1
|
Erdei AI, Borbély A, Magyar A, Szűcs E, Ötvös F, Gombos D, Al-Khrasani M, Stefanucci A, Dimmito MP, Luisi G, Mollica A, Benyhe S. Biochemical and pharmacological investigation of novel nociceptin/OFQ analogues and N/OFQ-RYYRIK hybrid peptides. Peptides 2019; 112:106-113. [PMID: 30513351 DOI: 10.1016/j.peptides.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
The endogenous ligand nociceptin (N/OFQ) and a positively charged synthetic peptide RYYRIK are both selective for the nociceptin opioid receptor (NOPr). Despite their structural dissimilarity, N/OFQ and RYYRIK compete for the same binding site of NOP receptor possessing full and partial agonistic character, respectively. In the view of the message-address concept, hybrid peptide constructs were probed for the NOP receptor combining different regions of N/OFQ and RYYRIK related peptide sequences. Nine novel nociceptin- or Ac-RYYRIK-NH2 peptide variants or hybrid peptides were synthesized and characterized. Peptides P2 and P8 contain fragments of native N/OFQ. The other seven analogues (P1, P3-7, P9) are composed of Ac-RYYRIK-NH2 fragments and parts of the original nociceptin sequence. The analogues were characterized in receptor binding assays and G-protein activation experiments on rat brain membranes, as well as by electrically stimulated mouse vas deferens bioassay. In receptor binding assays ligands P2, P4, P6 (Ki 0.37 nM) and P7 showed higher affinity (Ki 0.65 nM, 0.6 nM, 0.37 nM and 0.44 nM, respectively) for NOP receptor than their parent compounds N/OFQ (Ki 2.8 nM) or Ac-RYYRIK-NH2 (Ki 4.2 nM). In [35S]GTPγS binding experiments P2 and P3 behaved as full agonists. The other variants exhibited partial agonist properties characterized by submaximal stimulatory effects. In mouse vas deferens bioassay only P2 showed agonist activity. P4, P5, P6 inhibited the biological activity of N/OFQ more effectively than the NOP receptor selective antagonist JTC-801. In summary, hybrid peptides P4, P5 and P6 proved to be NOP receptor partial agonists even antagonists, while P2 peptide retained the full agonist property.
Collapse
Affiliation(s)
- Anna I Erdei
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary; Doctoral School of Theoretical Medicine, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Adina Borbély
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary; Doctoral School of Theoretical Medicine, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Dávid Gombos
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445 Budapest, Nagyvárad tér 4., Hungary
| | - Azzurra Stefanucci
- Dipartimento di Farmacia, Università̀ degli Studi "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini 31, Chieti, 66100, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università̀ degli Studi "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini 31, Chieti, 66100, Italy
| | - Grazia Luisi
- Dipartimento di Farmacia, Università̀ degli Studi "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini 31, Chieti, 66100, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università̀ degli Studi "G. d'Annunzio" di Chieti-Pescara, Via dei Vestini 31, Chieti, 66100, Italy
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary.
