1
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Li X, Hui S, Mirek ET, Jonsson WO, Anthony TG, Lee WD, Zeng X, Jang C, Rabinowitz JD. Circulating metabolite homeostasis achieved through mass action. Nat Metab 2022; 4:141-152. [PMID: 35058631 PMCID: PMC9244777 DOI: 10.1038/s42255-021-00517-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022]
Abstract
Homeostasis maintains serum metabolites within physiological ranges. For glucose, this requires insulin, which suppresses glucose production while accelerating its consumption. For other circulating metabolites, a comparable master regulator has yet to be discovered. Here we show that, in mice, many circulating metabolites are cleared via the tricarboxylic acid cycle (TCA) cycle in linear proportionality to their circulating concentration. Abundant circulating metabolites (essential amino acids, serine, alanine, citrate, 3-hydroxybutyrate) were administered intravenously in perturbative amounts and their fluxes were measured using isotope labelling. The increased circulating concentrations induced by the perturbative infusions hardly altered production fluxes while linearly enhancing consumption fluxes and TCA contributions. The same mass action relationship between concentration and consumption flux largely held across feeding, fasting and high- and low-protein diets, with amino acid homeostasis during fasting further supported by enhanced endogenous protein catabolism. Thus, despite the copious regulatory machinery in mammals, circulating metabolite homeostasis is achieved substantially through mass action-driven oxidation.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sheng Hui
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Xianfeng Zeng
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Cholsoon Jang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
| | - Joshua D Rabinowitz
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
3
|
Echizenya S, Ishii Y, Kitazawa S, Tanaka T, Matsuda S, Watanabe E, Umekawa M, Terasaka S, Houkin K, Hatta T, Natsume T, Maeda Y, Watanabe SI, Hagiwara S, Kondo T. Discovery of a new pyrimidine synthesis inhibitor eradicating glioblastoma-initiating cells. Neuro Oncol 2021; 22:229-239. [PMID: 31499527 DOI: 10.1093/neuonc/noz170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glioblastoma-initiating cells (GICs) comprise a tumorigenic subpopulation of cells that are resistant to radio- and chemotherapies and are responsible for cancer recurrence. The aim of this study was to identify novel compounds that specifically eradicate GICs using a high throughput drug screening approach. METHODS We performed a cell proliferation/death-based drug screening using 10 560 independent compounds. We identified dihydroorotate dehydrogenase (DHODH) as a target protein of hit compound 10580 using ligand-fishing and mass spectrometry analysis. The medical efficacy of 10580 was investigated by in vitro cell proliferation/death and differentiation and in vivo tumorigenic assays. RESULTS Among the effective compounds, we identified 10580, which induced cell cycle arrest, decreased the expression of stem cell factors in GICs, and prevented tumorigenesis upon oral administration without any visible side effects. Mechanistic studies revealed that 10580 decreased pyrimidine nucleotide levels and enhanced sex determining region Y-box 2 nuclear export by antagonizing the enzyme activity of DHODH, an essential enzyme for the de novo pyrimidine synthesis. CONCLUSION In this study, we identified 10580 as a promising new drug against GICs. Given that normal tissue cells, in particular brain cells, tend to use the alternative salvage pathway for pyrimidine synthesis, our findings suggest that 10580 can be used for glioblastoma therapy without side effects.Key Points1. Chemical screening identified 10580 as a novel GIC-eliminating drug that targets DHODH, an essential enzyme for the de novo pyrimidine synthesis pathway. 2. Compound 10580 induced cell cycle arrest, apoptosis, and differentiation in GICs.
