-infected model for predicting COVID-19 in China. Neurocomputing 2023; 534:161-170. [PMID: 36923265 PMCID: PMC9993734 DOI: 10.1016/j.neucom.2023.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
The mutant strains of COVID-19 caused a global explosion of infections, including many cities of China. In 2020, a hybrid AI model was proposed by Zheng et al., which accurately predicted the epidemic in Wuhan. As the main part of the hybrid AI model, ISI method makes two important assumptions to avoid over-fitting. However, the assumptions cannot be effectively applied to new mutant strains. In this paper, a more general method, named the multi-weight susceptible-infected model (MSI) is proposed to predict COVID-19 in Chinese Mainland. First, a Gaussian pre-processing method is proposed to solve the problem of data fluctuation based on the quantity consistency of cumulative infection number and the trend consistency of daily infection number. Then, we improve the model from two aspects: changing the grouped multi-parameter strategy to the multi-weight strategy, and removing the restriction of weight distribution of viral infectivity. Experiments on the outbreaks in many places in China from the end of 2021 to May 2022 show that, in China, an individual infected by Delta or Omicron strains of SARS-CoV-2 can infect others within 3-4 days after he/she got infected. Especially, the proposed method effectively predicts the trend of the epidemics in Xi'an, Tianjin, Henan, and Shanghai from December 2021 to May 2022.
Collapse
Affiliation(s)
- Jun Zhang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Nanning Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Mingyu Liu
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Qian Xuesen College, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dingyi Yao
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Qian Xuesen College, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yusong Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jianji Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jingmin Xin
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|