1
|
Ashfaq Z, Younas Z, Nathaniel E, Rehman A, Siddiqi A, Rasool N, Amir M. Association Between Caffeine Intake and Alzheimer's Disease Progression: A Systematic Review. Cureus 2025; 17:e80923. [PMID: 40255824 PMCID: PMC12009456 DOI: 10.7759/cureus.80923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD) is a growing global health challenge, prompting increased attention on modifiable lifestyle factors that might influence disease progression. Among these, caffeine consumption has emerged as a potential protective factor, though the evidence remains complex and incompletely understood. This study aims to systematically review and evaluate the available evidence regarding the association between caffeine intake and AD progression. A comprehensive literature search was conducted across major databases including PubMed/MEDLINE, Embase, Web of Science, and Cochrane Library, covering studies from database inception through October 2024. The review included studies examining the relationship between caffeine intake and AD progression in human subjects, with quality assessment performed using the Newcastle-Ottawa Scale for observational studies and appropriate tools for other study designs. Findings indicated that higher caffeine intake (>200 mg/day) was consistently associated with a reduced risk of cognitive decline and AD progression. Plasma caffeine levels exceeding 1200 ng/ml were notably linked to a reduced risk of conversion from mild cognitive impairment (MCI) to dementia. The Mendelian randomization study suggested a protective effect of genetically predicted higher plasma caffeine levels against AD, with an odds ratio of 0.87 (95% CI: 0.76-1.00), although this did not reach statistical significance. Overall, current evidence suggests a potentially protective role of moderate caffeine consumption against AD progression, particularly in individuals with MCI. The relationship appears dose-dependent and may be influenced by genetic factors and timing of exposure. Further research, particularly well-designed prospective studies and clinical trials, is needed to establish optimal dosing strategies and identify populations most likely to benefit.
Collapse
Affiliation(s)
| | - Zainab Younas
- Internal Medicine, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | | | - Arzoo Siddiqi
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Naveed Rasool
- Internal Medicine, East and North Hertfordshire NHS Trust, London, GBR
| | - Maaz Amir
- Internal Medicine, King Edward Medical University, Lahore, PAK
| |
Collapse
|
2
|
Memudu AE, Olukade BA, Adebayo OS, Raza ML. Coffee and amyotrophic lateral sclerosis (ALS). PROGRESS IN BRAIN RESEARCH 2024; 289:81-105. [PMID: 39168583 DOI: 10.1016/bs.pbr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by progressive loss of motor neurons. The effective treatments for ALS remain elusive, necessitating exploration into novel preventive strategies. ALS pathogenesis is triggered by oxidative stress which results in neuroinflammation, exicitotoxicity and neuronal cell death. Nutritional mechanism for halting progression of neurodegeneration is through dietary compounds with antioxidants, anti-inflammatory or neuromodulating activity. Coffee is a widely consumed beverage made up of polyphenols, caffeine and other compounds with possible antioxidants and neuro-protective roles. It is important to say that various epidemiological studies have documented association between coffee intake and ALS. This chapter is aimed to present a comprehensive review of existing literature on coffee consumption and ALS, involving epidemiological studies, preclinical research, and its mechanism of actions in animal model of ALS. It highlights key findings regarding the potential neuroprotective properties of coffee constituents such as caffeine, polyphenols, and other bioactive compounds. Furthermore, it discusses possible pathways through which coffee may modulate ALS pathogenesis, including suppressing oxidative stress and neuroinflammation while boosting adenosine function via the adenosine receptor two on the motor neuron cells membrane in the spinal cord to enhance motor function via the corticospinal tract. Overall, this chapter underscores the significance of further research to unravel the specific mechanisms by which coffee exerts its neuroprotective effects in ALS, with the ultimate goal of identifying dietary strategies for ALS prevention and management.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Anatomy Department, Neuroscience Unit, Faculty of Basic Medical Sciences Edo State University Uzairue, Edo State, Nigeria.
| | - Baliqis Adejoke Olukade
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer Institute, University of South Florida, Tampa, FL, United States
| | | | - Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
4
|
Zhou L, Li X, Su B. Spatial Regulation Control of Oxygen Metabolic Consumption in Mouse Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204468. [PMID: 36257822 PMCID: PMC9731700 DOI: 10.1002/advs.202204468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/24/2022] [Indexed: 05/25/2023]
Abstract
The mammalian brain relies on significant oxygen metabolic consumption to fulfill energy supply, brain function, and neural activity. In this study, in vivo electrochemistry is combined with physiological and ethological analyses to explore oxygen metabolic consumption in an area of the mouse brain that includes parts of the primary somatosensory cortex, primary motor cortex, hippocampus, and striatum. The oxygen levels at different locations of this boundary section are spatially resolved by measuring the electrical current in vivo using ingeniously designed anti-biofouling carbon fiber microelectrodes. The characteristics of the current signals are further interpreted by simultaneously recording the physiological responses of the mice. Additionally, ethological tests are performed to validate the correlation between oxygen levels and mouse behavior. It is found that high-dose caffeine injection can evoke spatial variability in oxygen metabolic consumption between the four neighboring brain regions. It is proposed that the oxygen metabolic consumption in different brain regions is not independent of each other but is subject to spatial regulation control following the rules of "rank of brain region" and "relative distance." Furthermore, as revealed by in vivo wireless electrochemistry and ethological analysis, mice are at risk of neuronal damage from long-term intake of high-dose caffeine.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Xinru Li
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Electroacupuncture stimulation of HT7 alleviates sleep disruption following acute caffeine exposure by regulating BDNF-mediated endoplasmic reticulum stress in the rat medial septum. Biomed Pharmacother 2022; 155:113724. [PMID: 36156370 DOI: 10.1016/j.biopha.2022.113724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Acupuncture stimulation can protect the brain against caffeine-induced sleep disruption. This study investigated whether electroacupuncture stimulation acupuncture point HT7 alleviates sleep disruption by regulating mBDNF and ER stress in the medial septum. Acute exposure to caffeine (15 mg/kg, i.p.) increased the wake time and decreased REM sleep, which HT7 stimulation alleviated. HT7 stimulation ameliorated the acute caffeine exposure-induced increase in the expression of BiP, an endoplasmic reticulum stress response protein, in the rat medial septum. Interestingly, HT7 stimulation induced the expression of mBDNF and pTrkB in the medial septum. The next experiment investigated whether TrkB phosphorylated by HT7 stimulation induced BiP expression in the rat medial septum. Before electroacupuncture stimulation at HT7, ANA-12 was administered to caffeine-treated rats. In rats administered ANA-12 in the medial septum, HT7 stimulation did not reduce BiP expression. These findings suggest that HT7 stimulation improves wake time and REM sleep dysfunction by regulating the BDNF-mediated endoplasmic reticulum stress response in the medial septum. These results indicate that the alleviation of endoplasmic reticulum stress in the medial septum by HT7 stimulation and the subsequent amelioration of insomnia may depend on phosphorylated TrkB activation.
Collapse
|
6
|
Mori M, Shizunaga H, Harada H, Tajiri Y, Murata Y, Terada K, Ohe K, Enjoji M. Oxytocin treatment improves dexamethasone‐induced depression‐like symptoms associated with enhancement of hippocampal
CREB‐BDNF
signaling in female mice. Neuropsychopharmacol Rep 2022; 42:356-361. [PMID: 35730145 PMCID: PMC9515699 DOI: 10.1002/npr2.12271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/18/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Aims Chronic stress and glucocorticoid exposure are risk factors for depression. Oxytocin (OT) has been shown to have antistress and antidepressant‐like effects in male rodents. However, depression is twice as common in women than in men, and it remains unclear whether OT exerts antidepressant‐like effects in women with depression. Therefore, in this study, we investigated the therapeutic effect of chronic OT administration in a female mouse model of dexamethasone (DEX)‐induced depression. Methods Female C57BL/6J mice were administered saline (vehicle, s.c.), DEX (s.c.), or OT (i.p.) + DEX (s.c.) daily for 8 weeks, and then assessed for anxiety‐ and depression‐like behaviors. We also examined the hippocampal levels of phosphorylated cAMP response element‐binding protein (p‐CREB) and brain‐derived neurotrophic factor (BDNF), which are important mediators of the response to antidepressants. Results Simultaneous OT treatment blocked the adverse effects of DEX on emotional behaviors. Furthermore, it upregulated p‐CREB and BDNF in the hippocampus. Conclusion OT may exert antidepressant‐like effects by activating hippocampal CREB‐BDNF signaling in a female mouse model of depression.
