1
|
Peng Y, Yang H, Xue YH, Chen Q, Jin H, Liu S, Yao SY, Du MQ. An update on malignant tumor-related stiff person syndrome spectrum disorders: clinical mechanism, treatment, and outcomes. Front Neurol 2023; 14:1209302. [PMID: 37859648 PMCID: PMC10582361 DOI: 10.3389/fneur.2023.1209302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023] Open
Abstract
Stiff person syndrome (SPS) is a rare central nervous system disorder associated with malignancies. In this review, we retrieved information from PubMed, up until August 2023, using various search terms and their combinations, including SPS, stiff person syndrome spectrum disorders (SPSSDs), paraneoplastic, cancer, and malignant tumor. Data from peer-reviewed journals printed in English were organized to explain the possible relationships between different carcinomas and SPSSD subtypes, as well as related autoantigens. From literature searching, it was revealed that breast cancer was the most prevalent carcinoma linked to SPSSDs, followed by lung cancer and lymphoma. Furthermore, classic SPS was the most common SPSSD subtype, followed by stiff limb syndrome and progressive encephalomyelitis with rigidity and myoclonus. GAD65 was the most common autoantigen in patients with cancer and SPSSDs, followed by amphiphysin and GlyR. Patients with cancer subtypes might have multiple SPSSD subtypes, and conversely, patients with SPSSD subtypes might have multiple carcinoma subtypes. The first aim of this review was to highlight the complex nature of the relationships among cancers, autoantigens, and SPSSDs as new information in this field continues to be generated globally. The adoption of an open-minded approach to updating information on new cancer subtypes, autoantigens, and SPSSDs is recommended to renew our database. The second aim of this review was to discuss SPS animal models, which will help us to understand the mechanisms underlying the pathogenesis of SPS. In future, elucidating the relationship among cancers, autoantigens, and SPSSDs is critical for the early prediction of cancer and discovery of new therapeutic modalities.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shun-yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
2
|
Salceda R. Glycine neurotransmission: Its role in development. Front Neurosci 2022; 16:947563. [PMID: 36188468 PMCID: PMC9525178 DOI: 10.3389/fnins.2022.947563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The accurate function of the central nervous system (CNS) depends of the consonance of multiple genetic programs and external signals during the ontogenesis. A variety of molecules including neurotransmitters, have been implied in the regulation of proliferation, survival, and cell-fate of neurons and glial cells. Among these, neurotransmitters may play a central role since functional ligand-gated ionic channel receptors have been described before the establishment of synapses. This review argues on the function of glycine during development, and show evidence indicating it regulates morphogenetic events by means of their transporters and receptors, emphasizing the role of glycinergic activity in the balance of excitatory and inhibitory signals during development. Understanding the mechanisms involved in these processes would help us to know the etiology of cognitive dysfunctions and lead to improve brain repair strategies.
Collapse
|
3
|
Lalo U, Koh W, Lee CJ, Pankratov Y. The tripartite glutamatergic synapse. Neuropharmacology 2021; 199:108758. [PMID: 34433089 DOI: 10.1016/j.neuropharm.2021.108758] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
Astroglial cells were long considered as structural and metabolic supporting cells are which do not directly participate in information processing in the brain. Discoveries of responsiveness of astrocytes to synaptically-released glutamate and their capability to release agonists of glutamate receptors awakened extensive studies of glia-neuron communications and led to the revolutionary changes in our understanding of brain cellular networks. Nowadays, astrocytes are widely acknowledged as inseparable element of glutamatergic synapses and role for glutamatergic astrocyte-neuron interactions in the brain computation is emerging. Astroglial glutamate receptors, in particular of NMDA, mGluR3 and mGluR5 types, can activate a variety of molecular cascades leading astroglial-driven modulation of extracellular levels of glutamate and activity of neuronal glutamate receptors. Their preferential location to the astroglial perisynaptic processes facilitates interaction of astrocytes with individual excitatory synapses. Bi-directional glutamatergic communication between astrocytes and neurons underpins a complex, spatially-distributed modulation of synaptic signalling thus contributing to the enrichment of information processing by the neuronal networks. Still, further research is needed to bridge the substantial gaps in our understanding of mechanisms and physiological relevance of astrocyte-neuron glutamatergic interactions, in particular ability of astrocytes directly activate neuronal glutamate receptors by releasing glutamate and, arguably, d-Serine. An emerging roles for aberrant changes in glutamatergic astroglial signalling, both neuroprotective and pathogenic, in neurological and neurodegenerative diseases also require further investigation. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
4
|
Pregnolato S, Chakkarapani E, Isles AR, Luyt K. Glutamate Transport and Preterm Brain Injury. Front Physiol 2019; 10:417. [PMID: 31068830 PMCID: PMC6491644 DOI: 10.3389/fphys.2019.00417] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Preterm birth complications are the leading cause of child death worldwide and a top global health priority. Among the survivors, the risk of life-long disabilities is high, including cerebral palsy and impairment of movement, cognition, and behavior. Understanding the molecular mechanisms of preterm brain injuries is at the core of future healthcare improvements. Glutamate excitotoxicity is a key mechanism in preterm brain injury, whereby the accumulation of extracellular glutamate damages the delicate immature oligodendrocytes and neurons, leading to the typical patterns of injury seen in the periventricular white matter. Glutamate excitotoxicity is thought to be induced by an interaction between environmental triggers of injury in the perinatal period, particularly cerebral hypoxia-ischemia and infection/inflammation, and developmental and genetic vulnerabilities. To avoid extracellular build-up