1
|
Flores-Soto M, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, González-Castañeda R, Beas-Zarate C. Structure and function of NMDA-type glutamate receptor subunits. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2011.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
2
|
Estructura y función de las subunidades del receptor a glutamato tipo NMDA. Neurologia 2012; 27:301-10. [DOI: 10.1016/j.nrl.2011.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
|
3
|
Kiss JP, Szasz BK, Fodor L, Mike A, Lenkey N, Kurkó D, Nagy J, Vizi ES. GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem Int 2011; 60:170-6. [PMID: 22197911 DOI: 10.1016/j.neuint.2011.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/03/2011] [Accepted: 12/09/2011] [Indexed: 01/18/2023]
Abstract
Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low micromolar concentration range. As the different subtypes of NMDARs are markedly different in their physiological and pathological functions, our aim was to investigate whether the effect of antidepressants is subtype-specific. Using whole-cell patch-clamp recordings in rat cortical cell cultures, we studied the age-dependence of inhibition of NMDA-induced currents after treatment with desipramine and fluoxetine, as the expression profile of the NMDAR subtypes changes as a function of days in vitro. We also investigated the inhibitory effect of these antidepressants on NMDA-induced currents in HEK 293 cell lines that stably expressed rat recombinant NMDARs with GluN1a/GluN2A or GluN1a/GluN2B subunit compositions. The inhibitory effect of desipramine was not age-dependent, whereas fluoxetine displayed a continuously decreasing inhibitory profile, which was similar to the GluN1/GluN2B subtype-selective antagonist ifenprodil. In HEK 293 cells, desipramine equally inhibited NMDA currents in both cell lines, whereas fluoxetine showed an inhibitory effect only in cells that expressed the GluN1/GluN2B subtype. Our data show that fluoxetine is a selective inhibitor of GluN2B-containing NMDARs, whereas desipramine inhibits both GluN1/GluN2A and GluN1/GluN2B subtypes. As the clinical efficacy of these drugs is very similar, the putative NMDAR-associated therapeutic effect of antidepressants may be mediated only via inhibition of the GluN2B-containing subtype. The manifestation of the GluN1/GluN2B-selectivity of fluoxetine suggests the neuroprotective potential for this drug in both acute and chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Janos P Kiss
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
One of the main reasons for drug failures in clinical development, or postmarket launch, is lacking or compromised safety margins at therapeutic doses. Organ toxicity with poorly defined mechanisms and adverse drug reactions associated with on- and off-target effects are the major contributors to safety-related shortfalls of many clinical drug candidates. Therefore, to avoid high attrition rates in clinical trials, it is imperative to test compounds for potential adverse reactions during early drug discovery. Beyond a small number of targets associated with clinically acknowledged adverse drug reactions, there is little consensus on other targets that are important to consider at an early stage for in vitro safety pharmacology assessment. We consider here a limited number of safety-related targets, from different target families, which were selected as part of in vitro safety pharmacology profiling panels integrated in the drug-development process at Novartis. The best way to assess these targets, using a biochemical or a functional readout, is discussed. In particular, the importance of using cell-based profiling assays for the characterization of an agonist action at some GPCRs is highlighted. A careful design of in vitro safety pharmacology profiling panels allows better prediction of potential adverse effects of new chemical entities early in the drug-discovery process. This contributes to the selection of the best candidate for clinical development and, ultimately, should contribute to a decreased attrition rate.
Collapse
|
5
|
Cahlíková L, Macáková K, Chlebek J, Hošt'álková A, Kulhánková A, Opletal L. Ecdysterone and its Activity on some Degenerative Diseases. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Beside ecdysone (1), ecdysterone (2) is one of the most common 5β-cholest-7-en-6-one (ecdysteroid) derivatives, which, besides having a hormonal effect on invertebrates, possesses a number of favorable non-hormonal biological effects on mammals. The most interesting of these is that on degenerative diseases, one of which, up to now not clarified in detail, is the so-called adaptogenic effect (protection of the organism against adverse stress factors) associated with anabolic, gastroprotective, and antioxidant effects. A second group of favorable effects is the possibility of suppression of neurodegenerative processes and protection of the cardiovascular system (metabolic syndrome symptom suppression, antidiabetic activity, and protection of heart and blood vessels). Because of these properties, ecdysterone has the potential to be developed as a medicinal agent.