Collapse
Affiliation(s)
- Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Hiromi Shizunaga
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Yuki Tajiri
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Kazuki Terada
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHimejiJapan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| |
Collapse
|
7
|
Shalaby HN, Zaki HF, Ain-Shoka AAA, Mohammed RA. Adenosine A 2A Receptor Blockade Ameliorates Mania Like Symptoms in Rats: Signaling to PKC-α and Akt/GSK-3β/β-Catenin. Mol Neurobiol 2022; 59:6397-6410. [PMID: 35943710 PMCID: PMC9463338 DOI: 10.1007/s12035-022-02977-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022]
Abstract
Adenosinergic system dysfunction is implicated in the pathophysiology of multiple neuropsychiatric disorders including mania and bipolar diseases. The established synergistic interaction between A2A and D2 receptors in the prefrontal cortex could highlight the idea of A2A receptor antagonism as a possible anti-manic strategy. Hence, the present study was performed to examine the effect of a selective adenosine A2A receptor blocker (SCH58261) on methylphenidate-induced mania-like behavior while investigating the underlying mechanisms. Rats were injected with methylphenidate (5 mg/kg/day, i.p.) for 3 weeks with or without administration of either SCH58261 (0.01 mg/kg/day, i.p.) or lithium (150 mg/kg/day, i.p.) starting from day 9. In the diseased rats, adenosine A2AR antagonism reduced locomotor hyperactivity and risk-taking behavior along with decreased dopamine and glutamate levels. Meanwhile, SCH58261 restored NMDA receptor function, suppressed PKC-α expression, down-regulated β-Arrestin-2, up-regulated pS473-Akt and pS9-GSK-3β. Further, SCH58261 promoted synaptic plasticity markers through increasing BDNF levels along with down-regulating GAP-43 and SNAP-25. The A2A antagonist also reduced NF-κBp65 and TNF-α together with elevating IL-27 level giving an anti-inflammatory effect. In conclusion, suppression of PKC-α and modulation of Akt/GSK-3β/β-catenin axis through A2AR inhibition, could introduce adenosine A2AR as a possible therapeutic target for treatment of mania-like behavior. This notion is supported by the ability of the A2AR antagonist (SCH58261) to produce comparable results to those observed with the standard anti-manic drug (Lithium).
Collapse
Affiliation(s)
- Heba Nasr Shalaby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala Fahmy Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Reham Atef Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Magenis ML, Damiani AP, Franca IB, de Marcos PS, Effting PS, Muller AP, de Bem Silveira G, Borges Correa MEA, Medeiros EB, Silveira PCL, Budni J, Boeck CR, de Andrade VM. Behavioral, genetic and biochemical changes in the brain of the offspring of female mice treated with caffeine during pregnancy and lactation. Reprod Toxicol 2022; 112:119-135. [PMID: 35868513 DOI: 10.1016/j.reprotox.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
The intrauterine environment is a critical location for exposure to exogenous and endogenous factors that trigger metabolic changes through fetal programming. Among the external factors, chemical compounds stand out, which include caffeine, since its consumption is common among women, including during pregnancy. Thereby, the aim of the present study was to evaluate the behavioral, genetic, and biochemical parameters in the offspring of female mice treated with caffeine during pregnancy and lactation. Swiss female mice (60 days old) received tap water or caffeine at 0.3 or 1.0 mg/mL during copulation (7 days), pregnancy (21 days) and lactation (21 days). After the end of the lactation period, the offspring were divided into groups (water, caffeine 0.3 or 1.0 mg/mL) with 20 animals (10 animals aged 30 days and 10 animals aged 60 days per group per sex). Initially, the offspring were submitted to behavioral tasks and then euthanized for genetic and biochemical analysis in the brain (cortex, striatum, and hippocampus). Behavioral changes in memory, depression, and anxiety were observed in the offspring: 30-day-old female offspring at 1.0 mg /mL dose presented anxiogenic behavior and male offspring the 0.3 mg/mL dose at 30 days of age did not alter long-term memory. Furthermore, an increase in DNA damage and oxidative stress in the brain were observed in the offspring of both sexes. Furthermore, there were changes in Ape-1, BAX, and Bcl-2 in the female offspring hippocampus at 30 days of life. Thus, with this study, we can suggest genotoxicity, oxidative stress, and behavioral changes caused by caffeine during pregnancy and lactation in the offspring that were not treated directly, but received through their mothers; thus, it is important to raise awareness regarding caffeine consumption among pregnant and lactating females.
Collapse
Affiliation(s)
- Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Ive Bahia Franca
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Pamela Souza de Marcos
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Pauline Souza Effting
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Alexandre Pastoris Muller
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Maria Eduarda Anastácio Borges Correa
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Carina Rodrigues Boeck
- Graduate Program in Nanosciences, Franciscan University Center - UNIFRA, Santa Maria, RS, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil.
| |
Collapse
|
9
|
Keloglan SM, Sahin L, Cevik OS. Chronic caffeine consumption improves the acute REM sleep deprivation-induced spatial memory impairment while altering NMDA receptor subunit expression in male rats. Int J Dev Neurosci 2022; 82:596-605. [PMID: 35830151 DOI: 10.1002/jdn.10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022] Open
Abstract
Caffeine is a psychostimulant substance that is mostly used to prevent fatigue, increase alertness, and ameliorate sleep loss situations. In this study, we aimed to investigate the effect of chronic caffeine consumption on learning and memory functions and related genes in REM (rapid-eye-movement) sleep-deprived rats. During the neonatal period [postnatal day (PND) 28] Wistar albino male rats (n=32) were randomly assigned into four groups: control (C), caffeine application (Cf), acute REM sleep-deprivation (RD), and caffeine application+acute RD (Cf+RD). The 48 hours of RD was executed when caffeine administration was completed. The learning and memory performance was evaluated by the Morris Water Maze Test (MWMT). Following this, the rats were decapitated to isolate hippocampus tissues. In MWMT, time spent in the targeted quadrant decreased significantly in the RD group compared to the C and Cf+RD group. NR2A expression level increased in the RD group compared to C, Cf, and Cf+RD groups (p<0.05). NR2B expression level increased in RD and Cf +RD groups compared to C and Cf groups (p<0.05). BDNF and c-Fos expression levels did not differ significantly between the groups. RD impaired hippocampal spatial memory performance in the MWMT test. Our results indicated that chronic caffeine consumption has a therapeutic effect on spatial memory deterioration impairment caused by RD. Furthermore, it seems that the effect of caffeine RD on the hippocampus may be mediated by NR2A.
Collapse
Affiliation(s)
| | - Leyla Sahin
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| | - Ozge Selin Cevik
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| |
Collapse
|
10
|
Dias ALA, de Oliveira Golzio AMF, de Lima Santos BH, da Silva Stiebbe Salvadori MG, Dos Santos SG, da Silva MS, de Almeida RN, Barbosa FF. Post-learning caffeine administration improves 'what-when' and 'what-where' components of episodic-like memory in rats. Behav Brain Res 2022; 433:113982. [PMID: 35779707 DOI: 10.1016/j.bbr.2022.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Episodic-like memory (ELM) consists in the capacity of nonhuman animals to remember 'where' and 'when' a specific episode occurred ('what'). Previous studies have showed that Wistar rats can form an ELM, but not after a 24 h retention delay. On the other hand, it has been demonstrated that caffeine can improve episodic memory consolidation in humans. Therefore, we verified whether acute post-sample caffeine administration could improve ELM consolidation in Wistar rats, as well if it could be related to neurochemical changes in the prefrontal cortex and hippocampus - regions related to episodic-like memory processing. 46 Male Wistar Rats, approximately 3 months-old, were divided into four groups as follows: untreated (n = 11), saline (n = 11), caffeine 10 mg ∕kg i.p (n = 12); caffeine 15 mg∕kgi.p (n = 12) and tested in WWWhen/ELM task. The animals treated with caffeine in different dosages (10 mg/kg and 15 mg/kg) discriminated temporally and spatially the objects, respectively. These groups also showed a dopamine renewal rate in the hippocampus, suggesting that there was an increase in the turnover compared with the groups with no caffeine administration. We can conclude that caffeine leads to an improvement in the consolidation of the temporal ('what-when') and spatial ('what-where') aspects of episodic-like memory.