of glutamate, the brain relies on rapid uptake by sodium-dependent glutamate transporters. Astrocytic excitatory amino acid transporter 2 (EAAT2) is responsible for up to 95% of glutamate clearance, and several lines of evidence suggest that it is essential for brain functioning. While in the adult EAAT2 is predominantly expressed by astrocytes, EAAT2 is transiently upregulated in the immature oligodendrocytes and selected neuronal populations during mid-late gestation, at the peak time for preterm brain injury. This developmental upregulation may interact with perinatal hypoxia-ischemia and infection/inflammation and contribute to the selective vulnerability of the immature oligodendrocytes and neurons in the preterm brain. Disruption of EAAT2 may involve not only altered expression but also impaired function with reversal of transport direction. Importantly, elevated EAAT2 levels have been found in the reactive astrocytes and macrophages of human infant post-mortem brains with severe white matter injury (cystic periventricular leukomalacia), potentially suggesting an adaptive mechanism against excitotoxicity. Interestingly, EAAT2 is suppressed in animal models of acute hypoxic-ischemic brain injury at term, pointing to an important and complex role in newborn brain injuries. Enhancement of EAAT2 expression and transport function is gathering attention as a potential therapeutic approach for a variety of adult disorders and awaits exploration in the context of the preterm brain injuries.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elavazhagan Chakkarapani
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Karen Luyt
- Department of Neonatal Neurology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology 2019; 161:107550. [PMID: 30822498 DOI: 10.1016/j.neuropharm.2019.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, glutamate is released and binds to specific membrane receptors and transporters activating, in the one hand, a wide variety of signal transduction cascades, while in the other hand, its removal from the synaptic cleft. Extracellular glutamate concentrations are maintained within physiological levels mainly by glia glutamate transporters. Inefficient clearance of this amino acid is neurotoxic due to a prolonged hyperactivation of its postsynaptic receptors, exacerbating a wide array of intracellular events linked to an ionic imbalance, that results in neuronal cell death. This process is known as excitotoxicity and is the underlying mechanisms of an important number of neurodegenerative diseases. Therefore, it is important to understand the regulation of glutamate transporters function. The transporter activity can be regulated at different levels: gene expression, transporter protein targeting and trafficking, and post-translational modifications of the transporter protein. The identification of these mechanisms has paved the way to our current understanding the role of glutamate transporters in brain physiology and will certainly provide the needed biochemical information for the development of therapeutic strategies towards the establishment of novel therapeutic approaches for the treatment and/or prevention of pathologies associated with excitotoxicity insults. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - Donají Chí-Castañeda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
6
|
Fern R, Matute C. Glutamate receptors and white matter stroke. Neurosci Lett 2018; 694:86-92. [PMID: 30476568 DOI: 10.1016/j.neulet.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022]
Abstract
White matter (WM) damage during ischemia occurs at multiple sites including myelin, oligodendrocytes, astrocytes and axons. A major driver of WM demise is excitoxicity as a consequence of excessive glutamate release by vesicular and non-vesicular mechanisms from axons and glial cells. This results in over-activation of ionotropic glutamate receptors (GluRs) profusely expressed by all cell compartments in WM. Thus, blocking excitotoxicity in WM with selective antagonists of those receptors has a potential therapeutic value. The significance of WM GluR expression for WM stroke injury is the focus of this review, and we will examine the role of GluRs in injury to myelin, oligodendrocytes, astrocytes and the axon cylinder.
Collapse
Affiliation(s)
- Robert Fern
- Faculty of Medicine and Dentistry, University of Plymouth, Plymouth, United Kingdom
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, CIBERNED and Department of Neuroscience, University of the Basque Country, Leioa, Spain.
| |
Collapse
|
7
|
Chi-Castañeda D, Ortega A. Glial Cells in the Genesis and Regulation of Circadian Rhythms. Front Physiol 2018; 9:88. [PMID: 29483880 PMCID: PMC5816069 DOI: 10.3389/fphys.2018.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian "master clock," which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called "clock genes." A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as "clock-controlled genes." In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.,Soluciones para un México Verde S.A. de C.V., Ciudad de Mexico, Mexico
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
8
|
Chi-Castañeda D, Ortega A. Circadian Regulation of Glutamate Transporters. Front Endocrinol (Lausanne) 2018; 9:340. [PMID: 29977228 PMCID: PMC6021491 DOI: 10.3389/fendo.2018.00340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
L-glutamate is the major excitatory amino acid in the mammalian central nervous system (CNS). This neurotransmitter is essential for higher brain functions such as learning, cognition and memory. A tight regulation of extra-synaptic glutamate levels is needed to prevent a neurotoxic insult. Glutamate removal from the synaptic cleft is carried out by a family of sodium-dependent high-affinity transporters, collectively known as excitatory amino acid transporters. Dysfunction of glutamate transporters is generally involved in acute neuronal injury and neurodegenerative diseases, so characterizing and understanding the mechanisms that lead to the development of these disorders is an important goal in the design of novel treatments for the neurodegenerative diseases. Increasing evidence indicates glutamate transporters are controlled by the circadian system in direct and indirect manners, so in this contribution we focus on the mechanisms of circadian regulation (transcriptional, translational, post-translational and post-transcriptional regulation) of glutamate transport in neuronal and glial cells, and their consequence in brain function.