| |
Collapse
|
2
|
Erdei AI, Borbély A, Magyar A, Taricska N, Perczel A, Zsíros O, Garab G, Szűcs E, Ötvös F, Zádor F, Balogh M, Al-Khrasani M, Benyhe S. Biochemical and pharmacological characterization of three opioid-nociceptin hybrid peptide ligands reveals substantially differing modes of their actions. Peptides 2018; 99:205-216. [PMID: 29038035 DOI: 10.1016/j.peptides.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
In an attempt to design opioid-nociceptin hybrid peptides, three novel bivalent ligands, H-YGGFGGGRYYRIK-NH2, H-YGGFRYYRIK-NH2 and Ac-RYYRIKGGGYGGFL-OH were synthesized and studied by biochemical, pharmacological, biophysical and molecular modelling tools. These chimeric molecules consist of YGGF sequence, a crucial motif in the N-terminus of natural opioid peptides, and Ac-RYYRIK-NH2, which was isolated from a combinatorial peptide library as an antagonist or partial agonist that inhibits the biological activity of the endogenously occurring heptadecapeptide nociceptin. Solution structures for the peptides were studied by analysing their circular dichroism spectra. Receptor binding affinities were measured by equilibrium competition experiments using four highly selective radioligands. G-protein activating properties of the multitarget peptides were estimated in [35S]GTPγS binding tests. The three compounds were also measured in electrically stimulated mouse vas deferens (MVD) bioassay. H-YGGFGGGRYYRIK-NH2 (BA55), carrying N-terminal opioid and C-terminal nociceptin-like sequences interconnected with GGG tripeptide spacer displayed a tendency of having either unordered or β-sheet structures, was moderately potent in MVD and possessed a NOP/KOP receptor preference. A similar peptide without spacer H-YGGFRYYRIK-NH2 (BA62) exhibited the weakest effect in MVD, more α-helical periodicity was present in its structure and it exhibited the most efficacious agonist actions in the G-protein stimulation assays. The third hybrid peptide Ac-RYYRIKGGGYGGFL-OH (BA61) unexpectedly displayed opioid receptor affinities, because the opioid message motif is hidden within the C-terminus. The designed chimeric peptide ligands presented in this study accommodate well into a group of multitarget opioid compounds that include opioid-non-opioid peptide dimer analogues, dual non-peptide dimers and mixed peptide- non-peptide bifunctional ligands.
Collapse
Affiliation(s)
- Anna I Erdei
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Adina Borbély
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary; MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Ottó Zsíros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary.
| |
Collapse
|
3
|
Wager TT, Galatsis P, Chandrasekaran RY, Butler TW, Li J, Zhang L, Mente S, Subramanyam C, Liu S, Doran AC, Chang C, Fisher K, Grimwood S, Hedde JR, Marconi M, Schildknegt K. Identification and Profiling of a Selective and Brain Penetrant Radioligand for in Vivo Target Occupancy Measurement of Casein Kinase 1 (CK1) Inhibitors. ACS Chem Neurosci 2017; 8:1995-2004. [PMID: 28609096 DOI: 10.1021/acschemneuro.7b00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To enable the clinical development of our CNS casein kinase 1 delta/epsilon (CK1δ/ε) inhibitor project, we investigated the possibility of developing a CNS positron emission tomography (PET) radioligand. For this effort, we focused our design and synthesis efforts on the initial CK1δ/ε inhibitor HTS hits with the goal of identifying a compound that would fulfill a set of recommended PET ligand criteria. We identified [3H]PF-5236216 (9) as a tool ligand that meets most of the key CNS PET attributes including high CNS MPO PET desirability score and kinase selectivity, CNS penetration, and low nonspecific binding. We further used [3H]-9 to determine the binding affinity for PF-670462, a literature CK1δ/ε inhibitor tool compound. Lastly, [3H]-9 was used to measure in vivo target occupancy (TO) of PF-670462 in mouse and correlated TO with CK1δ/ε in vivo pharmacology (circadian rhythm modulation).