Collapse
Affiliation(s)
| | | | | | - Mirian Graciela da Silva Stiebbe Salvadori
- Departamento de Psicologia, Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento, Centro de Ciências Humanas, Letras e Artes, Universidade Federal da Paraíba, Brazil
| | - Sócrates Golzio Dos Santos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Marcelo Sobral da Silva
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Programa de Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Brazil
| | - Flavio Freitas Barbosa
- Departamento de Psicologia, Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento, Centro de Ciências Humanas, Letras e Artes, Universidade Federal da Paraíba, Brazil.
| |
Collapse
|
11
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Owolabi JO, Adefule KA, Shallie PD, Fabiyi OS, Olatunji SY, Olanrewaju JA, Ajibade TP, Oyewumi S, Ogunnaike PO. Experimental study of pre- and postnatal caffeine exposure and its observable effects on selected neurotransmitters and behavioural attributes at puberty : Caffeine exposure and its observable effects on selected neurotranmitters and behaviour. Metab Brain Dis 2021; 36:2029-2046. [PMID: 34460045 DOI: 10.1007/s11011-021-00829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Caffeine is globally consumed as a stimulant in beverages. It is also ingested in purified forms as power and tablets. Concerns have been raised about the potential consequences of intrauterine and early life caffeine exposure on brain health. This study modeled caffeine exposure during pregnancy and early postanal life until puberty, and the potential consequences. Caffeine powder was dissolved in distilled water. Thirty-two (n = 32) pregnant mice (Mus musculus) (dams) were divided into four groups- A, B, C and D. Group A animals served as a control, receiving placebo. Caffeine doses in mg/kg body weight were administered as follows: Group B, 10 mg/kg; Group C, 50 mg/kg; Group D, 120 mg/kg. Prenatal caffeine exposure [phase I] lasted throughout pregnancy. Half the number of offspring (pups) were sacrificed at birth; the rest were recruited into phase II and the experiment continued till day 35, marking puberty. Brain samples were processed following sacrifice. γ-aminobutyric acid (GABA), acetylcholine (ACh), and serotonin (5Ht) neurotransmitters were assayed in homogenates to evaluate functional neurochemistry. Anxiety and memory as neurobehavioural attributes were observed using the elevated plus and Barnes' mazes respectively. Continuous caffeine exposure produced positive effects on short and long-term memory parameters; the pattern interestingly was irregular and appeared more effective with the lowest experimental dose. Anxiety test results showed no attributable significant aberrations. Caffeine exposure persistently altered the neurochemistry of selected neurotransmitters including ACh and 5Ht, including when exposure lasted only during pregnancy. ACh significantly increased in group BC+ to 0.3475μgg-1 relative to control's 0.2508μgg-1; pre-and continuous postnatal exposure in Group B increased 5Ht to 0.2203 μgg-1 and 0.2213 μgg-1 respectively relative to control's 0.1863 μgg-1. From the current investigation, caffeine exposure in pregnancy had persistent effects on brain functional attributes including neurotransmitters activities, memory and anxiety. Caffeine in moderate doses affected memory positively but produced negative effects at the higher dosage including increased anxiety tendencies.
Collapse
Affiliation(s)
- Joshua O Owolabi
- Department of Anatomy, Babcock University, Ilishan-Remo, Nigeria.
- Department of Anatomy, Univerity of Global Health Equity, Kigali, Rwanda.
| | - Kehinde A Adefule
- Department of Anatomy, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Philemon D Shallie
- Department of Anatomy, Babcock University, Ilishan-Remo, Nigeria
- Department of Anatomy, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Oluseyi S Fabiyi
- Department of Anatomy, Babcock University, Ilishan-Remo, Nigeria
| | | | | | | | - Samson Oyewumi
- Department of Anatomy, Babcock University, Ilishan-Remo, Nigeria
| | | |
Collapse
|
13
|
Norgren J, Daniilidou M, Kåreholt I, Sindi S, Akenine U, Nordin K, Rosenborg S, Ngandu T, Kivipelto M, Sandebring-Matton A. Serum proBDNF Is Associated With Changes in the Ketone Body β-Hydroxybutyrate and Shows Superior Repeatability Over Mature BDNF: Secondary Outcomes From a Cross-Over Trial in Healthy Older Adults. Front Aging Neurosci 2021; 13:716594. [PMID: 34489682 PMCID: PMC8417778 DOI: 10.3389/fnagi.2021.716594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background: β-hydroxybutyrate (BHB) can upregulate brain-derived neurotrophic factor (BDNF) in mice, but little is known about the associations between BHB and BDNF in humans. The primary aim here was to investigate whether ketosis (i.e., raised BHB levels), induced by a ketogenic supplement, influences serum levels of mature BDNF (mBDNF) and its precursor proBDNF in healthy older adults. A secondary aim was to determine the intra-individual stability (repeatability) of those biomarkers, measured as intra-class correlation coefficients (ICC). Method: Three of the arms in a 6-arm randomized cross-over trial were used for the current sub-study. Fifteen healthy volunteers, 65–75 y, 53% women, were tested once a week. Test oils, mixed in coffee and cream, were ingested after a 12-h fast. Labeled by their level of ketosis, the arms provided: sunflower oil (lowK); coconut oil (midK); caprylic acid + coconut oil (highK). Repeated blood samples were collected for 4 h after ingestion. Serum BDNF levels were analyzed for changes from baseline to 1, 2 and 4 h to compare the arms. Individual associations between BHB and BDNF were analyzed cross-sectionally and for a delayed response (changes in BHB 0–2 h to changes in BDNF at 0–4 h). ICC estimates were calculated from baseline levels from the three study days. Results: proBDNF increased more in highK vs. lowK between 0 and 4 h (z-score: β = 0.25, 95% CI 0.07–0.44; p = 0.007). Individual change in BHB 0–2 h, predicted change in proBDNF 0–4 h, (β = 0.40, CI 0.12–0.67; p = 0.006). Change in mBDNF was lower in highK vs. lowK at 0–2 h (β = −0.88, CI −1.37 to −0.40; p < 0.001) and cumulatively 0–4 h (β = −1.01, CI −1.75 to −0.27; p = 0.01), but this could not be predicted by BHB levels. ICC was 0.96 (95% CI 0.92–0.99) for proBDNF, and 0.72 (CI 0.47–0.89) for mBDNF. Conclusions: The findings support a link between changes in peripheral BHB and proBDNF in healthy older adults. For mBDNF, changes differed between arms but independent to BHB levels. Replication is warranted due to the small sample. Excellent repeatability encourages future investigations on proBDNF as a predictor of brain health. Clinical Trial Registration:ClinicalTrials.gov, NCT03904433.
Collapse
Affiliation(s)
- Jakob Norgren
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Makrina Daniilidou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Kåreholt
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Institute of Gerontology, School of Health and Welfare, Aging Research Network - Jönköping (ARN-J), Jönköping University, Jönköping, Sweden
| | - Shireen Sindi
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Ulrika Akenine
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Nordin
- Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Rosenborg
- Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Population Health Unit, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom.,Theme Inflammation and Aging, Medical Unit Aging, Karolinska University Hospital, Stockholm, Sweden.,Department of Neurology, Institute of Clinical Medicine and Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Research & Development Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Alzobaidi N, Quasimi H, Emad NA, Alhalmi A, Naqvi M. Bioactive Compounds and Traditional Herbal Medicine: Promising Approaches for the Treatment of Dementia. Degener Neurol Neuromuscul Dis 2021; 11:1-14. [PMID: 33880073 PMCID: PMC8051957 DOI: 10.2147/dnnd.s299589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a term that encompasses a group of clinical symptoms affecting memory, thinking and social abilities, characterized by progressive impairment of memory performance and cognitive functions. There are several factors involved in the pathogenesis and progression of dementia, such as old age, brain ischemia, toxin exposure, and oxidative stress. There are extensive similarities between dementia and Alzheimer's disease (AD) either in clinical manifestations or experimental animal models. AD is the most dominant form of dementia, characterized by the accumulation of beta-amyloid protein and cholinergic neurotransmission deficits in the brain. Currently available medications for the treatment of dementia, such as choline esterase inhibitors, N-methyl-D-aspartate (NMDA) antagonists (memantine), have short-term efficacy and only relieve symptoms rather than targeting the main underlying pathogenesis. Several animal studies and clinical trials are being conducted to provide a rational approach to these medicinal plants in the prevention or treatment of memory deficits. This review highlights the potential effects of medicinal plants and their derived lead molecules, and explains the related mechanisms and effects reviewed from published literature as major thrust aspects and hopeful strategies in the prevention or treatment of dementia.
