1
|
Boender AJ, Bontempi L, Nava L, Pelloux Y, Tonini R. Striatal Astrocytes Shape Behavioral Flexibility via Regulation of the Glutamate Transporter EAAT2. Biol Psychiatry 2021; 89:1045-1057. [PMID: 33516457 DOI: 10.1016/j.biopsych.2020.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Striatal circuits must be modulated for behavioral flexibility, the ability to adapt to environmental changes. Striatal astrocytes contribute to circuit neuromodulation by controlling the activity of ambient neurotransmitters. In particular, extracellular glutamate levels are tightly controlled by the astrocytic glutamate transporter EAAT2, influencing synaptic functioning and neural network activity. However, it remains unclear if EAAT2 responds to environmental cues to specifically shape action control. METHODS To investigate the relationship between behavioral flexibility and experience-dependent regulation of EAAT2 expression in the dorsal striatum, mice were trained on an instrumental task. We manipulated EAAT2 expression using chemogenetic activation of astrocytic Gq signaling or in vivo morpholinos and determined the ability to adapt to novel environmental contingencies. RESULTS The loss of behavioral flexibility with task overtraining is associated with the upregulation of EAAT2, which results in enhanced glutamate clearance and altered modulation of glutamatergic neurotransmission in the lateral part of the dorsal striatum. Interfering with EAAT2 upregulation in this striatal area preserves behavioral flexibility. CONCLUSIONS Astrocytes are emerging as critical regulators of striatal functions. This work demonstrates that plasticity of EAAT2 expression in the lateral part of the dorsal striatum shapes behavior, thus providing novel mechanistic insights into how flexibility in action control is regulated.
Collapse
Affiliation(s)
- Arjen J Boender
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Leonardo Bontempi
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Nava
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Yann Pelloux
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
2
|
Martinez D, Rogers RC, Hermann GE, Hasser EM, Kline DD. Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol 2020; 318:R545-R564. [PMID: 31967862 PMCID: PMC7099463 DOI: 10.1152/ajpregu.00319.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytic excitatory amino acid transporters (EAATs) are critical to restraining synaptic and neuronal activity in the nucleus tractus solitarii (nTS). Relief of nTS EAAT restraint generates two opposing effects, an increase in neuronal excitability that reduces blood pressure and breathing and an attenuation in afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. Although the former is due, in part, to activation of ionotropic glutamate receptors, there remains a substantial contribution from another unidentified glutamate receptor. In addition, the mechanism(s) by which EAAT inhibition reduced TS-EPSC amplitude is unknown. Metabotropic glutamate receptors (mGluRs) differentially modulate nTS excitability. Activation of group I mGluRs on nTS neuron somas leads to depolarization, whereas group II/III mGluRs on sensory afferents decrease TS-EPSC amplitude. Thus we hypothesize that EAATs control postsynaptic excitability and TS-EPSC amplitude via restraint of mGluR activation. To test this hypothesis, we used in vivo recording, brain slice electrophysiology, and imaging of glutamate release and TS-afferent Ca2+. Results show that EAAT blockade in the nTS with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) induced group I mGluR-mediated depressor, bradycardic, and apneic responses that were accompanied by neuronal depolarization, elevated discharge, and increased spontaneous synaptic activity. Conversely, upon TS stimulation TFB-TBOA elevated extracellular glutamate to decrease presynaptic Ca2+ and TS-EPSC amplitude via activation of group II/III mGluRs. Together, these data suggest an important role of EAATs in restraining mGluR activation and overall cardiorespiratory function.