Collapse
Affiliation(s)
- Travis T. Wager
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Paul Galatsis
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Ramalakshmi Y. Chandrasekaran
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 558
Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Todd W. Butler
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 558
Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Jianke Li
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 558
Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Lei Zhang
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Scot Mente
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Chakrapani Subramanyam
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 558
Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Shenping Liu
- Worldwide
Medicinal Chemistry, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Angela C. Doran
- Pharmacokinetics,
Dynamics, and Metabolism, Pfizer Worldwide Research and Development, 558 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Cheng Chang
- Pharmacokinetics,
Dynamics, and Metabolism, Pfizer Worldwide Research and Development, 558 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Katherine Fisher
- Internal
Medicine Research Unit, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Sarah Grimwood
- Internal
Medicine Research Unit, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Joseph R. Hedde
- Internal
Medicine Research Unit, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Michael Marconi
- Internal
Medicine Research Unit, Pfizer Worldwide Research and Development, 1 Portland, Cambridge, Massachusetts 02139, United States
| | - Klaas Schildknegt
- Chemical
Research and Development, Pharmaceutical Sciences, Pfizer Worldwide Research and Development, 558 Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
4
|
Zhang L, Drummond E, Brodney MA, Cianfrogna J, Drozda SE, Grimwood S, Vanase-Frawley MA, Villalobos A. Design, synthesis and evaluation of [(3)H]PF-7191, a highly specific nociceptin opioid peptide (NOP) receptor radiotracer for in vivo receptor occupancy (RO) studies. Bioorg Med Chem Lett 2014; 24:5219-23. [PMID: 25442316 DOI: 10.1016/j.bmcl.2014.09.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
Abstract
Herein we report the identification of (+)-N-(2-((1H-pyrazol-1-yl)methyl)-3-((1R,3r,5S)-6'-fluoro-8-azaspiro[bicyclo[3.2.1]octane-3,1'-isochroman]-8-yl)propyl)-N-[(3)H]-methylacetamide {[(3)H]PF-7191 [(+)-11]} as a promising radiotracer for the nociceptin opioid peptide (NOP) receptor. (+)-11 demonstrated high NOP binding affinity (Ki = 0.1 nM), excellent selectivity over other opioid receptors (>1000×) and good brain permeability in rats (C(b,u)/C(p,u) = 0.29). Subsequent characterization of [(3)H](+)-11 showed a high level of specific binding and a brain bio-distribution pattern consistent with known NOP receptor expression. Furthermore, the in vivo brain binding of [(3)H](+)-11 in rats was inhibited by a selective NOP receptor antagonist in a dose-responsive manner. This overall favorable profile indicated that [(3)H](+)-11 is a robust radiotracer for pre-clinical in vivo receptor occupancy (RO) measurements and a possible substrate for carbon-11 labeling for positron emission tomography (PET) imaging in higher species.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02139, USA.
| | - Elena Drummond
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Michael A Brodney
- Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02139, USA
| | - Julie Cianfrogna
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT 06340, USA
| | - Susan E Drozda
- Neuroscience Medicinal Chemistry, Pfizer Inc., Groton, CT 06340, USA
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
5
|
Mollica A, Carotenuto A, Novellino E, Limatola A, Costante R, Pinnen F, Stefanucci A, Pieretti S, Borsodi A, Samavati R, Zador F, Benyhe S, Davis P, Porreca F, Hruby VJ. Novel cyclic biphalin analogue with improved antinociceptive properties. ACS Med Chem Lett 2014; 5:1032-6. [PMID: 25221662 DOI: 10.1021/ml500241n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 11/28/2022] Open
Abstract
Two novel opioid analogues have been designed by substituting the native d-Ala residues in position 2,2' of biphalin with two residues of d-penicillamine or l-penicillamine and by forming a disulfide bond between the thiol groups. The so-obtained compound 9 containing d-penicillamines showed excellent μ/δ mixed receptor affinities (K i (δ) = 5.2 nM; K i (μ) = 1.9 nM), together with an efficacious capacity to trigger the second messenger and a very good in vivo antinociceptive activity, whereas product 10 was scarcely active. An explanation of the two different pharmacological behaviors of products 9 and 10 was found by studying their conformational properties.