Collapse
Affiliation(s)
- Nafaa Alzobaidi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Huma Quasimi
- Department of Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden, Yemen
| | - Maaz Naqvi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| |
Collapse
|
15
|
Khalil HM, Salama HH, Al-Mokaddem AK, Aljuaydi SH, Edris AE. Edible dairy formula fortified with coconut oil for neuroprotection against aluminium chloride-induced Alzheimer's disease in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104296] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Mao ZF, Ouyang SH, Zhang QY, Wu YP, Wang GE, Tu LF, Luo Z, Li WX, Kurihara H, Li YF, He RR. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: Inhibition of CORT-induced microglia activation. FASEB J 2020; 34:10998-11014. [PMID: 32619083 DOI: 10.1096/fj.202000146rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
Chronic stress-evoked depression has been implied to associate with the decline of adult hippocampal neurogenesis. Caffeine has been known to combat stress-evoked depression. Herein, we aim to investigate whether the protective effect of caffeine on depression is related with improving adult hippocampus neurogenesis and explore the mechanisms. Mouse chronic water immersion restraint stress (CWIRS) model, corticosterone (CORT)-established cell stress model, a coculture system containing CORT-treated BV-2 cells and hippocampal neural stem cells (NSCs) were utilized. Results showed that CWIRS caused obvious depressive-like disorders, abnormal 5-HT signaling, and elevated-plasma CORT levels. Notably, microglia activation-evoked brain inflammation and inhibited neurogenesis were also observed in the hippocampus of stressed mice. In comparison, intragastric administration of caffeine (10 and 20 mg/kg, 28 days) significantly reverted CWIRS-induced depressive behaviors, neurogenesis recession and microglia activation in the hippocampus. Further evidences from both in vivo and in vitro mechanistic experiments demonstrated that caffeine treatment significantly suppressed microglia activation via the A2AR/MEK/ERK/NF-κB signaling pathway. The results suggested that CORT-induced microglia activation contributes to stress-mediated neurogenesis recession. The antidepression effect of caffeine was associated with unlocking microglia activation-induced neurogenesis inhibition.
Collapse
Affiliation(s)
- Zhong-Fu Mao
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Guo-En Wang
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Long-Fang Tu
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhuo Luo
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- School of Traditional Chinese Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi-Fang Li
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Rong-Rong He
- Guangdong Engineering Research Centre of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Machado DG, Lara MVS, Dobler PB, Almeida RF, Porciúncula LO. Caffeine prevents neurodegeneration and behavioral alterations in a mice model of agitated depression. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109776. [PMID: 31707092 DOI: 10.1016/j.pnpbp.2019.109776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Longitudinal and some experimental studies have showed the potential of caffeine to counteract some depressive behaviors and synaptic dysfunctions. In this study, we investigated the potential of caffeine in preventing behavioral outcomes, neurodegeneration and synaptic proteins alterations in a mice model of agitated depression by bilateral olfactory bulbectomy (OB). For this purpose, bulbectomized mice received caffeine (0.3 g/L and 1.0 g/L, drinking water), during the active cycle, for seven weeks (two before the surgery and throughout five weeks after OB). Caffeine prevented OB-induced hyperactivity and recognition memory impairment and rescue self care and motivational behavior. In the frontal cortex, bulbectomized mice presented increase in the adenosine A1 receptors (A1R) and GFAP, while adenosine A2A receptors (A2AR) increased in the hippocampus and striatum and SNAP-25 was decreased in frontal cortex and striatum. Caffeine increased A1R in the striatum of bulbectomized mice and in SHAM-water group caffeine increased A2AR in the striatum and decreased SNAP-25 in the frontal cortex. Astrogliosis observed in the polymorphic layer of the dentate gyrus of OB mice was prevented by caffeine as well as the neurodegeneration in the striatum and piriform cortex. Based on these behavioral and neurochemical evidences, caffeine confirms its efficacy in preventing neurodegeneration associated with memory impairment and may be considered as a promising therapeutic tool in the prophylaxis and/or treatment of depression.
Collapse
Affiliation(s)
- Daniele Guilhermano Machado
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| | - Marcus Vinicius Soares Lara
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Paula Bruna Dobler
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Roberto Farina Almeida
- Universidade Federal de Ouro Preto, Centro de Pesquisa em Ciências Biológicas, Departamento de Ciências Biológicas, Ouro Preto, MG, Brazil
| | - Lisiane O Porciúncula
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| |
Collapse
|
18
|
Nami M, Mehrabi S, Kamali AM, Kazemiha M, Carvalho J, Derman S, Lakey-Betia J, Vasquez V, Kosagisharaf R. A New Hypothesis on Anxiety, Sleep Insufficiency, and Viral Infections; Reciprocal Links to Consider in Today's "World vs. COVID-19" Endeavors. Front Psychiatry 2020; 11:585893. [PMID: 33250794 PMCID: PMC7674554 DOI: 10.3389/fpsyt.2020.585893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
In today's ever-growing concerns about the coronavirus disease (COVID-19) pandemic, many experience sleep insufficiencies, such as difficulty falling or staying asleep, sleep-related behavioral symptoms, and out-of-phase circadian rhythmicity despite the lack of history of earlier such symptoms. Meanwhile, the disruption in sleep bioparameters is experienced more in people with a history of sleep disorders. The behavioral sleep disorders in the current situations are prevalent given the today's amount of anxiety everyone is feeling about COVID-19. On the other hand, evidences indicated that the cross-link between impaired sleep efficiency and disrupted innate immunity makes people susceptible to viral infections. The present brief review highlights the links between psychosocial stress, sleep insufficiency, and susceptibility to viral infections in relevance to COVID-19 situation. The stress management measures, including addressing sleep-related disorders and sleep hygiene, will have a notable impact by harnessing immune response and thus reducing the susceptibility to viral infections.
Collapse
Affiliation(s)
- Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Dana Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran.,Academy of Health, Senses Cultural Foundation, Sacramento, CA, United States.,Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama.,Sleep Disorders Laboratory, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samrad Mehrabi
- Sleep Disorders Laboratory, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.,Division of Pulmonology, Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali-Mohammad Kamali
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Dana Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
| | - Milad Kazemiha
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Dana Brain Health Institute, Iranian Neuroscience Society-Fars Chapter, Shiraz, Iran
| | | | - Sabri Derman
- Sleep Disorders Unit, American Hospital, Koc Foundation, Istanbul, Turkey
| | - Johant Lakey-Betia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Velmarini Vasquez
- Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Rao Kosagisharaf
- Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| |
Collapse
|
19
|
Bu L, Lai Y, Deng Y, Xiong C, Li F, Li L, Suzuki K, Ma S, Liu C. Negative Mood Is Associated with Diet and Dietary Antioxidants in University Students During the Menstrual Cycle: A Cross-Sectional Study from Guangzhou, China. Antioxidants (Basel) 2019; 9:antiox9010023. [PMID: 31888014 PMCID: PMC7023165 DOI: 10.3390/antiox9010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/26/2023] Open
Abstract
Postpubescent females may have negative mood or premenstrual syndrome during the menstrual cycle; with the emotional and physical symptoms interfering with their quality of life. Little is known about the relationship of dietary behaviors and dietary antioxidant intake with negative mood or premenstrual syndrome in university students in China; so we explored the relationship between negative mood and dietary behavior in female university students during the three menstrual cycle phases. Random sampling was used to enroll 88 individuals from a university in Guangzhou; China in the study. Data were collected using self-administered questionnaires. Descriptive statistics and multiple logistic regression analyses were performed. During the menstrual phase, tea, black coffee and carbonated beverage intake was higher in the group with a high negative affect scale score than in the low score group (p < 0.05). Likewise; during the premenstrual phase, fresh fruit (banana and red Chinese dates) intake was higher in the group with a high negative affect scale score than in the low-score group (p < 0.05). The logistic regression analysis results showed that negative mood was positively associated with tea, coffee, and carbonated beverage intake during the menstrual phase (β = 0.21, p = 0.0453, odds ratio = 1.23), and negative mood was positively associated with banana and red Chinese dates intake during the premenstrual phase (β = 0.59, p = 0.0172, odds ratio = 1.81). Our results suggest that negative mood may be associated with diet and specific food in university postpubescent females.