Collapse
Affiliation(s)
- Diana Martinez
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | | | | | - Eileen M. Hasser
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - David D. Kline
- 1Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
3
|
Scofield MD. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol Psychiatry 2018; 84:778-786. [PMID: 29258653 PMCID: PMC5948108 DOI: 10.1016/j.biopsych.2017.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes are stellate cells whose appearance can resemble a pointed star, especially when visualizing glial fibrillary acidic protein, a canonical marker for astrocytes. Accordingly, there is a commonly made connection between the points of light that shine in the night sky and the diffuse and abundant cells that buffer ions and provide support for neurons. An exceptional amount of function has been attributed to, negated for, and potentially reaffirmed for these cells, especially regarding their ability to release neuroactive molecules and influence synaptic plasticity. This makes the precise role of astrocytes in tuning neural communication seem difficult to grasp. However, data from animal models of addiction demonstrate that a variety of drug-induced molecular adaptations responsible for relapse vulnerability take place in astrocyte systems that regulate glutamate uptake and release. These findings highlight astrocytes as a critical component of the neural systems responsible for addiction, serving as a key component of the plasticity responsible for relapse and drug seeking. Here I assemble recent findings that utilize genetic tools to selectively manipulate or measure flux of internal calcium in astrocytes, focusing on G protein-coupled receptor-mediated mobilization of calcium and the induction of glutamate release. Further, I compile evidence regarding astrocyte glutamate release as well as astrocyte association with synapses with respect to the impact of these cellular phenomena in shaping synaptic transmission. I also place these findings in the context of the previous studies of Scofield et al., who explored the role of astrocytes in the nucleus accumbens in the neural mechanisms underlying cocaine seeking.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425 USA,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425 USA
| |
Collapse
|
4
|
Scofield MD, Li H, Siemsen B, Healey KL, Tran PK, Woronoff N, Boger HA, Kalivas PW, Reissner KJ. Cocaine Self-Administration and Extinction Leads to Reduced Glial Fibrillary Acidic Protein Expression and Morphometric Features of Astrocytes in the Nucleus Accumbens Core. Biol Psychiatry 2016; 80:207-15. [PMID: 26946381 PMCID: PMC4930433 DOI: 10.1016/j.biopsych.2015.12.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND As a more detailed picture of nervous system function emerges, diversity of astrocyte function becomes more widely appreciated. While it has been shown that cocaine experience impairs astroglial glutamate uptake and release in the nucleus accumbens (NAc), few studies have explored effects of self-administration on the structure and physiology of astrocytes. We investigated the effects of extinction from daily cocaine self-administration on astrocyte characteristics including glial fibrillary acidic protein (GFAP) expression, surface area, volume, and colocalization with a synaptic marker. METHODS Cocaine or saline self-administration and extinction were paired with GFAP Westerns, immunohistochemistry, and fluorescent imaging of NAc core astrocytes (30 saline-administering and 36 cocaine-administering male Sprague Dawley rats were employed). Imaging was performed using a membrane-tagged lymphocyte protein tyrosine kinase-green fluorescent protein (Lck-GFP) driven by the GFAP promoter, coupled with synapsin I immunohistochemistry. RESULTS GFAP expression was significantly reduced in the NAc core following cocaine self-administration and extinction. Similarly, we observed an overall smaller surface area and volume of astrocytes, as well as reduced colocalization with synapsin I, in cocaine-administering animals. Cocaine-mediated reductions in synaptic contact were reversed by the β-lactam antibiotic ceftriaxone. CONCLUSIONS Multiple lines of investigation indicate that NAc core astrocytes exist in a hyporeactive state following cocaine self-administration and extinction. Decreased association with synaptic elements may be particularly meaningful, as cessation of chronic cocaine use is associated with changes in synaptic strength and resistance to the induction of synaptic plasticity. We hypothesize that the reduced synaptic colocalization of astrocytes represents an important maladaptive cellular response to cocaine and the mechanisms underlying relapse vulnerability.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Hao Li
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Benjamin Siemsen
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Kati L. Healey
- Department of Psychology and Neuroscience, UNC Chapel Hill, Chapel Hill, NC
| | - Phuong K. Tran
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Nicholas Woronoff
- Department of Psychology and Neuroscience, UNC Chapel Hill, Chapel Hill, NC
| | - Heather A. Boger
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Peter W. Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Kathryn J. Reissner
- Department of Psychology and Neuroscience, UNC Chapel Hill, Chapel Hill, NC,Department of Psychology and Neuroscience, UNC Chapel Hill, Chapel Hill, NC
| |
Collapse
|
5
|
Logica T, Riviere S, Holubiec MI, Castilla R, Barreto GE, Capani F. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons. Front Aging Neurosci 2016; 8:116. [PMID: 27445788 PMCID: PMC4921470 DOI: 10.3389/fnagi.2016.00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.