Collapse
Affiliation(s)
- Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Alfonso Carotenuto
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Antonio Limatola
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Roberto Costante
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesco Pinnen
- Dipartimento
di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Azzurra Stefanucci
- Dipartimento
di Chimica, Sapienza, Università di Roma, P.le A. Moro,
5, 00187 Rome, Italy
| | - Stefano Pieretti
- Department
of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Anna Borsodi
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Reza Samavati
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Ferenc Zador
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Sándor Benyhe
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | | | | |
Collapse
|
6
|
Mollica A, Costante R, Stefanucci A, Pinnen F, Luisi G, Pieretti S, Borsodi A, Bojnik E, Benyhe S. Hybrid peptides endomorphin-2/DAMGO: Design, synthesis and biological evaluation. Eur J Med Chem 2013; 68:167-77. [DOI: 10.1016/j.ejmech.2013.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 02/07/2023]
|
7
|
Turunc Bayrakdar E, Bojnik E, Armagan G, Kanit L, Benyhe S, Borsodi A, Yalcin A. Kainic acid-induced seizure activity alters the mRNA expression and G-protein activation of the opioid/nociceptin receptors in the rat brain cortex. Epilepsy Res 2013; 105:13-9. [PMID: 23337899 DOI: 10.1016/j.eplepsyres.2012.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 01/30/2023]
Abstract
The opioid/nociceptin receptors are involved in many neurological disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. Kainic acid (KA) is an analog of the excitatory amino acid transmitter glutamate and the systemic administration of KA induces status epilepticus (SE) in rodents. In this study, we examined the alterations in the G-protein activity and the gene expression levels of mu, kappa, delta opioid and nociceptin receptors (MOPr, KOPr, DOPr and NOPr) as well as PNOC, the precursor polypeptide of nociceptin-OFQ (N/OFQ) in KA-induced seizures in the rat brain cortex. KA was used to create seizures with the dose of 10 mg/kg body weight i.p. Following the KA administration, the rats were observed for 3 h to assess seizure activity. Seizures occurred approximately 45 min after the KA injection. Only rats exhibiting full limbic seizures, forelimb clonus with rearing, were used in this study. All animals were decapitated 4 h after the administration of KA. Our [(35)S]GTPγS binding results showed that there was a significant difference in both the affinity and efficacy particularly one of NOPr stimulation following KA treatment. Slight, but significant increase was observed for MOPr. Moreover PNOC, NOPr and MOPr mRNA levels were increased by KA treatment but there were no significant changes in the levels of DOPr and KOPr mRNAs. These results show that the activities of opioid/nociceptin receptors can be modified by KA-treatment, and MOPr, PNOC and NOPr are the most responsive to KA-induced seizures in the rat brain cortex.
Collapse
Affiliation(s)
- Ezgi Turunc Bayrakdar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
8
|
Pedregal C, Joshi EM, Toledo MA, Lafuente C, Diaz N, Martinez-Grau MA, Jiménez A, Benito A, Navarro A, Chen Z, Mudra DR, Kahl SD, Rash KS, Statnick MA, Barth VN. Development of LC-MS/MS-Based Receptor Occupancy Tracers and Positron Emission Tomography Radioligands for the Nociceptin/Orphanin FQ (NOP) Receptor. J Med Chem 2012; 55:4955-67. [DOI: 10.1021/jm201629q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Concepción Pedregal
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Elizabeth M. Joshi
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Miguel A. Toledo
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Celia Lafuente
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Nuria Diaz
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Maria A. Martinez-Grau
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Alma Jiménez
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Ana Benito
- Centro de
Investigación Lilly, Avenida de la Industria 30, 28108-Alcobendas,
Madrid, Spain
| | - Antonio Navarro
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Zhaogen Chen
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Daniel R. Mudra
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Steven D. Kahl
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Karen S. Rash
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Michael A. Statnick
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Vanessa N. Barth
- Eli Lilly & Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
9
|
Armagan G, Bojnik E, Turunc E, Kanit L, Gündüz Çinar O, Benyhe S, Borsodi A, Yalcin A. Kainic acid-induced changes in the opioid/nociceptin system and the stress/toxicity pathways in the rat hippocampus. Neurochem Int 2012; 60:555-64. [PMID: 22382076 DOI: 10.1016/j.neuint.2012.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 12/13/2022]
Abstract
Excitotoxicity is a contributing factor to the pathogenesis of acute or chronic neurodegenerative disease states. Kainic acid (KA) is an excitotoxic substance and the administration of it to rodents induces seizure activity (status epilepticus, SE) and leads to neurodegeneration. In this study the effect of KA-induced excitotoxicity on the G-protein activations and the gene expression levels of the opioid/nociceptin system receptors as MOPr, KOPr, DOPr, ORL-1, and PNOC (N/OFQ) were investigated, and the regulator effect of naloxone (Nal) on the gene expressions of the opioid system receptors against KA-induced seizures in the rat hippocampus was tested. In addition, the expression levels of stress-toxicity genes were assessed in the hippocampus following KA-induced excitotoxicity in order to determine the potential genetic targets which can be helpful for neuroprotective interventions. Our results indicate that the KA-induced excitotoxicity increased the mRNA levels of MOPr, DOPr, KOPr, PNOC, and ORL-1. However, G-protein activations of MOPr, DOPr, and KOPr remained relatively unchanged while both the potency and efficacy of N/OFQ were significantly increased. The PCR array data showed that KA-induced excitotoxicity altered the expression levels of genes in the cellular stress or toxicity pathways. Our data suggests that the induction of the opioid/nociceptin system may be involved in the cellular stress response following a neurodegenerative insult and that the genes modulated by the KA-treatment in the stress-toxicity pathways may be evaluated as targets of potential neuroprotective interventions.