Collapse
Affiliation(s)
- Smile Echizenya
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yukiko Ishii
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Satoshi Kitazawa
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Tadashi Tanaka
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shun Matsuda
- Safety Evaluation Center, Ecology & Quality Management Division, CSR Division, Fujifilm Corporation, Minamiashigara, Kanagawa, Japan
| | - Eriko Watanabe
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Masao Umekawa
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Yoshimasa Maeda
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shin-Ichi Watanabe
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Shinji Hagiwara
- Pharmaceutical & Healthcare Research Laboratories, R&D Management Headquarters, Fujifilm Corporation, Kaisei-machi, Kanagawa, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Kondo T. Selective eradication of pluripotent stem cells by inhibiting DHODH activity. Stem Cells 2020; 39:33-42. [PMID: 33038285 DOI: 10.1002/stem.3290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, give rise to all kinds of functional cells, making them promising for successful application in regenerative medicine. However, there is concern that a PSC-derived differentiated cell population may form teratomas when used for cell therapy if the population contains undifferentiated PSCs. Therefore, for the success of regenerative medicine, it is crucial to establish methods that induce complete PSC differentiation and eliminate the contamination of PSCs. Here, I show that the dihydroorotate dehydrogenase (DHODH) inhibitor brequinar (BRQ) induced cell cycle arrest, cell death, and stemness loss in mouse PSCs (mPSCs), whereas it was less toxic against normal tissue-specific stem cells and differentiating cells. I demonstrate that BRQ-pretreated mPSCs did not form teratomas after being transplanted into NOD/SCID mice. Moreover, BRQ administration to teratoma-bearing mice prevented tumor growth and decreased PSC marker levels in the tumor without any visible effects in the differentiated germ layer cells and the mice. Collectively, these data suggested that DHODH inhibitors such as BRQ can be indispensable in the fundamental methods of PSC-based therapy.
Collapse
Affiliation(s)
- Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Viral RNA-Dependent RNA Polymerase Inhibitor 7-Deaza-2'- C-Methyladenosine Prevents Death in a Mouse Model of West Nile Virus Infection. Antimicrob Agents Chemother 2019; 63:AAC.02093-18. [PMID: 30642926 DOI: 10.1128/aac.02093-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
West Nile virus (WNV) is a medically important emerging arbovirus causing serious neuroinfections in humans and against which no approved antiviral therapy is currently available. In this study, we demonstrate that 2'-C-methyl- or 4'-azido-modified nucleosides are highly effective inhibitors of WNV replication, showing nanomolar or low micromolar anti-WNV activity and negligible cytotoxicity in cell culture. One representative of C2'-methylated nucleosides, 7-deaza-2'-C-methyladenosine, significantly protected WNV-infected mice from disease progression and mortality. Twice daily treatment at 25 mg/kg starting at the time of infection resulted in 100% survival of the mice. This compound was highly effective, even if the treatment was initiated 3 days postinfection, at the time of a peak of viremia, which resulted in a 90% survival rate. However, the antiviral effect of 7-deaza-2'-C-methyladenosine was absent or negligible when the treatment was started 8 days postinfection (i.e., at the time of extensive brain infection). The 4'-azido moiety appears to be another important determinant for highly efficient inhibition of WNV replication in vitro However, the strong anti-WNV effect of 4'-azidocytidine and 4'-azido-aracytidine was cell type dependent and observed predominantly in porcine kidney stable (PS) cells. The effect was much less pronounced in Vero cells. Our results indicate that 2'-C-methylated or 4'-azidated nucleosides merit further investigation as potential therapeutic agents for treating WNV infections as well as infections caused by other medically important flaviviruses.
Collapse
|
6
|
Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors. Int J Mol Sci 2018; 19:ijms19113598. [PMID: 30441833 PMCID: PMC6274932 DOI: 10.3390/ijms19113598] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
The growing evidence of the involvement of purine compounds in signaling, of nucleotide imbalance in tumorigenesis, the discovery of purinosome and its regulation, cast new light on purine metabolism, indicating that well known biochemical pathways may still surprise. Adenosine deaminase is important not only to preserve functionality of immune system but also to ensure a correct development and function of central nervous system, probably because its activity regulates the extracellular concentration of adenosine and therefore its function in brain. A lot of work has been done on extracellular 5′-nucleotidase and its involvement in the purinergic signaling, but also intracellular nucleotidases, which regulate the purine nucleotide homeostasis, play unexpected roles, not only in tumorigenesis but also in brain function. Hypoxanthine guanine phosphoribosyl transferase (HPRT) appears to have a role in the purinosome formation and, therefore, in the regulation of purine synthesis rate during cell cycle with implications in brain development and tumors. The final product of purine catabolism, uric acid, also plays a recently highlighted novel role. In this review, we discuss the molecular mechanisms underlying the pathological manifestations of purine dysmetabolisms, focusing on the newly described/hypothesized roles of cytosolic 5′-nucleotidase II, adenosine kinase, adenosine deaminase, HPRT, and xanthine oxidase.