Collapse
Affiliation(s)
- Tamara Logica
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Stephanie Riviere
- Laboratorio de Biología Molecular, Facultad de Medicina, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Mariana I Holubiec
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - Rocío Castilla
- Laboratorio de Biología Molecular, Facultad de Medicina, Instituto de Investigaciones cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABA Buenos Aires, Argentina
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá Bogotá, Colombia
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Facultad de Medicina, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), UBA-CONICET, CABABuenos Aires, Argentina; Departamento de Biología, Universidad Argentina JF KennedyBuenos Aires, Argentina; Investigador Asociado, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
6
|
Wang XS, Tian Z, Zhang N, Han J, Guo HL, Zhao MG, Liu SB. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death. Phytother Res 2015; 30:386-96. [PMID: 26643508 DOI: 10.1002/ptr.5538] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS.
Collapse
Affiliation(s)
- Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Han
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong-liang Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
7
|
Heller JP, Rusakov DA. Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 2015; 63:2133-51. [PMID: 25782611 PMCID: PMC4737250 DOI: 10.1002/glia.22821] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area.
Collapse
Affiliation(s)
- Janosch P Heller
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| |
Collapse
|
8
|
p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes. Sci Rep 2014; 4:7405. [PMID: 25502009 PMCID: PMC4264013 DOI: 10.1038/srep07405] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023] Open
Abstract
In CNS lesions, “reactive astrocytes” form a prominent cellular response. However, the nature of this astrocyte immune activity is not well understood. In order to study astrocytic immune responses to inflammation and injury, we generated mice with conditional deletion of p38α (MAPK14) in GFAP+ astrocytes. We studied the role of p38α signaling in astrocyte immune activation both in vitro and in vivo, and simultaneously examined the effects of astrocyte activation in CNS inflammation. Our results showed that specific subsets of cytokines (TNFα, IL-6) and chemokines (CCL2, CCL4, CXCL1, CXCL2, CXCL10) are critically regulated by p38α signaling in astrocytes. In an in vivo CNS inflammation model of intracerebral injection of LPS, we observed markedly attenuated astrogliosis in conditional GFAPcre p38α−/− mice. However, GFAPcre p38α−/− mice showed marked upregulation of CCL2, CCL3, CCL4, CXCL2, CXCL10, TNFα, and IL-1β compared to p38αfl/fl cohorts, suggesting that in vivo responses to LPS after GFAPcre p38α deletion are complex and involve interactions between multiple cell types. This finding was supported by a prominent increase in macrophage/microglia and neutrophil recruitment in GFAPcre p38α−/− mice compared to p38αfl/fl controls. Together, these studies provide important insights into the critical role of p38α signaling in astrocyte immune activation.
Collapse
|
9
|
Mannari T, Miyata S. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains. J Neuroendocrinol 2014; 26:497-509. [PMID: 24943269 DOI: 10.1111/jne.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/24/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta-like ligand 4 (DLL4) in the hypothalamic-neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double-labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)- and oxytocin (OXT)-containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT- but not AVP-containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP- and OXT-containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4-immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.
Collapse
Affiliation(s)
- T Mannari
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | |
Collapse
|
10
|
Abstract
The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.