Collapse
|
9
|
The Role of Mammalian Glial Cells in Circadian Rhythm Regulation. Neural Plast 2017; 2017:8140737. [PMID: 29435373 PMCID: PMC5757113 DOI: 10.1155/2017/8140737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/19/2017] [Indexed: 11/23/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of about 24 hours. These rhythms are maintained by an innate genetically determined time-keeping system called the circadian clock. A large number of the proteins involved in the regulation of this clock are transcription factors controlling rhythmic transcription of so-called clock-controlled genes, which participate in a plethora of physiological functions in the organism. In the brain, several areas, besides the suprachiasmatic nucleus, harbor functional clocks characterized by a well-defined time pattern of clock gene expression. This expression rhythm is not restricted to neurons but is also present in glia, suggesting that these cells are involved in circadian rhythmicity. However, only certain glial cells fulfill the criteria to be called glial clocks, namely, to display molecular oscillators based on the canonical clock protein PERIOD, which depends on the suprachiasmatic nucleus for their synchronization. In this contribution, we summarize the current information about activity of the clock genes in glial cells, their potential role as oscillators as well as clinical implications.
Collapse
|
10
|
Models of progressive neurological dysfunction originating early in life. Prog Neurobiol 2017; 155:2-20. [DOI: 10.1016/j.pneurobio.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 01/01/2023]
|
11
|
Anan J, Hijioka M, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Cortical hemorrhage-associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine. J Neurosci Res 2017; 95:1838-1849. [DOI: 10.1002/jnr.24016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/26/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Junpei Anan
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Masanori Hijioka
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence; Kumamoto University; Kumamoto Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program,”; Kumamoto University; Kumamoto Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
12
|
Regulation of Glutamate Transporter Expression in Glial Cells. ADVANCES IN NEUROBIOLOGY 2017; 16:199-224. [DOI: 10.1007/978-3-319-55769-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
14
|
Shi J, He Y, Hewett SJ, Hewett JA. Interleukin 1β Regulation of the System xc- Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR. J Biol Chem 2015; 291:1643-1651. [PMID: 26601945 DOI: 10.1074/jbc.m115.697821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Indexed: 01/05/2023] Open
Abstract
System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1β increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1β induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1β-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1β-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1β-induced stabilization of astrocyte xCT mRNA.
Collapse
Affiliation(s)
- Jingxue Shi
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Yan He
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - Sandra J Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244
| | - James A Hewett
- From the Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, New York 13244.
| |
Collapse
|
15
|
Glutamatergic Transmission: A Matter of Three. Neural Plast 2015; 2015:787396. [PMID: 26345375 PMCID: PMC4539489 DOI: 10.1155/2015/787396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication.
Collapse
|
16
|
Fern RF, Matute C, Stys PK. White matter injury: Ischemic and nonischemic. Glia 2014; 62:1780-9. [PMID: 25043122 DOI: 10.1002/glia.22722] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Ischemic pathologies of white matter (WM) include a large proportion of stroke and developmental lesions while multiple sclerosis (MS) is the archetype nonischemic pathology. Growing evidence suggests other important diseases including neurodegenerative and psychiatric disorders also involve a significant WM component. Axonal, oligodendroglial, and astroglial damage proceed via distinct mechanisms in ischemic WM and these mechanisms evolve dramatically with maturation. Axons may pass through four developmental stages where the pattern of membrane protein expression influences how the structure responds to ischemia; WM astrocytes pass through at least two and differ significantly in their ischemia tolerance from grey matter astrocytes; oligodendroglia pass through at least three, with the highly ischemia intolerant pre-oligodendrocyte (pre-Oli) stage linking the less sensitive precursor and mature phenotypes. Neurotransmitters play a central role in WM pathology at all ages. Glutamate excitotoxicity in WM has both necrotic and apoptotic components; the latter mediated by intracellular pathways which differ between receptor types. ATP excitotoxicity may be largely mediated by the P2X7 receptor and also has both necrotic and apoptotic components. Interplay between microglia and other cell types is a critical element in the injury process. A growing appreciation of the significance of WM injury for nonischemic neurological disorders is currently stimulating research into mechanisms; with curious similarities being found with those operating during ischemia. A good example is traumatic brain injury, where axonal pathology can proceed via almost identical pathways to those described during acute ischemia.