Collapse
|
7
|
Che X, Liu P, Wu C, Song W, An N, Yu L, Bai Y, Xing Z, Cai J, Wang X, Yang J. Potential role of the ecto-5'-nucleotidase in morphine-induced uridine release and neurobehavioral changes. Neuropharmacology 2018; 141:1-10. [PMID: 30071207 DOI: 10.1016/j.neuropharm.2018.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022]
Abstract
There is growing evidence that uridine may act as an endogenous neuromodulator with a potential signaling role in the central nervous system in addition to its function in pyrimidine metabolism. We previously found that acute morphine treatment significantly increased uridine release in the dorsal striatum of mice, indicating that uridine may contribute to morphine-induced neurobehavioral changes. In the present study, we analyzed the mechanism involved in morphine-induced uridine release and the role of uridine in morphine-induced neurobehavioral changes. Uridine release in the dorsal striatum of mice was assessed by in vivo microdialysis coupled with high performance liquid chromatography (HPLC) after morphine treatment. Western blotting and immunofluorescence were used to evaluate the expression of uridine-related proteins. Morphine-induced neurobehavioral changes were assessed by locomotor activity, behavioral sensitization and conditioned place preference (CPP) test. The expression of NT5E, an extracellular enzyme involved in formation of nucleosides, including uridine, was specifically knocked down in the dorsal striatum of mice using adeno-associated virus (AAV)-mediated short hairpin RNA (shRNA). The results indicated that both acute and chronic morphine administration significantly increased uridine release in the dorsal striatum, and this was associated with upregulation of NT5E but not other uridine-related proteins. Inhibition of NT5E with APCP or shRNA markedly inhibited morphine-induced uridine release in the dorsal striatum and related neurobehavioral changes, including hyperlocomotor activity, behavioral sensitization and CPP. Our data give a better understanding of the contribution of NT5E to morphine-induced uridine release and neurobehavioral changes, and identify NT5E as a potential target for treating morphine abuse.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Ping Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Wu Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Nina An
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Lisha Yu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yijun Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Zheng Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Xiaomin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
8
|
Ashihara H, Stasolla C, Fujimura T, Crozier A. Purine salvage in plants. PHYTOCHEMISTRY 2018; 147:89-124. [PMID: 29306799 DOI: 10.1016/j.phytochem.2017.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 05/04/2023]
Abstract
Purine bases and nucleosides are produced by turnover of nucleotides and nucleic acids as well as from some cellular metabolic pathways. Adenosine released from the S-adenosyl-L-methionine cycle is linked to many methyltransferase reactions, such as the biosynthesis of caffeine and glycine betaine. Adenine is produced by the methionine cycles, which is related to other biosynthesis pathways, such those for the production of ethylene, nicotianamine and polyamines. These purine compounds are recycled for nucleotide biosynthesis by so-called "salvage pathways". However, the salvage pathways are not merely supplementary routes for nucleotide biosynthesis, but have essential functions in many plant processes. In plants, the major salvage enzymes are adenine phosphoribosyltransferase (EC 2.4.2.7) and adenosine kinase (EC 2.7.1.20). AMP produced by these enzymes is converted to ATP and utilised as an energy source as well as for nucleic acid synthesis. Hypoxanthine, guanine, inosine and guanosine are salvaged to IMP and GMP by hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) and inosine/guanosine kinase (EC 2.7.1.73). In contrast to de novo purine nucleotide biosynthesis, synthesis by the salvage pathways is extremely favourable, energetically, for cells. In addition, operation of the salvage pathway reduces the intracellular levels of purine bases and nucleosides which inhibit other metabolic reactions. The purine salvage enzymes also catalyse the respective formation of cytokinin ribotides, from cytokinin bases, and cytokinin ribosides. Since cytokinin bases are the active form of cytokinin hormones, these enzymes act to maintain homeostasis of cellular cytokinin bioactivity. This article summarises current knowledge of purine salvage pathways and their possible function in plants and purine salvage activities associated with various physiological phenomena are reviewed.