Collapse
|
11
|
Reis WL, Biancardi VC, Son S, Antunes-Rodrigues J, Stern JE. Enhanced expression of heme oxygenase-1 and carbon monoxide excitatory effects in oxytocin and vasopressin neurones during water deprivation. J Neuroendocrinol 2012; 24:653-63. [PMID: 22060896 PMCID: PMC3314108 DOI: 10.1111/j.1365-2826.2011.02249.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A growing body of evidence indiates that carbon monoxide (CO) acts as a gas neurotransmitter within the central nervous system. Although CO has been shown to affect neurohypophyseal hormone release in response to osmotic stimuli, the precise sources, targets and mechanisms underlying the actions of CO within the magnocellular neurosecretory system remain largely unknown. In the present study, we combined immunohistochemistry and patch-clamp electrophysiology to study the cellular distribution of the CO-synthase enzyme heme oxygenase type 1 (HO-1), as well as the actions of CO on oxytocin (OT) and vasopressin (VP) magnocellular neurosecretory cells (MNCs), in euhydrated (EU) and 48-h water-deprived rats (48WD). Our results show the expression of HO-1 immunoreactivity both in OT and VP neurones, as well as in a small proportion of astrocytes, both in supraoptic (SON) and paraventricular (PVN) nuclei. HO-1 expression, and its colocalisation with OT and VP neurones within the SON and PVN, was significantly enhanced in 48WD rats. Inhibition of HO activity with chromium mesoporphyrin IX chloride (CrMP; 20 μm) resulted in a slight membrane hyperpolarisation in SON neurones from EU rats, without significantly affecting their firing activity. In 48WD rats, on the other hand, CrMP resulted in a more robust membrane hyperpolarisation, significantly decreasing neuronal firing discharge. Taken together, our results indicate that magnocellular SON and PVN neurones express HO-1, and that CO acts as an excitatory gas neurotransmitter in this system. Moreover, we found that the expression and actions of CO were enhanced in water-deprived rats, suggesting that the state-dependent up-regulation of the HO-1/CO signalling pathway contributes to enhance MNCs firing activity during an osmotic challenge.
Collapse
Affiliation(s)
- W L Reis
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
12
|
Structural and neurochemical plasticity in both supraoptic and paraventricular nuclei of hypothalamus of a desert rodent Meriones Shawi after a severe dehydration versus opposite treatment by rehydration: GFAP and vasopressin immunohistochemical study. Neurosci Lett 2012; 515:55-60. [DOI: 10.1016/j.neulet.2012.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/02/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
|
13
|
Fleming TM, Scott V, Naskar K, Joe N, Brown CH, Stern JE. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons. J Physiol 2011; 589:3929-41. [PMID: 21690192 DOI: 10.1113/jphysiol.2011.207340] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the long-established presence of glutamate NMDA receptors at extrasynaptic sites (eNMDARs), their functional roles remain poorly understood. Factors influencing the concentration and time course of glutamate in the extrasynaptic space, such as the topography of the neuronal–glial microenvironment, as well as glial glutamate transporters, are expected to affect eNMDAR-mediated signalling strength. In this study, we used in vitro and in vivo electrophysiological recordings to assess the properties, functional relevance and modulation of a persistent excitatory current mediated by activation of eNMDARs in hypothalamic supraoptic nucleus (SON) neurons. We found that ambient glutamate of a non-synaptic origin activates eNMDARs to mediate a persistent excitatory current (termed tonic I(NMDA)), which tonically stimulates neuronal activity. Pharmacological blockade of GLT1 astrocyte glutamate transporters, as well as the gliotoxin α-aminodadipic acid, enhanced tonic I(NMDA) and neuronal activity, supporting an astrocyte regulation of tonic I(NMDA) strength. Dehydration, a physiological challenge known to increase SON firing activity and to induce neuroglial remodelling, including reduced neuronal ensheathment by astrocyte processes, resulted in blunted GLT1 efficacy, enhanced tonic I(NMDA) strength, and increased neuronal activity. Taken together, our studies support the view that glial modulation of tonic I(NMDA) activation contributes to regulation of SON neuronal activity, contributing in turn to neuronal homeostatic responses during a physiological challenge.