Collapse
Affiliation(s)
- Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100 Bornova, Izmir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mustazza C, Bastanzio G. Development of nociceptin receptor (NOP) agonists and antagonists. Med Res Rev 2011; 31:605-48. [PMID: 20099319 DOI: 10.1002/med.20197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nociceptin opioid (NOP) receptor is the most recently discovered member of the family of the opioid receptors; its endogenous agonist is the peptide nociceptin. Due to the subsequent elucidation of its physiological role in both central and peripheral nervous system and in some non-neural tissues, there is a rapidly growing interest in the pharmacological application of substances active on this receptor. Despite the current clinical use of a morphinane-based NOP/MOP mixed ligand (buprenorphine) as an analgesic and in the treatment of drug addictions, so far just a few clinical trials have been made with selective NOP ligands. However, the perspective of their utilization is rapidly growing. Agonists can find applications in the treatment of neuropathic pain, anxiety, cough, drug addition, urinary incontinence, anorexia, congestive heart failure, hypertension; and antagonists for pain, depression, Parkinson's disease, obesity, and as memory enhancers. Besides peptide ligands, which are still subjected to many pharmacological investigations, many different chemical classes of NOP ligands have been discovered: piperidines, nortropanes, spiropiperidines, 4-amino-quinolines and quinazolines, and others. The new advances in establishing structure-activity relationships, also with the help of modeling studies, can permit the development of more active and selective molecules.
Collapse
Affiliation(s)
- Carlo Mustazza
- Dipartimento del Farmaco, Istituto Superiore di Sanità, Viale Regina Elena, Roma, Italy.
| | | |
Collapse
|
11
|
Pike VW, Rash KS, Chen Z, Pedregal C, Statnick MA, Kimura Y, Hong J, Zoghbi SS, Fujita M, Toledo MA, Diaz N, Gackenheimer SL, Tauscher JT, Barth VN, Innis RB. Synthesis and evaluation of radioligands for imaging brain nociceptin/orphanin FQ peptide (NOP) receptors with positron emission tomography. J Med Chem 2011; 54:2687-700. [PMID: 21438532 PMCID: PMC3081360 DOI: 10.1021/jm101487v] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) coupled to an effective radioligand could provide an important tool for understanding possible links between neuropsychiatric disorders and brain NOP (nociceptin/orphanin FQ peptide) receptors. We sought to develop such a PET radioligand. High-affinity NOP ligands were synthesized based on a 3-(2'-fluoro-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-1-yl)-2(2-halobenzyl)-N-alkylpropanamide scaffold and from experimental screens in rats, with ex vivo LC-MS/MS measures, three ligands were identified for labeling with carbon-11 and evaluation with PET in monkey. Each ligand was labeled by (11)C-methylation of an N-desmethyl precursor and studied in monkey under baseline and NOP receptor-preblock conditions. The three radioligands, [(11)C](S)-10a-c, gave similar results. Baseline scans showed high entry of radioactivity into the brain to give a distribution reflecting that expected for NOP receptors. Preblock experiments showed high early peak levels of brain radioactivity, which rapidly declined to a much lower level than seen in baseline scans, thereby indicating a high level of receptor-specific binding in baseline experiments. Overall, [(11)C](S)-10c showed the most favorable receptor-specific signal and kinetics and is now selected for evaluation in human subjects.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
13
|