Collapse
Affiliation(s)
- Lingling Bu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Y.L.); (Y.D.); (C.X.); (F.L.); (L.L.)
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Yuting Lai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Y.L.); (Y.D.); (C.X.); (F.L.); (L.L.)
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Yingyan Deng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Y.L.); (Y.D.); (C.X.); (F.L.); (L.L.)
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Chenlu Xiong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Y.L.); (Y.D.); (C.X.); (F.L.); (L.L.)
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Fengying Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Y.L.); (Y.D.); (C.X.); (F.L.); (L.L.)
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Li Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Y.L.); (Y.D.); (C.X.); (F.L.); (L.L.)
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
- Correspondence: (S.M.); ; (C.L.); Tel.: +81-04-2947-6753 (S.M.); +86-20-8528-3448 (C.L.)
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Y.L.); (Y.D.); (C.X.); (F.L.); (L.L.)
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.M.); ; (C.L.); Tel.: +81-04-2947-6753 (S.M.); +86-20-8528-3448 (C.L.)
| |
Collapse
|
20
|
Alves CB, Almeida AS, Marques DM, Faé AHL, Machado ACL, Oliveira DL, Portela LVC, Porciúncula LO. Caffeine and adenosine A 2A receptors rescue neuronal development in vitro of frontal cortical neurons in a rat model of attention deficit and hyperactivity disorder. Neuropharmacology 2019; 166:107782. [PMID: 31756336 DOI: 10.1016/j.neuropharm.2019.107782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
Although some studies have supported the effects of caffeine for treatment of Attention deficit and hyperactivity disorder (ADHD), there were no evidences about its effects at the neuronal level. In this study, we sought to find morphological alterations during in vitro development of frontal cortical neurons from Spontaneoulsy hypertensive rats (SHR, an ADHD rat model) and Wistar-Kyoto rats (WKY, control strain). Further, we investigated the effects of caffeine and adenosine A1 and A2A receptors (A1R and A2AR) signaling. Cultured cortical neurons from WKY and SHR were analyzed by immunostaining of microtubule-associated protein 2 (MAP-2) and tau protein after treatment with either caffeine, or A1R and A2AR agonists or antagonists. Besides, the involvement of PI3K and not PKA signaling was also assessed. Neurons from ADHD model displayed less neurite branching, shorter maximal neurite length and decreased axonal outgrowth. While caffeine recovered neurite branching and elongation from ADHD neurons via both PKA and PI3K signaling, A2AR agonist (CGS 21680) promoted more neurite branching via PKA signaling. The selective A2AR antagonist (SCH 58261) was efficient in recovering axonal outgrowth from ADHD neurons through PI3K and not PKA signaling. For the first time, frontal cortical neurons were isolated from ADHD model and they presented disturbances in the differentiation and outgrowth. By showing that caffeine and A2AR may act at neuronal level rescuing ADHD neurons outgrowth, our findings strengthen the potential of caffeine and A2AR receptors as an adjuvant for ADHD treatment.
Collapse
Affiliation(s)
- Catiane B Alves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Amanda S Almeida
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Daniela M Marques
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Ana Helena L Faé
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Ana Carolina L Machado
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Diogo L Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Luis Valmor C Portela
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Lisiane O Porciúncula
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003.
| |
Collapse
|
21
|
Tellone E, Galtieri A, Russo A, Ficarra S. Protective Effects of the Caffeine Against Neurodegenerative Diseases. Curr Med Chem 2019; 26:5137-5151. [DOI: 10.2174/0929867324666171009104040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Background:
Recent studies and increased interest of the scientific community helped to
clarify the neurological health property of caffeine, one of the pharmacologically active substances
most consumed in the world.
Methods:
This article is a review search to provide an overview on the current state of understanding
neurobiochemical impact of caffeine, focusing on the ability of the drug to effectively counteract several
neurodegenerative disorders such as Alzheimer’s, Parkinson’s, Huntington’s diseases, Multiple
sclerosis and Amyotrophic lateral sclerosis.
Results:
Data collection shown in this review provide a significant therapeutic and prophylactic potentiality
of caffeine which acts on human brain through several pathways because of its antioxidant activity
combined with multiple molecular targets. However, the need to adjust the CF dosage to individuals,
because some people are more sensitive to drugs than others, may constituted a limit to the CF effectiveness.
Conclusion:
What emerges from the complex of clinical and epidemiological studies is a significant CF
potential impact against all neurological disorders. Although, further studies are needed to fully elucidate
the several mechanisms of drug action which in part are still elusive.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
22
|
Xiao D, Liu L, Li Y, Ruan J, Wang H. Licorisoflavan A Exerts Antidepressant-Like Effect in Mice: Involvement of BDNF-TrkB Pathway and AMPA Receptors. Neurochem Res 2019; 44:2044-2056. [DOI: 10.1007/s11064-019-02840-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/23/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
|
23
|
Tellone E, Galtieri A, Ficarra S. Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease. Curr Med Chem 2019; 27:5137-5158. [PMID: 31223078 DOI: 10.2174/0929867326666190621101909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Huntingtin (Htt) is a multi-function protein of the brain. Normal Htt shows a common alpha-helical structure but conformational changes in the form with beta strands are the principal cause of Huntington's disease. Huntington's disease is a genetic neurological disorder caused by a repeated expansion of the CAG trinucleotide, causing instability in the N-terminal of the gene coding for the Huntingtin protein. The mutation leads to the abnormal expansion of the production of the polyglutamine tract (polyQ) resulting in the form of an unstable Huntingtin protein commonly referred to as mutant Huntingtin. Mutant Huntingtin is the cause of the complex neurological metabolic alteration of Huntington's disease, resulting in both the loss of all the functions of normal Huntingtin and the genesis of abnormal interactions due to the presence of this mutation. One of the problems arising from the misfolded Huntingtin is the increase in oxidative stress, which is common in many neurological diseases such as Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis and Creutzfeldt-Jakob disease. In the last few years, the use of antioxidants had a strong incentive to find valid therapies for defence against neurodegenerations. Although further studies are needed, the use of antioxidant mixtures to counteract neuronal damages seems promising.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
24
|
Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr 2019; 60:760-779. [PMID: 30614247 DOI: 10.1080/10408398.2018.1550384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
de Araujo CLP, da Silva IRV, Reinaldo GP, Peccin PK, Pochmann D, Teixeira PJZ, Elsner VR, Dal Lago P. Pulmonary rehabilitation and BDNF levels in patients with chronic obstructive pulmonary disease: A pilot study. Respir Physiol Neurobiol 2018; 259:63-69. [PMID: 30067940 DOI: 10.1016/j.resp.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/07/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND COPD physiopathology involves multiple pathways and evidence indicates that brain-derived neurotrophic factor (BDNF) is an important biomarker associated with parameters of COPD severity. This study aimed to analyze the time course of the effects of a pulmonary rehabilitation program (PRP) on BDNF levels and on functional status in COPD patients. METHODS Patients were enrolled in a 24-session PRP. Exercise capacity, dyspnea, health-related quality of life, and the BODE index were assessed at baseline and after the PRP. BDNF plasma levels were measured at baseline (immediately before the 1st session), after the 1st session, and before and after the 24th session. RESULTS Sixteen patients were included. A reduction in BDNF levels was observed after the 1st session and an increase was observed between the end of the 1st session and the beginning of the 24th session. The PRP promoted an improvement in exercise capacity and health-related quality of life and a reduction in dyspnea and the BODE index. CONCLUSION Exercise acutely reduced BDNF levels, an effect that was nullified by the overall intervention.