Collapse
Affiliation(s)
- Tiffany M Fleming
- Department of Physiology, Medical College of Georgia, 1120 15th Street Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
14
|
Gamrani H, Elgot A, El Hiba O, Fèvre–Montange M. Cellular plasticity in the supraoptic and paraventricular nuclei after prolonged dehydration in the desert rodent Meriones shawi: Vasopressin and GFAP immunohistochemical study. Brain Res 2011; 1375:85-92. [DOI: 10.1016/j.brainres.2010.10.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
|
15
|
Gene expression in primary cultured astrocytes affected by aluminum: alteration of chaperons involved in protein folding. Environ Health Prev Med 2010; 16:16-24. [PMID: 21432213 DOI: 10.1007/s12199-010-0161-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/31/2010] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Aluminum is notorious as a neurotoxic metal. The aim of our study was to determine whether endoplasmic reticulum (ER) stress is involved in aluminum-induced apoptosis in astrocytes. METHODS Mitochondrial RNA (mRNA) was analyzed by reverse transcription (RT)-PCR following pulse exposure of aluminum glycinate to primary cultured astrocytes. Tunicamycin was used as a positive control. RESULTS Gene expression analysis revealed that Ire1β was up-regulated in astrocytes exposed to aluminum while Ire1α was up-regulated by tunicamycin. Exposure to aluminum glycinate, in contrast to tunicamycin, seemed to down-regulate mRNA expression of many genes, including the ER resident molecular chaperone BiP/Grp78 and Ca(2+)-binding chaperones (calnexin and calreticulin), as well as stanniocalcin 2 and OASIS. The down-regulation or non-activation of the molecular chaperons, whose expressions are known to be protective by increasing protein folding, may spell doom for the adaptive response. Exposure to aluminum did not have any significant effects on the expression of Bax and Bcl2 in astrocytes. CONCLUSIONS The results of this study demonstrate that aluminum may induce apoptosis in astrocytes via ER stress by impairing the protein-folding machinery.
Collapse
|
16
|
Effects of memantine on soluble Αβ25-35-induced changes in peptidergic and glial cells in Alzheimer's disease model rat brain regions. Neuroscience 2009; 164:1199-209. [DOI: 10.1016/j.neuroscience.2009.08.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 08/18/2009] [Accepted: 08/28/2009] [Indexed: 11/21/2022]
|
17
|
Increased expression of PAD2 after repeated intracerebroventricular infusions of soluble Abeta(25-35) in the Alzheimer's disease model rat brain: effect of memantine. Cell Mol Biol Lett 2009; 14:703-14. [PMID: 19641855 PMCID: PMC6275788 DOI: 10.2478/s11658-009-0029-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 07/17/2009] [Indexed: 02/03/2023] Open
Abstract
Peptidylarginine deiminases (PADs) convert the arginine residues in proteins into citrulline residues in a Ca(2+)-dependent manner. We previously showed that a bilateral injection of ibotenic acid into the rat nucleus basalis magnocellularis elevated the PAD2 activity in the hippocampus and striatum. In this study, we examined whether repeated intracerebroventricular infusions of soluble Abeta25-35 would affect the PAD2 expression in any regions of the rat brain. We also assessed the protective effect of memantine on Abeta-induced PAD2 alterations. The infusion of Abeta(25-35) increased the activity and protein level of PAD2 in the hippocampus, and co-treatment with memantine suppressed these changes. An immunohistochemical analysis showed that an increased level of PAD2 was coincident with GFAP-positive astrocytes and CD11b-positive microglia. In addition, immunofluoresecence staining revealed that citrullinepostive immunoreactivity coincided with the occurrence of GFAP-positive astrocytes. Co-treatment with memantine reversed the activation of the astrocytes and microglia, thus attenuating the PAD2 increment. These biochemical and immunohistochemical results suggest that PAD2 might play an important role in the pathology of early Alzheimer's disease, and may correlate with the changes in glial cells that are recovered by memantine treatment.
Collapse
|
18
|
Mullett SJ, Hamilton RL, Hinkle DA. DJ-1 immunoreactivity in human brain astrocytes is dependent on infarct presence and infarct age. Neuropathology 2008; 29:125-31. [PMID: 18647263 DOI: 10.1111/j.1440-1789.2008.00955.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DJ-1 is a protein with anti-oxidative stress and anti-apoptotic properties that is abundantly expressed in reactive CNS astrocytes in chronic neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), and Pick's disease. Genetic mutations which eliminate DJ-1 expression in humans are sufficient to produce an early-onset form of familial PD, PARK7, suggesting that DJ-1 is a critical component of the neuroprotective arsenal of the brain. Previous studies in parkinsonism/dementia brain tissues have revealed that reactive astrocytes within and surrounding incidentally identified infarcts were often robustly immunoreactive for DJ-1, especially if the infarcts showed histological features consistent with older age. Given this, we sought to evaluate astrocytic DJ-1 expression in human stroke more extensively, and with a particular emphasis on determining whether immunohistochemical DJ-1 expression in astrocytes correlates with histological infarct age. The studies presented here show that DJ-1 is abundantly expressed in reactive infarct region astrocytes in both gray and white matter, that subacute and chronic infarct region astrocytes are much more robustly DJ-1+ than are acute infarct and non-infarct region astrocytes, and that DJ-1 staining intensity in astrocytes generally correlates with that of the reactive astrocyte marker GFAP. Confocal imaging of DJ-1 and GFAP dual-labelled human brain sections were used to confirm the localization to and expression of DJ-1 in astrocytes. Neuronal DJ-1 staining was minimal under all infarct and non-infarct conditions. Our data support the conclusion that the major cellular DJ-1 response to stroke in the human brain is astrocytic, and that there is a temporal correlation between DJ-1 expression in these cells and advanced infarct age.