Largent-Milnes TM, Vanderah TW. Recently patented and promising ORL-1 ligands: where have we been and where are we going? Expert Opin Ther Pat 2010; 20:291-305. [PMID: 20180617 DOI: 10.1517/13543771003602004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The interactions of nociceptin/orphanin FQ (N/OFQ) and the opioid receptor-like receptor 1 (nociceptin opioid peptide--NOP) have been implicated in a variety of systems including cardiovascular, respiratory, immune, and the central and peripheral nervous systems. AREAS COVERED IN THIS REVIEW To elucidate the endogenous role of the N/OFQ-NOP system through the use of knockout and knockdown animal preparations, though most advances have been made using a host of synthetic agonists and antagonists. This review gives a brief history of the receptor-ligand discovery, the development of these agonists and antagonists within the last 10 years as published, and the therapeutic indications thereof focusing on pain. WHAT THE READER WILL GAIN The use of NOP ligands in pain has been controversial at best; however, there are indications that both agonists and antagonists have a place in the clinical setting for acute and chronic pain. NOP ligands have potential as novel therapeutics, interestingly, when incorporated into a rationally-designed multi-target agent. TAKE HOME MESSAGE The discovery of N/OFQ and NOP opened a new option for the treatment of pain with the potential for a decreased side effect profile. Numerous compounds have been designed to target this system, the most promising of which have mixed profiles.
Collapse
Affiliation(s)
- Tally M Largent-Milnes
- University of Arizona, Department of Pharmacology, 1501 N. Campbell Avenue, Tucson, Arizona 85724-5050, USA
| | | |
Collapse
|
14
|
Bojnik E, Babos F, Fischetti C, Magyar A, Camarda V, Borsodi A, Bajusz S, Calo' G, Benyhe S. Comparative biochemical and pharmacological characterization of a novel, NOP receptor selective hexapeptide, Ac-RYYRIR-ol. Brain Res Bull 2010; 81:477-83. [PMID: 19800951 DOI: 10.1016/j.brainresbull.2009.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is an endogenous neuropeptide, which is widely distributed in central and peripheral nervous system. Some N/OFQ sequence unrelated hexapeptides can effectively bind to the N/OFQ peptide (NOP) receptor and they were used as template for structure-activity studies that lead to discovery of the new NOP selective ligands. In the present study, the pharmacological profile of the novel hexapeptide Ac-RYYRIR-ol was investigated using various in vitro assays including receptor binding and G-protein activation in rat brain membranes, mouse and rat vas deferens, guinea pig ileum, mouse colon and Ca(2+) mobilization assay in chinese hamster ovary (CHO) cells co-expressing the human recombinant NOP receptor and the C-terminally modified Galpha(qi5) protein. In rat brain membranes Ac-RYYRIR-ol displaced both [(3)H]nociceptin/OFQ and [(3)H]Ac-RYYRIK-ol with high affinity (pK(i) 9.35 and 8.81, respectively) and stimulated [(35)S]GTPgammaS binding showing however lower maximal effects than N/OFQ (alpha=0.28). The stimulatory effect of Ac-RYYRIR-ol was antagonized by the selective NOP receptor antagonist UFP-101. In the electrically stimulated mouse vas deferens Ac-RYYRIR-ol displayed negligible agonist activity while antagonizing in a competitive manner (pA(2) 7.99) the inhibitory effects of N/OFQ. Similar results were obtained in the rat vas deferens. In the mouse colon Ac-RYYRIR-ol produced concentration dependent contractile effects with similar potency and maximal effects as N/OFQ. Finally, in the Ca(2+) mobilization assay performed with CHO-hNOP-Galpha(qi5) cells Ac-RYYRIR-ol displayed lower potency and maximal effects (alpha=0.87) compared with N/OFQ. In conclusion, the novel NOP receptor selective hexapeptide Ac-RYYRIR-ol has been shown to have fine selectivity, high potency, furthermore agonist and antagonist effects toward the NOP receptors were measured in various assays; this is likely due to its partial agonist pharmacological activity.
Collapse
Affiliation(s)
- Engin Bojnik
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Temesvari krt 62, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|