Collapse
Affiliation(s)
- Cintia Laura Pereira de Araujo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Ivy Reichert Vital da Silva
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Gustavo Pereira Reinaldo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Pâmela Krause Peccin
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Paulo José Zimermann Teixeira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Serviço de Reabilitação Pulmonar do Pavilhão Pereira Filho, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, Brazil.
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Pedro Dal Lago
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
26
|
Xu TJ, Reichelt AC. Sucrose or sucrose and caffeine differentially impact memory and anxiety-like behaviours, and alter hippocampal parvalbumin and doublecortin. Neuropharmacology 2018; 137:24-32. [PMID: 29729502 DOI: 10.1016/j.neuropharm.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
Caffeinated sugar-sweetened "energy" drinks are a subset of soft drinks that are popular among young people worldwide. High sucrose diets impair cognition and alter aspects of emotional behaviour in rats, however, little is known about sucrose combined with caffeine. Rats were allocated to 2 h/day 10% sucrose (Suc), 10% sucrose plus 0.04% caffeine (CafSuc) or control (water) conditions. The addition of caffeine to sucrose appeared to increase the rewarding aspect of sucrose, as the CafSuc group consumed more solution than the Suc group. After 14 days of intermittent Suc or CafSuc access, anxiety was assessed in the elevated plus maze (EPM) prior to their daily solution access, whereby CafSuc and Suc rats spent more time in the closed arms, indicative of increased anxiety. Following daily solution access, CafSuc, but not Suc, rats showed reduced anxiety-like behaviour in the open-field. Control and CafSuc rats displayed intact place and long-term object memory, while Suc showed impaired memory performance. Sucrose reduced parvalbumin immunoreactivity in the hippocampus, but no differences were observed between Control and CafSuc conditions. Parvalbumin reactivity in the basolateral amygdala did not differ between conditions. Reduced doublecortin immunoreactivity in the dentate gyrus relative to controls was seen in the CafSuc, but not Suc, treatment conditions. These findings indicate that the addition of caffeine to sucrose attenuated cognitive deficits. However, the addition of caffeine to sucrose evoked anxiety-like responses under certain testing conditions, suggesting that frequent consumption of caffeinated energy drinks may promote emotional alterations and brain changes compared to standard soft drinks.
Collapse
Affiliation(s)
- Tanya J Xu
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic 3083, Australia
| | - Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic 3083, Australia.
| |
Collapse
|
27
|
Lee IT, Sheu WHH, Lee WJ, Chen DY. Serum brain-derived neurotrophic factor predicting reduction in pulse pressure after a one-hour rest in nurses working night shifts. Sci Rep 2018; 8:5485. [PMID: 29615787 PMCID: PMC5882896 DOI: 10.1038/s41598-018-23791-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
Night shift work is associated with cardiovascular disease and central nervous system disorders in female nurses. Brain-derived neurotrophic factor (BDNF) exerts protective effects on neural and endothelial functions. This study examined the association between serum BDNF levels and pulse pressure after rest in female nurses working night shifts. In this study, blood samples were collected for BDNF measurement after a night shift when nurses had been working night shifts for three continuous weeks. Blood pressure was assessed before and after a one-hour morning rest within a week of resuming the night shift after one month without any night shift work. The pulse pressure of nurses (n = 48, age 29 ± 5 years) was significantly reduced (from 43 ± 7 to 41 ± 6 mmHg, P = 0.003) after rest, and serum BDNF were significantly and inversely correlated with pulse pressure changes (r = −0.435, P = 0.002). Higher serum BDNF was an independent factor for greater reduction in pulse pressure (95%CI = −0.609 ‒ −0.174, P = 0.001). Using a receiver operating characteristic curve analysis, serum BDNF >20.6 ng/mL predicted a pulse pressure reduction after a one-hour rest (sensitivity 66.7%, specificity 77.8%). In conclusion, higher serum BDNF predicted greater recovery of pulse pressure after a one-hour rest in female nurses after night shift work.
Collapse
Affiliation(s)
- I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,PhD Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
28
|
Sex differences in the effects of pre- and postnatal caffeine exposure on behavior and synaptic proteins in pubescent rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:416-425. [PMID: 28826637 DOI: 10.1016/j.pnpbp.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/14/2023]
Abstract
Few studies have addressed the effects of caffeine in the puberty and/or adolescence in a sex dependent manner. Considering that caffeine intake has increased in this population, we investigated the behavioral and synaptic proteins changes in pubescent male and female rats after maternal consumption of caffeine. Adult female Wistar rats started to receive water or caffeine (0.1 and 0.3g/L in drinking water; low and moderate dose, respectively) during the active cycle at weekdays, two weeks before mating. The treatment lasted up to weaning and the offspring received caffeine until the onset of puberty (30-34days old). Behavioral tasks were performed to evaluate locomotor activity (open field task), anxious-like behavior (elevated plus maze task) and recognition memory (object recognition task) and synaptic proteins levels (proBDNF, BDNF, GFAP and SNAP-25) were verified in the hippocampus and cerebral cortex. While hyperlocomotion was observed in both sexes after caffeine treatment, anxiety-related behavior was attenuated by caffeine (0.3g/L) only in females. While moderate caffeine worsened recognition memory in females, an improvement in the long-term memory was observed in male rats for both doses. Coincident with memory improvement in males, caffeine increased pro- and BDNF in the hippocampus and cortex. Females presented increased proBDNF levels in both brain regions, with no effects of caffeine. While GFAP was not altered, moderate caffeine intake increased SNAP-25 in the cortex of female rats. Our findings revealed that caffeine promoted cognitive benefits in males associated with increased BDNF levels, while females showed less anxiety. Our findings revealed that caffeine promotes distinct behavioral outcomes and alterations in synaptic proteins during brain development in a sex dependent manner.
Collapse
|
29
|
Sangiovanni E, Brivio P, Dell'Agli M, Calabrese F. Botanicals as Modulators of Neuroplasticity: Focus on BDNF. Neural Plast 2017; 2017:5965371. [PMID: 29464125 PMCID: PMC5804326 DOI: 10.1155/2017/5965371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/09/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The involvement of brain-derived neurotrophic factor (BDNF) in different central nervous system (CNS) diseases suggests that this neurotrophin may represent an interesting and reliable therapeutic target. Accordingly, the search for new compounds, also from natural sources, able to modulate BDNF has been increasingly explored. The present review considers the literature on the effects of botanicals on BDNF. Botanicals considered were Bacopa monnieri (L.) Pennell, Coffea arabica L., Crocus sativus L., Eleutherococcus senticosus Maxim., Camellia sinensis (L.) Kuntze (green tea), Ginkgo biloba L., Hypericum perforatum L., Olea europaea L. (olive oil), Panax ginseng C.A. Meyer, Rhodiola rosea L., Salvia miltiorrhiza Bunge, Vitis vinifera L., Withania somnifera (L.) Dunal, and Perilla frutescens (L.) Britton. The effect of the active principles responsible for the efficacy of the extracts is reviewed and discussed as well. The high number of articles published (more than one hundred manuscripts for 14 botanicals) supports the growing interest in the use of natural products as BDNF modulators. The studies reported strengthen the hypothesis that botanicals may be considered useful modulators of BDNF in CNS diseases, without high side effects. Further clinical studies are mandatory to confirm botanicals as preventive agents or as useful adjuvant to the pharmacological treatment.
Collapse
Affiliation(s)
- Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
30
|
Lao-Peregrín C, Ballesteros JJ, Fernández M, Zamora-Moratalla A, Saavedra A, Gómez Lázaro M, Pérez-Navarro E, Burks D, Martín ED. Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling. Addict Biol 2017; 22:1706-1718. [PMID: 27457910 PMCID: PMC5697621 DOI: 10.1111/adb.12433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
Caffeine has cognitive‐enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor‐independent form of LTP (CAFLTP) in the CA1 region of the hippocampus by promoting calcium‐dependent secretion of BDNF, which subsequently activates TrkB‐mediated signaling required for the expression of CAFLTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAFLTP, a process that requires cytosolic free Ca2+. Consistent with the involvement of IRS2 signals in caffeine‐mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2−/− mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3‐kinase (PI3K) pathway. These findings indicate that TrkB‐IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.