Collapse
Affiliation(s)
- Steven J Mullett
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
19
|
Lin LH, Taktakishvili O, Talman WT. Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 2007; 1171:42-51. [PMID: 17761150 PMCID: PMC2141649 DOI: 10.1016/j.brainres.2007.07.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 02/07/2023]
Abstract
Numerous studies have suggested that nitric oxide (NO) in the nucleus tractus solitarii (NTS) participates in modulating cardiovascular function. Nitric oxide synthase (NOS), the enzyme responsible for synthesis of NO, exists in 3 isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). Although the distribution of nNOS in the NTS has been well documented, the distribution of eNOS in the NTS has not. Because recent studies have shown that eNOS may contribute to regulation of baroreceptor reflexes and arterial pressure, we examined the distribution of eNOS and the types of cells that express it in rat NTS by using multiple labels for immunofluorescent staining and confocal microscopy. Immunoreactivity (IR) for eNOS and nNOS was found in cells and processes in all NTS subnuclei, but eNOS-IR was more uniformly distributed than was nNOS-IR. Although structures containing either eNOS-IR or nNOS-IR were often present in close proximity, they never contained both isoforms. Almost all eNOS-IR positive structures, but no nNOS-IR positive structures, contained IR for the glial marker glial fibrillary acidic protein. Furthermore, while all nNOS-IR positive cells contained IR for the neuronal marker neuronal nuclear antigen (NeuN), none of the eNOS-IR positive cells contained NeuN-IR. We conclude that eNOS in the NTS is present only in astrocytes and endothelial cells, not in neurons. Our data complement previous physiological studies and suggest that although NO from nNOS may modulate neurotransmission directly in the NTS, NO from eNOS in the NTS may modulate cardiovascular function through an interaction between astrocytes and neurons.
Collapse
Affiliation(s)
- L H Lin
- Department of Neurology, University of Iowa, VAMC 1-10W19, MS 151, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
20
|
Gerics B, Szalay F, Hajós F. Glial fibrillary acidic protein immunoreactivity in the rat suprachiasmatic nucleus: circadian changes and their seasonal dependence. J Anat 2007; 209:231-7. [PMID: 16879601 PMCID: PMC2100323 DOI: 10.1111/j.1469-7580.2006.00593.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pacemaker of the biological clock, the suprachiasmatic nucleus (SCN) of the hypothalamus, was studied in intact male rats to determine its immunoreactivity to glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Animals were kept under 12-h light-dark cycles in synchrony with day-night periods. Immunohistochemical reactions were carried out at midday and late at night in both winter (January) and summer (July). In winter, GFAP immunoreactivity was found to be low during the day and high at night. The findings were reversed in summer, when GFAP immunoreactivity was high during the day and low at night. Increased GFAP immunoreactivity appeared in the form of an abundance of thick immunopositive fibres rather than of cell bodies. This was interpreted as a hypertrophy of pre-existing astrocytes due to alternating photic stimulation conveyed by retinofugal fibres to the SCN. The observed seasonal reversal in the direction of GFAP oscillations raises the possibility that a circannual timer exists outside the SCN.