Collapse
Affiliation(s)
- Robert F Fern
- Peninsula School of Medicine and Dentistry, University of Plymouth, United Kingdom
| | | | | |
Collapse
|
17
|
Butt AM, Fern RF, Matute C. Neurotransmitter signaling in white matter. Glia 2014; 62:1762-79. [PMID: 24753049 DOI: 10.1002/glia.22674] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function.
Collapse
Affiliation(s)
- Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | | | | |
Collapse
|
18
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
19
|
Vardjan N, Kreft M, Zorec R. Regulated Exocytosis in Astrocytes is as Slow as the Metabolic Availability of Gliotransmitters: Focus on Glutamate and ATP. GLUTAMATE AND ATP AT THE INTERFACE OF METABOLISM AND SIGNALING IN THE BRAIN 2014; 11:81-101. [DOI: 10.1007/978-3-319-08894-5_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Tu G, Li G, Peng H, Hu J, Liu J, Kong F, Liu S, Gao Y, Xu C, Xu X, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Liang S. P2X(7) inhibition in stellate ganglia prevents the increased sympathoexcitatory reflex via sensory-sympathetic coupling induced by myocardial ischemic injury. Brain Res Bull 2013; 96:71-85. [PMID: 23688519 DOI: 10.1016/j.brainresbull.2013.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022]
Abstract
Purinergic signaling has been found to participate in the regulation of cardiovascular function. In this study, using a rat myocardial ischemic injury model, the sympathoexcitatory reflex mediated by P2X7 receptor via sensory-sympathetic coupling between cervical dorsal root ganglia (DRG) nerves and stellate ganglia (SG) nerves was explored. Our results showed that the systolic blood pressure, heart rate, serum cardiac enzymes concentrations, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) concentrations were increased, and the expression levels of P2X7 mRNA and protein in DRG and SG were up-regulated after myocardial ischemic injury. Administration of brilliant blue G (BBG), a selective P2X7 antagonist, decreased the elevation of systolic blood pressure, heart rate, serum cardiac enzyme, IL-6 and TNF-α, and inhibited the up-regulated expression of P2X7 mRNA and protein in DRG and SG after myocardial ischemic injury. Retrograde tracing test showed that there were calcitonin gene-related peptide sensory nerves and substance P sensory nerves sprouting from DRG to SG, which played an important role in the development of myocardial ischemic injury. The up-regulated P2X7 receptor expression levels on the surface membrane of satellite glial cells contributed to the activation of sensory-sympathetic coupling, which in turn facilitated the sympathoexcitatory reflex. BBG can inhibit the activation of satellite glial cells and interrupt the generation of sensory-sympathetic coupling in the cervical sympathetic ganglia after the myocardial ischemic injury. Taken together, these findings may provide a new therapeutic approach for treating coronary heart disease, hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Guihua Tu
- Department of Physiology, Information Engineering College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bell RL, Franklin KM, Hauser SR, Zhou FC. Introduction to the special issue "Pharmacotherapies for the treatment of alcohol abuse and dependence" and a summary of patents targeting other neurotransmitter systems. RECENT PATENTS ON CNS DRUG DISCOVERY 2012; 7:93-112. [PMID: 22574678 PMCID: PMC3868366 DOI: 10.2174/157488912800673155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.
Collapse
Affiliation(s)
- Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Kelle M. Franklin
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Feng C. Zhou
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, 635 Barnhill Drive MS-508, Indian-apolis, Indiana, 46202, USA
| |
Collapse
|
22
|
Song D, Li B, Yan E, Man Y, Wolfson M, Chen Y, Peng L. Chronic Treatment with Anti-bipolar Drugs Causes Intracellular Alkalinization in Astrocytes, Altering Their Functions. Neurochem Res 2012; 37:2524-40. [DOI: 10.1007/s11064-012-0837-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 07/03/2012] [Accepted: 07/08/2012] [Indexed: 12/26/2022]
|
23
|
Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverría C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Sáez JC, Retamal MA. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 2012; 26:3649-57. [PMID: 22665389 DOI: 10.1096/fj.11-198416] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Laboratorio de Neurobiologia, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Exocytosis in astrocytes: transmitter release and membrane signal regulation. Neurochem Res 2012; 37:2351-63. [PMID: 22528833 DOI: 10.1007/s11064-012-0773-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/14/2022]
Abstract
Astrocytes, a type of glial cells in the brain, are eukaryotic cells, and a hallmark of these are subcellular organelles, such as secretory vesicles. In neurons vesicles play a key role in signaling. Upon a stimulus-an increase in cytosolic concentration of free Ca(2+) ([Ca(2+)](i))-the membrane of vesicle fuses with the presynaptic plasma membrane, allowing the exit of neurotransmitters into the extracellular space and their diffusion to the postsynaptic receptors. For decades it was thought that such vesicle-based mechanisms of gliotransmitter release were not present in astrocytes. However, in the last 30 years experimental evidence showed that astrocytes are endowed with mechanisms for vesicle- and non-vesicle-based gliotransmitter release mechanisms. The aim of this review is to focus on exocytosis, which may play a role in gliotransmission and also in other forms of cell-to-cell communication, such as the delivery of transporters, ion channels and antigen presenting molecules to the cell surface.