Collapse
Affiliation(s)
- Cristina Lao-Peregrín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Jesús Javier Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Miriam Fernández
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - María Gómez Lázaro
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina; Universitat de Barcelona; Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Spain
- Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Institut de Neurociències; Universitat de Barcelona; Spain
| | - Deborah Burks
- Centro de Investigación Príncipe Felipe, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM); Spain
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Castilla-La Mancha Science and Technology Park (PCYTCLM), Institute for Research in Neurological Disabilities (IDINE); University of Castilla-La Mancha; Spain
| |
Collapse
|
31
|
Cognitive impairment and gene expression alterations in a rodent model of binge eating disorder. Physiol Behav 2017; 180:78-90. [PMID: 28821448 DOI: 10.1016/j.physbeh.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT2C) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network.
Collapse
|
32
|
Hypothermia pretreatment improves cognitive impairment via enhancing synaptic plasticity in a traumatic brain injury model. Brain Res 2017; 1672:18-28. [PMID: 28729191 DOI: 10.1016/j.brainres.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Posttraumatic hypothermia attenuates cognitive deficits caused by TBI when it is administered at an early stage. However, little is known regarding the effect of hypothermia pretreatment on cognitive deficits one month after TBI. In the current study, the behavior test revealed that hypothermia pretreatment mitigates the learning and memory impairment induced by TBI in mice. Hypothermia treatment significantly increased the expression of PSD93, PSD95 and NR2B one month after TBI in the cortex and hippocampus compared with the normothermia group. Hypothermia pretreatment also restored the decreased spine number and the impairment in LTP and decreased the number of activated microglia one month after TBI. On the other hand, hypothermia pretreatment increased glucose metabolism in TBI mice. Taken together, these data suggested that hypothermia pretreatment is an effective method with which to prevent spine loss, maintain normal LTP and preserve learning and memory function after TBI. The neuroprotective role might be associated with the preservation of postsynaptic protein expression, the inhibition of activated microglia and the increase in glucose metabolism.
Collapse
|
33
|
Protective effect of low dose caffeine on psychological stress and cognitive function. Physiol Behav 2017; 168:1-10. [DOI: 10.1016/j.physbeh.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
|
34
|
Sc Y, Muralidhara. Beneficial Role of Coffee and Caffeine in Neurodegenerative Diseases: A Minireview. AIMS Public Health 2016; 3:407-422. [PMID: 29546172 PMCID: PMC5690364 DOI: 10.3934/publichealth.2016.2.407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Coffee is among the most widespread and healthiest beverages in the world. Coffee typically contains more caffeine than most other beverages, and is widely and frequently consumed. Thus, it contributes significantly to the overall caffeine consumption within the general population, particularly in adults. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health-promoting potential. Several lines of evidence have highlighted the beneficial effects towards several disease conditions including Type II diabetes, hepatitis C virus, hepatocellular carcinoma, nonalcoholic fatty liver disease and neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). The health-promoting properties of coffee are largely attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, and hydroxy hydroquinone. In this minireview, an attempt has been made to discuss the various evidences which are mainly derived from animal and cell models. Various mechanisms chiefly responsible for the beneficial effects of caffeine have also been briefly outlined. A short note on the undesirable effects of excessive coffee intakes is also presented.
Collapse
Affiliation(s)
- Yenisetti Sc
- Drosophila Neurobiology laboratory, Department of Zoology, Nagaland University (Central), Lumami, 798627, Nagaland, India
| | - Muralidhara
- Drosophila Neurobiology laboratory, Department of Zoology, Nagaland University (Central), Lumami, 798627, Nagaland, India.,Department of Biochemistry & Nutrition, CSIR-CFTRI , Mysore, 570020
| |
Collapse
|
35
|
Caffeine and modafinil given during 48h sleep deprivation modulate object recognition memory and synaptic proteins in the hippocampus of the rat. Behav Brain Res 2015; 294:95-101. [DOI: 10.1016/j.bbr.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 11/22/2022]
|
36
|
Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int 2015. [DOI: 10.1016/j.neuint.2015.07.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Onaolapo AY, Onaolapo OJ. Caffeine's influence on object recognition and working-memory in prepubertal mice and its modulation by gender. ACTA ACUST UNITED AC 2015; 22:223-30. [PMID: 26419431 DOI: 10.1016/j.pathophys.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/07/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study investigated the effects of intraperitoneal injection of caffeine on Y-maze working-memory and novel object recognition (NOR) in prepubertal mice. METHODOLOGY Y-maze spontaneous alternation and a novel object recognition test (consisting of acclimation, acquisition and test phases) were performed. Mice received a single dose of caffeine (10, 20, 40, 80 and 120mgkg(-1) i.p.) or vehicle, 30min before Y-maze exploration. For the NOR test, caffeine was given 30min before training and another dose 30min before test phase. RESULTS NOR time (acquisition phase) increased significantly in males at all doses of caffeine and decreased in females at 10, 20 and 40mg/kg compared to vehicle; during the test phase, novel object exploration time decreased significantly in males and increased in females at 10 and 20mg/kg only to decrease again at 120mg/kg. Recognition index decreased in males and increased in females while, males showed poor discrimination between novel and familiar objects compared to vehicle; while females showed increased discrimination between novel and familiar object at 10, 20,40 and 80mg/kg and a decrease at 120mg/kg. Y-maze spontaneous alternation improved significantly in males at 10 and 40mg/kg and decreased at 20 and 120mg/kg in females. CONCLUSION The findings suggest that acute caffeine injection improves non-spatial memory retention in female mice but not in males; spatial working-memory is however improved in males but not in females.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|
38
|
Sun BF, Wang QQ, Yu ZJ, Yu Y, Xiao CL, Kang CS, Ge G, Linghu Y, Zhu JD, Li YM, Li QM, Luo SP, Yang D, Li L, Zhang WY, Tian G. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB. PLoS One 2015; 10:e0137810. [PMID: 26368803 PMCID: PMC4569337 DOI: 10.1371/journal.pone.0137810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.
Collapse
Affiliation(s)
- Bao-Fei Sun
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Qing-Qing Wang
- Department of Hospital Infection Management, Affiliated Hospital of Guiyang Medical University, Guiyang, 550004, China
| | - Zi-Jiang Yu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yan Yu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Chao-Lun Xiao
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Chao-Sheng Kang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Guo Ge
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yan Linghu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Jun-De Zhu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yu-Mei Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Qiang-Ming Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Shi-Peng Luo
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Dang Yang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Lin Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Wen-Yan Zhang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Guang Tian
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| |
Collapse
|
39
|
Onaolapo OJ, Onaolapo AY, Akanmu MA, Olayiwola G. Caffeine/sleep-deprivation interaction in mice produces complex memory effects. Ann Neurosci 2015; 22:139-49. [PMID: 26130922 PMCID: PMC4481547 DOI: 10.5214/ans.0972.7531.220304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/23/2015] [Accepted: 02/12/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Sleep deprivation negatively impacts memory, causing deficits in memory processes. Of interest is any agent that can offset such deficits. Mice were given varying doses of caffeine for 14 days and then deprived of sleep for 6 hours by the 'gentle handling' method. Memory was assessed using the Novel Object Recognition Test and Y maze alternation. PURPOSE The study was designed to ascertain the impact of varying doses of caffeine combined with total sleep-deprivation on spatial and non spatial memory in mice. METHODS Adult Swiss Webster mice of both sexes were assigned to six groups viz., vehicle (distilled water), or one of five selected doses of caffeine (10, 20, 40, 80 and 120 mg/kg) for 14 days via the oral route. Open field novel object recognition test and Y maze spatial working memory tests were carried out on day 14. Results were analysed using multi-factorial ANOVA followed by Tukey HSD test and expressed as mean ± S.E.M, with p values less than 0.05 were considered statistically significant. RESULTS Novel object recognition tests (NOR) revealed that pre-training and pre-test sleep deprivation and caffeine combination impaired non spatial and spatial memory in male and female mice. CONCLUSION The study shows the complex interactions with memory that may arise when total sleep deprivation is superimposed on caffeine administration.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Oshogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Moses A Akanmu
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile- Ife, Osun State, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile- Ife, Osun State, Nigeria
| |
Collapse
|
40
|
Pagnussat N, Almeida AS, Marques DM, Nunes F, Chenet GC, Botton PHS, Mioranzza S, Loss CM, Cunha RA, Porciúncula LO. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice. Br J Pharmacol 2015; 172:3831-45. [PMID: 25939452 DOI: 10.1111/bph.13180] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. EXPERIMENTAL APPROACH We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. KEY RESULTS Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. CONCLUSIONS AND IMPLICATIONS These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment.