Collapse
Affiliation(s)
- Hiroshi Ashihara
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610, Japan.
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Tatsuhito Fujimura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA, 95616-5270, USA
| |
Collapse
|
9
|
Fustin JM, Doi M, Yamada H, Komatsu R, Shimba S, Okamura H. Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 2012; 1:341-9. [PMID: 22832226 DOI: 10.1016/j.celrep.2012.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/13/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022] Open
Abstract
The synthesis of nucleotides in the body is centrally controlled by the liver, via salvage or de novo synthesis. We reveal a pervasive circadian influence on hepatic nucleotide metabolism, from rhythmic gene expression of rate-limiting enzymes to oscillating nucleotide metabolome in wild-type (WT) mice. Genetic disruption of the hepatic clock leads to aberrant expression of these enzymes, together with anomalous nucleotide rhythms, such as constant low levels of ATP with an excess in uric acid, the degradation product of purines. These results clearly demonstrate that the hepatic circadian clock orchestrates nucleotide synthesis and degradation. This circadian metabolome timetable, obtained using state-of-the-art capillary electrophoresis time-of-flight mass spectrometry, will guide further investigations in nucleotide metabolism-related disorders.
Collapse
Affiliation(s)
- Jean-Michel Fustin
- Department of System Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Ipata PL. Origin, utilization, and recycling of nucleosides in the central nervous system. ADVANCES IN PHYSIOLOGY EDUCATION 2011; 35:342-346. [PMID: 22139768 DOI: 10.1152/advan.00068.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The brain relies on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides, to maintain its nucleotide pool in the proper qualitative and quantitative balance. The transport of nucleosides from blood into neurons and glia is considered to be an essential prerequisite to enter their metabolic utilization in the brain. Recent lines of evidence have also suggested that local extracellular nucleoside triphosphate (NTP) degradation may contribute to brain nucleosides. Plasma membrane-located ectonucleotidases, with their active sites oriented toward the extracellular space, catalyze the successive hydrolysis of NTPs to their respective nucleosides. Apart from the well-established modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability at their respective receptors, ectonucleotidases may also serve the local reutilization of nucleosides in the brain. After their production in the extracellular space by the ectonucleotidase system, nucleosides are transported into neurons and glia and converted back to NTPs via a set of purine and pyrimidine salvage enzymes. Finally, nucleotides are transported into brain cell vescicles or granules and released back into the extracellular space. The key teaching concepts to be included in a two-to three-lecture block on the molecular mechanisms of the local nucleoside recycling process, based on a cross talk between the brain extracellular space and cytosol, are discussed in this article.
Collapse
Affiliation(s)
- Piero Luigi Ipata
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Italy.
| |
Collapse
|
11
|
Gender- and age-dependent changes in nucleoside levels in the cerebral cortex and white matter of the human brain. Brain Res Bull 2010; 81:579-84. [DOI: 10.1016/j.brainresbull.2009.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 12/13/2022]
|
12
|
Lashkov AA, Zhukhlistova NE, Sotnichenko SE, Gabdulkhakov AG, Mikhailov AM. Structural basis for the mechanism of inhibition of uridine phosphorylase from Salmonella typhimurium. CRYSTALLOGR REP+ 2010. [DOI: 10.1134/s1063774510010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Lashkov AA, Zhukhlistova NE, Gabdoulkhakov AH, Shtil AA, Efremov RG, Betzel C, Mikhailov AM. The X-ray structure of Salmonella typhimurium uridine nucleoside phosphorylase complexed with 2,2'-anhydrouridine, phosphate and potassium ions at 1.86 A resolution. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2009; 66:51-60. [PMID: 20057049 DOI: 10.1107/s0907444909044175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/23/2009] [Indexed: 11/10/2022]
Abstract
Uridine nucleoside phosphorylase is an important drug target for the development of anti-infective and antitumour agents. The X-ray crystal structure of Salmonella typhimurium uridine nucleoside phosphorylase (StUPh) complexed with its inhibitor 2,2'-anhydrouridine, phosphate and potassium ions has been solved and refined at 1.86 A resolution (R(cryst) = 17.6%, R(free) = 20.6%). The complex of human uridine phosphorylase I (HUPhI) with 2,2'-anhydrouridine was modelled using a computational approach. The model allowed the identification of atomic groups in 2,2'-anhydrouridine that might improve the interaction of future inhibitors with StUPh and HUPhI.