Collapse
|
25
|
Abstract
The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, and some of the mechanisms mediating WM injury. We will emphasize the newly appreciated importance of neurotransmitter signalling in WM, particularly glutamate and ATP signalling, to understanding both normal and abnormal brain functions. A deeper understanding of the mechanisms leading to WM damage will generate much-needed insights for developing therapies for acute and chronic diseases with WM involvement.
Collapse
|
26
|
Héja L, Nyitrai G, Kékesi O, Dobolyi A, Szabó P, Fiáth R, Ulbert I, Pál-Szenthe B, Palkovits M, Kardos J. Astrocytes convert network excitation to tonic inhibition of neurons. BMC Biol 2012; 10:26. [PMID: 22420899 PMCID: PMC3342137 DOI: 10.1186/1741-7007-10-26] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamate and γ-aminobutyric acid (GABA) transporters play important roles in balancing excitatory and inhibitory signals in the brain. Increasing evidence suggest that they may act concertedly to regulate extracellular levels of the neurotransmitters. RESULTS Here we present evidence that glutamate uptake-induced release of GABA from astrocytes has a direct impact on the excitability of pyramidal neurons in the hippocampus. We demonstrate that GABA, synthesized from the polyamine putrescine, is released from astrocytes by the reverse action of glial GABA transporter (GAT) subtypes GAT-2 or GAT-3. GABA release can be prevented by blocking glutamate uptake with the non-transportable inhibitor DHK, confirming that it is the glutamate transporter activity that triggers the reversal of GABA transporters, conceivably by elevating the intracellular Na+ concentration in astrocytes. The released GABA significantly contributes to the tonic inhibition of neurons in a network activity-dependent manner. Blockade of the Glu/GABA exchange mechanism increases the duration of seizure-like events in the low-[Mg2+] in vitro model of epilepsy. Under in vivo conditions the increased GABA release modulates the power of gamma range oscillation in the CA1 region, suggesting that the Glu/GABA exchange mechanism is also functioning in the intact hippocampus under physiological conditions. CONCLUSIONS The results suggest the existence of a novel molecular mechanism by which astrocytes transform glutamatergic excitation into GABAergic inhibition providing an adjustable, in situ negative feedback on the excitability of neurons.
Collapse
Affiliation(s)
- László Héja
- Department of Functional Pharmacology, Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri 59-67, 1025 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Peng L, Li B, Du T, Wang F, Hertz L. Does conventional anti-bipolar and antidepressant drug therapy reduce NMDA-mediated neuronal excitation by downregulating astrocytic GluK2 function? Pharmacol Biochem Behav 2012; 100:712-25. [PMID: 21463649 DOI: 10.1016/j.pbb.2011.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 01/25/2023]
Abstract
Chronic treatment with anti-bipolar drugs (lithium, carbamazepine, and valproic acid) down-regulates mRNA and protein expression of kainate receptor GluK2 in mouse brain and cultured astrocytes. It also abolishes glutamate-mediated, Ca(2+)-dependent ERK(1/2) phosphorylation in the astrocytes. Chronic treatment with the SSRI fluoxetine enhances astrocytic GluK2 expression, but increases mRNA editing, abolishing glutamate-mediated ERK(1/2) phosphorylation and [Ca(2+)](i) increase, which are shown to be GluK2-mediated. Neither drug group affects Glu4/Glu5 expression necessary for GluK2's ionotropic effect. Consistent with a metabotropic effect, the PKC inhibitor GF 109203X and the IP(3) inhibitor xestospongin C abolish glutamate stimulation in cultured astrocytes. In CA1/CA3 pyramidal cells in hippocampal slices, activation of extrasynaptic GluK2 receptors, presumably including astrocytic, metabotropic GluK2 receptors, causes long-lasting inhibition of slow neuronal afterhyperpolarization mediated by Ca(2+)-dependent K(+) flux. This may be secondary to the induced astrocytic [Ca(2+)](i) increase, causing release of 'gliotransmitter' glutamate. Neuronal NMDA receptors respond to astrocytic glutamate release with enhancement of excitatory glutamatergic activity. Since reduction of NMDA receptor activity is known to have antidepressant effect in bipolar depression and major depression, these observations suggest that the inactivation of astrocytic GluK2 activity by antidepressant/anti-bipolar therapy ameliorates depression by inhibiting astrocytic glutamate release. A resultant strengthening of neuronal afterhyperpolarization may cause reduced NMDA-mediated activity.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| | | | | | | | | |
Collapse
|
28
|