Collapse
Affiliation(s)
- N Pagnussat
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Almeida
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D M Marques
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Nunes
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G C Chenet
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - P H S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C M Loss
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - L O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Corominas-Roso M, Roncero C, Eiroa-Orosa FJ, Ribasés M, Barral C, Daigre C, Martínez-Luna N, Sánchez-Mora C, Ramos-Quiroga JA, Casas M. Serum brain-derived neurotrophic factor levels and cocaine-induced transient psychotic symptoms. Neuropsychobiology 2014; 68:146-55. [PMID: 24051573 DOI: 10.1159/000353259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/27/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cocaine-induced psychosis (CIP) is among the most serious adverse effects of cocaine. Reduced serum brain-derived neurotrophic factor (BDNF) levels have been reported in schizophrenia and psychosis; however, studies assessing the involvement of BDNF in CIP are lacking. METHODS A total of 22 cocaine-dependent patients (aged 33.65 ± 6.85) who had never experienced psychotic symptoms under the influence of cocaine (non-CIP) and 18 patients (aged 34.18 ± 8.54) with a history of CIP completed a 2-week detoxification program in an inpatient facility. Two serum samples were collected from each patient at baseline and at the end of the protocol. Demographic, consumption and clinical data were recorded for all patients. A paired group of healthy controls was also included. RESULTS At the beginning of the detoxification treatment, serum BDNF levels were similar in both the non-CIP and the CIP groups. During early abstinence, the non-CIP group exhibited a significant increase in serum BDNF levels (p = 0.030), whereas the CIP group exhibited a decrease. Improvements in depression (Beck Depression Inventory, BDI, p = 0.003) and withdrawal symptoms (Cocaine Selective Severity Assessment, CSSA, p = 0.013) show a significant positive correlation with serum BDNF levels in the non-CIP group, whereas no correlation between the same variables was found in the CIP group. CONCLUSIONS This study suggests that BDNF plays a role in the transient psychotic symptoms associated with cocaine consumption. In the non-CIP group, the increase in serum BDNF appears to be driven by the effects of chronic cocaine consumption and withdrawal. In contrast, patients with CIP share some of the neurotrophic deficiencies that characterize schizophrenia and psychosis.
Collapse
Affiliation(s)
- Margarida Corominas-Roso
- Department of Psychiatry, University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Biomedical Network Research Center on Mental Health (CIBERSAM) Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ardais A, Borges M, Rocha A, Sallaberry C, Cunha R, Porciúncula L. Caffeine triggers behavioral and neurochemical alterations in adolescent rats. Neuroscience 2014; 270:27-39. [DOI: 10.1016/j.neuroscience.2014.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
|
43
|
Mioranzza S, Nunes F, Marques DM, Fioreze GT, Rocha AS, Botton PHS, Costa MS, Porciúncula LO. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development. Int J Dev Neurosci 2014; 36:45-52. [PMID: 24862851 DOI: 10.1016/j.ijdevneu.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023] Open
Abstract
Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development.
Collapse
Affiliation(s)
- Sabrina Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Fernanda Nunes
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Daniela M Marques
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Gabriela T Fioreze
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Andréia S Rocha
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Paulo Henrique S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Marcelo S Costa
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
44
|
Overexpression of 12/15-lipoxygenase increases anxiety behavior in female mice. Neurobiol Aging 2014; 35:1032-6. [DOI: 10.1016/j.neurobiolaging.2013.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022]
|
45
|
|
46
|
Di Meco A, Joshi YB, Praticò D. Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer's disease with plaques and tangles. Neurobiol Aging 2014; 35:1813-20. [PMID: 24629673 DOI: 10.1016/j.neurobiolaging.2014.02.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/17/2022]
Abstract
Several studies have highlighted the frequency of sleep disturbances in Alzheimer's disease (AD). However, whether they are secondary to the disease or per se increase its risk remains to be fully investigated. The aim of the current investigation was to study the effect of sleep deprivation (SD) on the development of AD phenotype in a transgenic mouse model with plaques and tangles, the 3xTg mice. We evaluated the functional and biological consequences on 3xTg mice that underwent 4 hours sleep restrain per day for 8 weeks. Compared with controls, behavioral assessment showed that SD-treated mice had a significant decline in their learning and memory. Although no differences were detected in the levels of soluble amyloid-β peptides, the same animals displayed a decrease in tau phosphorylation, which associated with a significant increase in its insoluble fraction. In addition, we observed that SD resulted in lower levels of postsynaptic density protein 95 and increased glial fibrillary acidic protein levels. Finally, although total levels of the transcription factor cellular response element binding protein were unchanged, its phosphorylated form was significantly diminished in brains of sleep-deprived mice when compared with controls. Our study underlines the importance of SD as a chronic stressor, which by modulating biochemical processes influences the development of memory impairments and AD neuropathologies. Correction of SD could be a viable therapeutic strategy to prevent the onset or slow the progression of AD in individuals bearing this risk factor.
Collapse
Affiliation(s)
- Antonio Di Meco
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yash B Joshi
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Scientific Opinion on the substantiation of a health claim related to caffeine and increased alertness pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Porciúncula LO, Sallaberry C, Mioranzza S, Botton PHS, Rosemberg DB. The Janus face of caffeine. Neurochem Int 2013; 63:594-609. [PMID: 24055856 DOI: 10.1016/j.neuint.2013.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Caffeine is certainly the psychostimulant substance most consumed worldwide. Over the past years, chronic consumption of caffeine has been associated with prevention of cognitive decline associated to aging and mnemonic deficits of brain disorders. While its preventive effects have been reported extensively, the cognitive enhancer properties of caffeine are relatively under debate. Surprisingly, there are scarce detailed ontogenetic studies focusing on neurochemical parameters related to the effects of caffeine during prenatal and earlier postnatal periods. Furthermore, despite the large number of epidemiological studies, it remains unclear how safe is caffeine consumption during pregnancy and brain development. Thus, the purpose of this article is to review what is currently known about the actions of caffeine intake on neurobehavioral and adenosinergic system during brain development. We also reviewed other neurochemical systems affected by caffeine, but not only during brain development. Besides, some recent epidemiological studies were also outlined with the control of "pregnancy signal" as confounding variable. The idea is to tease out how studies on the impact of caffeine consumption during brain development deserve more attention and further investigation.
Collapse
Affiliation(s)
- Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil.
| | - Cássia Sallaberry
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Sabrina Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Paulo Henrique S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil
| | - Denis B Rosemberg
- Laboratório de Estudos sobre o Sistema Purinérgico, Departamento de Bioquímica/ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre/RS, Brazil; Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Exatas e Ambientais, Universidade Comunitária da Região de Chapecó. Avenida Senador Attílio Fontana, 591E, 89809-000 Chapecó/SC, Brazil
| |
Collapse
|
49
|
Abstract
Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.
Collapse
|
50
|
Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects. Br J Nutr 2013; 110:420-5. [PMID: 23312069 DOI: 10.1017/s0007114512005338] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present single-dose study was performed to assess the effect of whole coffee fruit concentrate powder (WCFC), green coffee caffeine powder (N677), grape seed extract powder (N31) and green coffee bean extract powder (N625) on blood levels of brain-derived neurotrophic factor (BDNF). Randomly assorted groups of fasted subjects consumed a single, 100mg dose of each material. Plasma samples were collected at time zero (T0) and at 30 min intervals afterwards, up to 120 min. A total of two control groups were included: subjects treated with silica dioxide (as placebo) or with no treatment. The collected data revealed that treatments with N31 and N677 increased levels of plasma BDNF by about 31% under these experimental conditions, whereas treatment with WCFC increased it by 143% (n 10), compared with baseline. These results indicate that WCFC could be used for modulation of BDNF-dependent health conditions. However, larger clinical studies are needed to support this possibility.
Collapse
|