Collapse
Affiliation(s)
- Lucie Cahlíková
- Department of Pharmaceutical Botany and Ecology, ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Kateřina Macáková
- Department of Pharmaceutical Botany and Ecology, ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jakub Chlebek
- Department of Pharmaceutical Botany and Ecology, ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Anna Hošt'álková
- Department of Pharmaceutical Botany and Ecology, ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Andrea Kulhánková
- Department of Pharmaceutical Botany and Ecology, ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lubomír Opletal
- Department of Pharmaceutical Botany and Ecology, ADINACO Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Feuerbach D, Loetscher E, Neurdin S, Koller M. Comparative pharmacology of the human NMDA-receptor subtypes R1-2A, R1-2B, R1-2C and R1-2D using an inducible expression system. Eur J Pharmacol 2010; 637:46-54. [PMID: 20394742 DOI: 10.1016/j.ejphar.2010.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/09/2010] [Accepted: 04/01/2010] [Indexed: 11/27/2022]
Abstract
Pharmacological characterization of N-methyl-D-aspartate (NMDA) receptors has been hampered by the difficulty to outwit cytotoxicity after functional expression in recombinant systems. In this study a muristerone-inducible expression system for the NNMDA-R1 subunit was used. This was combined with constitutive expression of NMDA-R2A, 2B, 2C and 2D in different cell clones. After establishment of the cell lines, quantitative RT-PCR demonstrated the inducibility of the NNMDA-R1 subunit, and verified the expression of the NMDA-R2 subunits in the different cell clones. Functional responses were characterized using calcium influx through the ion channel as a robust assay system. Stimulation of the NMDA-receptor subtypes in the different cell lines led to calcium transients which were rising gradually, peaked after 30-160 s and declined thereafter very slowly. The expression of the four different NMDA-receptor subtypes in the same cellular background allowed a direct pharmacological comparison of the different receptors. Glutamate showed the highest potency at the NMDA-R1-2D. NMDA displayed at all subtypes a lower potency compared to glutamate and was a partial agonist except at the NMDA-R1-2D. 20 antagonists were tested in this study and the pharmacological characterization of the inhibition of glutamate-evoked elevation of intracellular free Ca(2+) revealed a distinct rank order of antagonist potency for each receptor subtype. These data illustrate that assessment of calcium transients upon receptor stimulation in the same cellular background is a powerful tool to compare the functional effects of compounds acting at the different NMDA-R2 receptors.
Collapse
Affiliation(s)
- Dominik Feuerbach
- Neuroscience Research, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
7
|
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels belonging to the family of ionotropic glutamate receptors. Functional NMDARs are heterotetrameric assemblies of NR1 subunits with at least one type of NR2 subunits. Various combinations of these subunits form distinct NMDAR subtypes involved in a variety of physiological and pathological processes. Several pharmaceutical companies search subunit-selective drugs for curing various neurological diseases and having favorable side-effect profile. We applied the whole-cell patch-clamp technique for testing NR2B subunit-specific drugs in HEK cells transiently or stably expressing different types of NMDAR subunits. In stable cell lines, we applied an inducible mammalian expression system; cDNAs of NR1 and either NR2A or NR2B subunits were inserted into an ecdyson-inducible mammalian expression vector and were introduced into HEK293 cells. These expression systems proved to be suitable to analyze precisely the subtype selectivity of newly synthesized NR2B-selective NMDAR antagonists by using whole-cell patch-clamp technique.
Collapse
|
8
|
Borza I, Bozó E, Barta-Szalai G, Kiss C, Tárkányi G, Demeter A, Gáti T, Háda V, Kolok S, Gere A, Fodor L, Nagy J, Galgóczy K, Magdó I, Agai B, Fetter J, Bertha F, Keserü GM, Horváth C, Farkas S, Greiner I, Domány G. Selective NR1/2B N-methyl-D-aspartate receptor antagonists among indole-2-carboxamides and benzimidazole-2-carboxamides. J Med Chem 2007; 50:901-14. [PMID: 17290978 DOI: 10.1021/jm060420k] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(4-Benzylpiperidine-1-yl)-(6-hydroxy-1H-indole-2-yl)-methanone (6a) derived from (E)-1-(4-benzylpiperidin-1-yl)-3-(4-hydroxy-phenyl)-propenone (5) was identified as a potent NR2B subunit-selective antagonist of the NMDA receptor. To establish the structure-activity relationship (SAR) and to attempt the improvement of the ADME properties of the lead, a series of compounds were prepared and tested. Several derivatives showed low nanomolar activity both in the binding and in the functional assay. In a formalin-induced hyperalgesia model in mice, 6a and (4-benzylpiperidine-1-yl)-[5(6)-hydroxy-1H-benzimidazol-2-yl]-methanone (60a) were as active as besonprodil (2) after oral administration. A CoMSIA model was developed based on binding data of a series of indole- and benzimidazole-2-carboxamides.