Riddle A, Maire J, Gong X, Chen KX, Kroenke CD, Hohimer AR, Back SA. Differential susceptibility to axonopathy in necrotic and non-necrotic perinatal white matter injury. Stroke 2011; 43:178-84. [PMID: 22076007 DOI: 10.1161/strokeaha.111.632265] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE White matter injury (WMI) is the leading cause of brain injury in preterm survivors and results in myelination failure. Although axonal degeneration occurs in necrotic lesions, the role of axonopathy in myelination failure remains controversial for diffuse non-necrotic WMI, which is currently the major form of WMI. We determined the burden of axonopathy in diffuse lesions. METHODS We analyzed WMI in a preterm fetal sheep model of global cerebral ischemia that replicates the relative burden of necrotic and non-necrotic human WMI. WMI was analyzed at 1 or 2 weeks after ischemia and identified by ex vivo high-field (11.7 Tesla) magnetic resonance imaging of fixed brain tissue. Axonal integrity was analyzed by immunohistochemical detection of axon injury markers and by transmission electron microscopy to quantify axon loss and degeneration in magnetic resonance imaging-defined lesions. RESULTS Axonal degeneration, defined by staining for neurofilament protein and β-amyloid precursor protein, was restricted to discrete necrotic foci with robust microglial activation. Unexpectedly, axonal degeneration was not visualized in the major form of WMI, which comprised large non-necrotic lesions with diffuse reactive astrogliosis. In these major lesions, quantitative electron microscopy studies confirmed no significant differences in the density of intact and degenerating axons or in the distribution of axon diameters relative to controls. CONCLUSIONS The mechanism of myelination failure differs significantly in perinatal WMI dependent on the burden of necrosis. Axonopathy is associated with focal necrotic injury but not with primary diffuse non-necrotic lesions, which supports that intact axons in the primary lesions are potential targets for myelination.
Collapse
Affiliation(s)
- Art Riddle
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Morales P, Bustamante D, Espina-Marchant P, Neira-Peña T, Gutiérrez-Hernández MA, Allende-Castro C, Rojas-Mancilla E. Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? EPMA J 2011. [PMID: 23199150 PMCID: PMC3405380 DOI: 10.1007/s13167-011-0100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perinatal asphyxia occurs still with great incidence whenever delivery is prolonged, despite improvements in perinatal care. After asphyxia, infants can suffer from short- to long-term neurological sequelae, their severity depend upon the extent of the insult, the metabolic imbalance during the re-oxygenation period and the developmental state of the affected regions. Significant progresses in understanding of perinatal asphyxia pathophysiology have achieved. However, predictive diagnostics and personalised therapeutic interventions are still under initial development. Now the emphasis is on early non-invasive diagnosis approach, as well as, in identifying new therapeutic targets to improve individual outcomes. In this review we discuss (i) specific biomarkers for early prediction of perinatal asphyxia outcome; (ii) short and long term sequelae; (iii) neurocircuitries involved; (iv) molecular pathways; (v) neuroinflammation systems; (vi) endogenous brain rescue systems, including activation of sentinel proteins and neurogenesis; and (vii) therapeutic targets for preventing or mitigating the effects produced by asphyxia.
Collapse
Affiliation(s)
- Paola Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Pablo Espina-Marchant
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Tanya Neira-Peña
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Manuel A. Gutiérrez-Hernández
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Camilo Allende-Castro
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| | - Edgardo Rojas-Mancilla
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70.000, Santiago 7, Chile
| |
Collapse
|
30
|
Li B, Dong L, Fu H, Wang B, Hertz L, Peng L. Effects of chronic treatment with fluoxetine on receptor-stimulated increase of [Ca2+]i in astrocytes mimic those of acute inhibition of TRPC1 channel activity. Cell Calcium 2011; 50:42-53. [PMID: 21640379 DOI: 10.1016/j.ceca.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 12/17/2022]
Abstract
Primary cultures of mouse astrocytes were used to investigate effects by chronic treatment (3-21 days) with fluoxetine (0.5-10 μM) on capacitative Ca(2+) influx after treatment with the SERCA inhibitor thapsigargin and on receptor agonist-induced increases in free cytosolic Ca(2+) concentration [Ca(2+)](i), determined with Fura-2. The agonists were the 5-HT(2B) agonist fluoxetine, the α(2)-adrenergic agonist dexmedetomidine, and ryanodine receptor (RyR) and IP(3) receptor (IP(3)R) agonists. In untreated sister cultures each agonist distinctly increased [Ca(2+)](i), but in cultures treated for sufficient length of time or with sufficiently high doses of fluoxetine, acute administration of fluoxetine, dexmedetomidine, or RyR or IP(3)R agonists elicited reduced, in some cases abolished, effects. Capacitative Ca(2+) entry, meditated by TRPC1 channels, was sufficiently inhibited to cause a depletion of Ca(2+) stores, which could explain the reduced agonist effects. All effects of chronic fluoxetine administration could be replicated by TRPC1 channel antibody or siRNA. Since increases in astrocytic [Ca(2+)](i) regulate release of gliotransmitters, these effects may have profound effects on brain function. They may be important for therapeutic effects of all 5 conventional 'serotonin-specific reuptake inhibitors' (SSRIs), which at concentrations used therapeutically (∼1 μM) share other of fluoxetine's chronic effects (Zhang et al., Neuron Glia Biol. 16 (2010) 1-13).