Collapse
Affiliation(s)
- Alexander A Lashkov
- A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky Prospect, 119333 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
14
|
Redzic ZB, Malatiali SA, Craik JD, Rakic ML, Isakovic AJ. Blood-brain barrier efflux transport of pyrimidine nucleosides and nucleobases in the rat. Neurochem Res 2008; 34:566-73. [PMID: 18751895 DOI: 10.1007/s11064-008-9823-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/05/2008] [Indexed: 11/25/2022]
Abstract
The brain efflux index (BEI), a measurement of blood-brain barrier (BBB) efflux transport, was estimated at 15 s, 30 s, 1 min, 3 min and 10 min after intracerebral injection of [14C]pyrimidines. An initial steep increase of the BEI values over time was observed for [14]uracil and [14C]thymine, followed by a more moderate increase after 1 min. For the corresponding nucleosides, [14C]uridine and [14C]thymidine, the increase of BEI values over time was less steep and linear between 30 s and 3 min. The apparent BBB efflux clearances for [14C]uridine, [14C]thymidine, [14C]uracil and [14C]thymine were (microl/min/g): 95.2 +/- 12.1, 125.3 +/- 18.4, 290.4 +/- 28 and 358.5 +/- 32.5, respectively, which is at least several folds higher than the predicted BBB influx clearances of uridine, uracil and thymidine. Quick depletion of brain parenchyma from brain microvasculature has revealed that [14C] radioactivity accumulated in brain microvessels after injection of nucleosides [14C]thymidine and [14C]uridine, but that was not observed when nucleobases, [14C]thymine and [14C]uracil, were injected. Reverse transcriptase-PCR revealed that the rat brain and liver (positive control) express dihydropyrimidine dehydrogenase, a key enzyme in pyrimidine nucleobase catabolism. Two bands representing spliced variants have been detected with the relative density of the bands (expressed relative to the density of glyceraldehyde3-phosphate dehydrogenase bands, mean +/- SEM from 3 separate samples) 0.16 +/- 0.06 and 0.04 +/- 0.01 (brain) and 0.49 +/- 0.1 and 0.07 +/- 0.01 (liver). Overall, these results indicate that the net direction of pyrimidine BBB transport is the efflux transport; rapid BBB efflux transport and metabolic breakdown of pyrimidine nucleobases appear to be important for brain homeostasis.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | | | | | | | | |
Collapse
|
15
|
Cansev M, Wurtman RJ, Sakamoto T, Ulus IH. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimers Dement 2007; 4:S153-68. [PMID: 18631994 DOI: 10.1016/j.jalz.2007.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 10/03/2007] [Indexed: 12/19/2022]
Abstract
Although cognitive performance in humans and experimental animals can be improved by administering omega-3 fatty acid docosahexaenoic acid (DHA), the neurochemical mechanisms underlying this effect remain uncertain. In general, nutrients or drugs that modify brain function or behavior do so by affecting synaptic transmission, usually by changing the quantities of particular neurotransmitters present within synaptic clefts or by acting directly on neurotransmitter receptors or signal-transduction molecules. We find that DHA also affects synaptic transmission in mammalian brain. Brain cells of gerbils or rats receiving this fatty acid manifest increased levels of phosphatides and of specific presynaptic or postsynaptic proteins. They also exhibit increased numbers of dendritic spines on postsynaptic neurons. These actions are markedly enhanced in animals that have also received the other two circulating precursors for phosphatidylcholine, uridine (which gives rise to brain uridine diphosphate and cytidine triphosphate) and choline (which gives rise to phosphocholine). The actions of DHA aere reproduced by eicosapentaenoic acid, another omega-3 compound, but not by omega-6 fatty acid arachidonic acid. Administration of circulating phosphatide precursors can also increase neurotransmitter release (acetylcholine, dopamine) and affect animal behavior. Conceivably, this treatment might have use in patients with the synaptic loss that characterizes Alzheimer's disease or other neurodegenerative diseases or occurs after stroke or brain injury.
Collapse
Affiliation(s)
- Mehmet Cansev
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|