Collapse
Affiliation(s)
- István Borza
- Gedeon Richter Ltd., Budapest 10, POB 27, H-1475, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Borza I, Kolok S, Gere A, Nagy J, Fodor L, Galgóczy K, Fetter J, Bertha F, Agai B, Horváth C, Farkas S, Domány G. Benzimidazole-2-carboxamides as novel NR2B selective NMDA receptor antagonists. Bioorg Med Chem Lett 2006; 16:4638-40. [PMID: 16782335 DOI: 10.1016/j.bmcl.2006.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/01/2006] [Accepted: 06/01/2006] [Indexed: 12/18/2022]
Abstract
A novel series of benzimidazole-2-carboxamide derivatives was prepared and identified as NR2B selective NMDA receptor antagonists. The influence of some structural elements, like H-bond donor groups placed on the benzimidazole skeleton and the substitution pattern of the piperidine ring, on the biological activity was studied. Compound 6a showed excellent analgetic activity in the mouse formalin test following po administration.
Collapse
|
10
|
Reigada D, Lu W, Mitchell CH. Glutamate acts at NMDA receptors on fresh bovine and on cultured human retinal pigment epithelial cells to trigger release of ATP. J Physiol 2006; 575:707-20. [PMID: 16809361 PMCID: PMC1995677 DOI: 10.1113/jphysiol.2006.114439] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The photoreceptors lie between the inner retina and the retinal pigment epithelium (RPE). The release of glutamate by the phototoreceptors can signal changes in light levels to inner retinal neurons, but the role of glutamate in communicating with the RPE is unknown. Since RPE cells are known to release ATP, we asked whether glutamate could trigger ATP release from RPE cells and whether this altered cell signalling. Stimulation of the apical face of fresh bovine RPE eyecups with 100 mum NMDA increased ATP levels more than threefold, indicating that both receptors for NMDA and release of ATP occurred across the apical membrane of fresh RPE cells. NMDA increased ATP levels bathing cultured human ARPE-19 cells more than twofold, with NMDA receptor inhibitors MK-801 and d-AP5 preventing this release. Blocking the glycine site of the NMDA receptor with 5,7-dichlorokynurenic acid prevented ATP release from ARPE-19 cells. Release was also blocked by channel blocker NPPB and Ca(2+) chelator BAPTA, but not by cystic fibrosis transmembrane conductance regulator (CFTR) blocker glibenclamide or vesicular release inhibitor brefeldin A. Glutamate produced a dose-dependent release of ATP from ARPE-19 cells that was substantially inhibited by MK-801. NMDA triggered a rise in cell Ca(2+) that was blocked by MK-801, by the ATPase apyrase, by the P2Y(1) receptor antagonist MRS2179 and by depletion of intracellular Ca(2+) stores with thapsigargin. These results suggest that glutamate stimulates NMDA receptors on the apical membrane of RPE cells to release ATP. This secondary release can amplify the glutaminergic signal by increasing Ca(2+) inside RPE cells, and might activate Ca(2+)-dependent conductances. The interplay between glutaminergic and purinergic systems may thus be important for light-dependent interactions between photoreceptors and the RPE.
Collapse
Affiliation(s)
- David Reigada
- Department of Physiology, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | | | |
Collapse
|
11
|
Kurko D, Boros A, Dezso P, Urbányi Z, Sárvári M, Nagy J, Szombathelyi Z, Szendrei GI. Flow cytometry-based method to analyze the change in Tau phosphorylation in a hGSK-3β and hTau over-expressing EcR-293 cell line. Neurochem Int 2006; 48:374-82. [PMID: 16420965 DOI: 10.1016/j.neuint.2005.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 11/18/2005] [Indexed: 11/26/2022]
Abstract
Neurofibrillary tangles are composed of insoluble aggregates of microtubule-associated protein Tau. In the pathology of Alzheimer's disease (AD), accumulation of hyperphosphorylated Tau results in formation of paired helical filaments. One of the main candidate to hyperphosphorylate Tau in AD is glycogen synthase kinase 3beta (GSK-3beta). Here we introduce a non-neuronal cell line, stably co-expressing human Tau and GSK-3beta proteins, where the effect of potential kinase inhibitors on Tau phosphorylation can be monitored. The aim of our study was to establish a new flow-cytometry-based method to quantitatively analyze the changing of Tau phosphorylation, which is a suitable alternative to the well-accepted but non-quantitative Western blot technique. Our results demonstrate that the flow cytometry-based method is a convenient tool to analyze the effect of GSK-3beta inhibitors on Tau phosphorylation. This new approach provides appropriate throughput for screening purposes in preclinical research for characterization of GSK-3beta inhibitors, as potential drug candidate to cure Alzheimer's disease.
Collapse
Affiliation(s)
- Dalma Kurko
- Pharmacological and Drug Safety Research, Gedeon Richter Ltd., Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|