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | |
Collapse
|
31
|
Domingues AMDJ, Neugebauer KM, Fern R. Identification of four functional NR3B isoforms in developing white matter reveals unexpected diversity among glutamate receptors. J Neurochem 2011; 117:449-60. [PMID: 21320125 DOI: 10.1111/j.1471-4159.2011.07212.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional neurotransmitter receptors are expressed in central white matter, where they mediate ischemic damage to glia and may be involved in cell-cell signalling. In this study, we analysed NMDA receptor NR1, NR2B-C and NR3A-B subunit expression in the brain and optic nerve by molecular cloning. In addition to the canonical forms of NR1 and NR2, four previously unknown NR3B variants, generated by alternative splicing, were identified. The variants encoded for isoforms with deletions of 8/15 amino acids in the N-terminal domain or 200/375 amino acids removing one or three transmembrane domains and part of the C-terminal domain, as compared with the previously characterized NR3B isoform. Co-expression of NR3B isoforms with NR1/NR2A-C modulated the amplitude and Mg(2+)-sensitivity of glutamate responses in a NR2 subunit-dependent fashion, with significant variations in the effects produced by different isoforms. These effects were not the result of reduced surface expression of the receptor complex since all NR3B isoforms reduced surface expression by a similar degree. These data reveal previously uncharacterized regulation of NMDA receptor function by alternative splicing of the NR3B subunit.
Collapse
|
32
|
Abstract
Excessive signalling by excitatory neurotransmitters like glutamate and ATP can be deleterious to neurons and oligodendroglia, and cause disease. In particular, sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-d-aspartate (NMDA) receptors damages oligodendrocytes, a feature that depends entirely on Ca(2+) overload of the cytoplasm and that can be initiated by disruption of glutamate homeostasis. Thus, inhibition of glutamate uptake by activated microglia can compromise glutamate homeostasis and induce oligodendrocyte excitotoxicity. Moreover, non-lethal, brief activation of kainate receptors in oligodendrocytes rapidly sensitizes these cells to complement attack as a consequence of oxidative stress. In addition to glutamate, ATP signalling can directly trigger oligodendrocyte excitotoxicity via activation of Ca(2+) -permeable P2X7 purinergic receptors, which mediates ischaemic damage to white matter (WM) and causes lesions that are reminiscent of multiple sclerosis (MS) plaques. Conversely, blockade of P2X7 receptors attenuates post-ischaemic injury to WM and ameliorates chronic experimental autoimmune encephalomyelitis, a model of MS. Importantly, P2X7 expression is elevated in normal-appearing WM in patients with MS, suggesting that signalling through this receptor in oligodendrocytes may be enhanced in this disease. Altogether, these observations reveal novel mechanisms by which altered glutamate and ATP homeostasis can trigger oligodendrocyte death. This review aims at summarizing current knowledge about the mechanisms leading to WM damage as a consequence of altered neurotransmitter signalling, and their relevance to disease. This knowledge will generate new therapeutic avenues to treat more efficiently acute and chronic WM pathology.
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias and CIBERNED, Universidad del País Vasco, Leioa, Vizcaya, Spain Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain.
| |
Collapse
|
33
|
Down-regulation of glutamine synthetase enhances migration of rat astrocytes after in vitro injury. Neurochem Int 2010; 58:404-13. [PMID: 21193003 DOI: 10.1016/j.neuint.2010.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 11/23/2022]
Abstract
Astrocytes undergo reactive transformation in response to physical injury (reactive gliosis) that may impede neural repair. Glutamine synthetase (GS) is highly expressed by astrocytes, and serves a neuroprotective function by converting cytotoxic glutamate and ammonia into glutamine. Glutamine synthetase was down-regulated in reactive astrocytes at the site of mechanical spinal cord injury (SCI) and in cultured astrocytes at the margins of a scratch wound, suggesting that GS may modulate reactive transformation and glial scar development. We evaluated this potential function of GS using siRNA-mediated GS knock-down. Suppression of astrocytic GS by GS siRNA increased cell migration into the scratch wound zone and decreased substrate adhesion as indicated by the number of focal adhesions expressing the adaptor protein paxillin. Migration was enhanced by glutamine and suppressed by glutamate, in contrast to the result expected if enhanced migration was due solely to changes in glutamine and glutamate concomitant with reduced GS activity. The membrane type 1-matrix metalloproteinase (MT1-MMP) was up-regulated in GS siRNA-treated astrocytes, while a broad-spectrum MMP antagonist inhibited migration in both wild type and GS knock-down astrocytes. In addition, GS siRNA inhibited expression of integrin β1, while antibody-mediated inhibition of integrin β1 impaired direction-specific protrusion and motility. Thus, GS may modulate motility and substrate adhesion through transmembrane integrin β1 signaling to the cytoskeleton and by MMT-mediated proteolysis of the extracellular matrix.