Collapse
Affiliation(s)
- Balázs Gerics
- Department of Anatomy and Histology, Szent István University, Faculty of Veterinary Science, Budapest, Hungary
| | | | | |
Collapse
|
21
|
Kozoriz MG, Kuzmiski JB, Hirasawa M, Pittman QJ. Galanin modulates neuronal and synaptic properties in the rat supraoptic nucleus in a use and state dependent manner. J Neurophysiol 2006; 96:154-64. [PMID: 16611841 DOI: 10.1152/jn.01028.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The magnocellular neurons of the hypothalamic supraoptic nucleus (SON) synthesize and secrete oxytocin (OXT) and vasopressin (AVP) from their dendrites. These peptides, and several other neurotransmitters, have been shown to modulate afferent glutamatergic neurotransmission in the SON. The neuropeptide, galanin (GAL) is also localized in SON magnocellular neurons and in afferent fibers in the nucleus. We show that GAL dose-dependently reduces evoked excitatory postsynaptic currents (eEPSCs), alters paired pulse ratio and decreases mEPSC frequency, but not amplitude or decay kinetics in both OXT and AVP neurons. GAL therefore modulates excitatory neurotransmission at a likely presynaptic receptor. Neither OXT/AVP, GABA(B) nor cannabinoid antagonists blocked this effect. A GAL2/3 agonist mimicked GAL's action while GAL1 antagonist did not block GAL's effect, suggesting that GAL2/3 receptors mediate the presynaptic effect. In nondehydrated rats GAL causes a small postsynaptic response, as assessed by input resistance measurements. When the rats were water deprived for 2 days the presynaptic response to GAL was unaltered; however, the postsynaptic decrease in input resistance and hyperpolarization was increased, an effect consistent with a previously described increase in GAL1 receptor expression in dehydration. A GAL1 receptor antagonist blocked the postsynaptic effects. Last, when a train of eEPSCs was elicited, GAL was found to inhibit the earlier events in a train but not the latter. This indicates that GAL may modulate a single synaptic event more effectively than trains of synaptic inputs, thereby acting as a high-pass filter.
Collapse
Affiliation(s)
- Michael G Kozoriz
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
22
|
Gulinello M, Etgen AM. Sexually dimorphic hormonal regulation of the gap junction protein, CX43, in rats and altered female reproductive function in CX43+/- mice. Brain Res 2005; 1045:107-15. [PMID: 15910768 PMCID: PMC4169114 DOI: 10.1016/j.brainres.2005.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 03/10/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
Astrocytic gap junctional communication is important in steroid hormone regulation of reproductive processes at the level of the hypothalamus, including estrous cyclicity and sexual behavior. We examined the effects of estradiol and progesterone on the abundance of the gap junctional protein, connexin 43 (CX43), which is highly expressed in astrocytes. Gonadectomized rats received hormone treatments that induce maximal sexual behavior and gonadotropin surges in females (estrogen for 48 h followed by progesterone, estrogen alone or progesterone alone). Control animals received vehicle (oil) injections. In the female rat preoptic area (POA), containing the gonadotropin-releasing hormone (GnRH) cell bodies, treatment with estrogen, progesterone or estrogen + progesterone significantly increased CX43 protein levels in immunoblots. In contrast, estrogen + progesterone significantly decreased CX43 levels in the male rat POA. This sexually dimorphic hormonal regulation of CX43 was not evident in the hypothalamus, which contains primarily GnRH nerve terminals. Treatment with estrogen + progesterone significantly decreased CX43 levels in both the male and female hypothalamus. To examine the role of CX43 in female reproductive function, we studied heterozygous female CX43 (CX43+/-) mice. Most mutant mice did not show normal estrous cycles. In addition, when compared to wild type females, CX43+/- mice had reduced lordosis behavior. These data suggest that hypothalamic CX43 expression is regulated by steroid hormones in a brain-region-specific and sexually dimorphic manner. Therefore, gap junctional communication in the POA and hypothalamus may be a factor regulating the estrous cycle and sexual behavior in female rodents.
Collapse
Affiliation(s)
- Maria Gulinello
- Albert Einstein College of Medicine, Department of Neuroscience, 1300 Morris Park Avenue F113, Bronx, NY 10461, USA.
| | | |
Collapse
|