Collapse
|
34
|
Takeda A. Insight into glutamate excitotoxicity from synaptic zinc homeostasis. Int J Alzheimers Dis 2010; 2011:491597. [PMID: 21234391 PMCID: PMC3017909 DOI: 10.4061/2011/491597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023] Open
Abstract
Zinc is released from glutamatergic (zincergic) neuron terminals in the hippocampus, followed by the increase in Zn(2+) concentration in the intracellular (cytosol) compartment, as well as that in the extracellular compartment. The increase in Zn(2+) concentration in the intracellular compartment during synaptic excitation is mainly due to Zn(2+) influx through calcium-permeable channels and serves as Zn(2+) signaling as well as the case in the extracellular compartment. Synaptic Zn(2+) homeostasis is important for glutamate signaling and altered under numerous pathological processes such as Alzheimer's disease. Synaptic Zn(2+) homeostasis might be altered in old age, and this alteration might be involved in the pathogenesis and progression of Alzheimer's disease; Zinc may play as a key-mediating factor in the pathophysiology of Alzheimer's disease. This paper summarizes the role of Zn(2+) signaling in glutamate excitotoxicity, which is involved in Alzheimer's disease, to understand the significance of synaptic Zn(2+) homeostasis in the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
35
|
Zinc Signaling in the Hippocampus and Its Relation to Pathogenesis of Depression. Mol Neurobiol 2010; 44:166-74. [DOI: 10.1007/s12035-010-8158-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022]
|
36
|
Impact of global cerebral ischemia on K+ channel expression and membrane properties of glial cells in the rat hippocampus. Neurochem Int 2010; 57:783-94. [PMID: 20833221 DOI: 10.1016/j.neuint.2010.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/20/2010] [Accepted: 08/25/2010] [Indexed: 01/06/2023]
Abstract
Astrocytes and NG2 glia respond to CNS injury by the formation of a glial scar. Since the changes in K(+) currents in astrocytes and NG2 glia that accompany glial scar formation might influence tissue outcome by altering K(+) ion homeostasis, we aimed to characterize the changes in K(+) currents in hippocampal astrocytes and NG2 glia during an extended time window of reperfusion after ischemic injury. Global cerebral ischemia was induced in adult rats by bilateral, 15-min common carotid artery occlusion combined with low-pressure oxygen ventilation. Using the patch-clamp technique, we investigated the membrane properties of hippocampal astrocytes and NG2 glia in situ 2 hours, 6 hours, 1 day, 3 days, 7 days or 5 weeks after ischemia. Astrocytes in the CA1 region of the hippocampus progressively depolarized starting 3 days after ischemia, which coincided with decreased Kir4.1 protein expression in the gliotic tissue. Other K(+) channels described previously in astrocytes, such as Kir2.1, Kir5.1 and TREK1, did not show any changes in their protein content in the hippocampus after ischemia; however, their expression switched from neurons to reactive astrocytes, as visualized by immunohistochemistry. NG2 glia displayed increased input resistance, decreased membrane capacitance, increased delayed outwardly rectifying and A-type K(+) currents and decreased inward K(+) currents 3 days after ischemia, accompanied by their proliferation. Our results show that the membrane properties of astrocytes after ischemia undergo complex alterations, which might profoundly influence the maintenance of K(+) homeostasis in the damaged tissue, while NG2 glia display membrane currents typical of proliferating cells.
Collapse
|
37
|
Ameliorative effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient young mice. Brain Res Bull 2010; 83:351-5. [PMID: 20813168 DOI: 10.1016/j.brainresbull.2010.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/05/2010] [Accepted: 08/23/2010] [Indexed: 12/20/2022]
Abstract
Yokukansan, a traditional Japanese medicine has been used to cure neuropsychological disorders. In the present study, the effect of Yokukansan on social isolation-induced aggressive behavior was examined in zinc-deficient mice, which were fed a zinc-deficient diet and a drinking water containing Yokukansan for 2 weeks. In the resident-intruder test, the rate of mice that exhibited aggressive behavior in zinc-deficient mice, which was significantly higher than that in the control mice, was significantly decreased by administration of Yokukansan. The basal level of serum glucocorticoid, which was significantly higher in zinc-deficient mice, was lowered by administration of Yokukansan. On the other hand, serum glucocorticoid levels after the resident-intruder test were almost the same between the control and zinc-deficient mice. However, administration of Yokukansan to zinc-deficient mice significantly increased serum glucocorticoid level after the resident-intruder test and the significant difference in the rate of serum corticosterone level after the test to the basal level between the control and zinc-deficient mice was abolished. Dietary zinc deficiency increases the basal levels of serum glucocorticoid, while may insufficiently increase serum glucocorticoid levels in the resident-intruder test. The concentrations of glutamate and GABA (γ-aminobutyric acid) in the brain were significantly higher in zinc-deficient mice, while Yokukansan ameliorated the significant increases. These results indicate that Yokukansan ameliorates social isolation-induced aggressive behavior of zinc-deficient mice, probably via amelioration of abnormal glucocorticoid secretion. The ameliorative effect seems to be linked to the modification of glutamatergic neuron activity after administration of Yokukansan.
Collapse
|