1
|
Kazanskaya RB, Ilyin NP, Abaimov DA, Derzhavina KA, Demin KA, Kalueff AV, Gainetdinov RR, Lopachev AV. Chronic digoxin exposure causes hyperactivity, anxiolysis, and alters brain monoamine content in zebrafish (Danio rerio). Neuroreport 2025; 36:55-60. [PMID: 39651715 DOI: 10.1097/wnr.0000000000002120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
To investigate the effects of chronic exposure to the cardiotonic steroid digoxin on locomotor activity, anxiety, and brain tissue monoamine content in Zebrafish. In total 24 adult (3-5 months) wild-type experimentally naïve zebrafish (50 : 50 ratio of females to males) were housed in 4-L tanks, in groups of six animals per tank. Two μM Digoxin was maintained in half of the tanks for 7 days. The 'Novel tank test' was performed on day 7 and the animals were euthanized. Concentrations of dopamine, serotonin, and their metabolites were then quantified in brain tissue using HPLC-ED. Seven-day exposure to 2 μM water solution of digoxin caused robust hyperlocomotion and reduced anxiety-like behavior in adult zebrafish in the 'Novel tank test'. The treatment also evoked pronounced neurochemical responses in zebrafish, including increased whole-brain 3-methoxytyramine, reduced norepinephrine and serotonin, and unaltered dopamine, homovanillic acid or 5-hydroxyindoleacetic acid levels. Deficits in monoaminergic (dopaminergic, serotonergic, and noradrenergic) neurotransmission are a key pathogenetic factor for multiple neuropsychiatric and neurodegenerative diseases. Commonly used clinically to treat cardiac conditions, cardiotonic steroids can affect dopaminergic neurotransmission. Chronic exposure to digoxin evokes hyperactivity-like behavior accompanied by altered monoamine neurotransmission in zebrafish, which may be relevant to understanding the central nervous system side effects of cardiotonic steroids.
Collapse
Affiliation(s)
- Rogneda B Kazanskaya
- Research Center of Neurology, Moscow
- Biological Department, Saint Petersburg State University
| | - Nikita P Ilyin
- Almazov National Medical Research Centre
- Institute of Translational Biomedicine, Saint Petersburg State University
| | | | | | - Konstantin A Demin
- Almazov National Medical Research Centre
- Institute of Translational Biomedicine, Saint Petersburg State University
| | - Allan V Kalueff
- Almazov National Medical Research Centre
- Institute of Translational Biomedicine, Saint Petersburg State University
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University
- Saint Petersburg University Hospital, Saint Petersburg, Russia
| | - Alexander V Lopachev
- Research Center of Neurology, Moscow
- Institute of Translational Biomedicine, Saint Petersburg State University
| |
Collapse
|
2
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
3
|
Horesh N, Pelov I, Pogodin I, Zannadeh H, Rosen H, Mikhrina AL, Dvela-Levitt M, Sampath VP, Lichtstein D. Involvement of the Na +, K +-ATPase α1 Isoform and Endogenous Cardiac Steroids in Depression- and Manic-like Behaviors. Int J Mol Sci 2024; 25:1644. [PMID: 38338921 PMCID: PMC10855204 DOI: 10.3390/ijms25031644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.
Collapse
Affiliation(s)
- Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Ilana Pelov
- Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Jerusalem 91060, Israel;
| | - Ilana Pogodin
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Hiba Zannadeh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel;
| | - Anastasiia Leonidovna Mikhrina
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Moran Dvela-Levitt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Vishnu Priya Sampath
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| |
Collapse
|
4
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
5
|
Leem KH, Kim S, Kim HW, Park HJ. Downregulation of microRNA-330-5p induces manic-like behaviors in REM sleep-deprived rats by enhancing tyrosine hydroxylase expression. CNS Neurosci Ther 2023; 29:1525-1536. [PMID: 36794530 PMCID: PMC10173715 DOI: 10.1111/cns.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/13/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
AIM In our pilot study, we found an increase in tyrosine hydroxylase (Th) mRNA expression in the prefrontal cortex of 72-h REM sleep-deprived (SD) rats, a mania model. Additionally, the expression levels of miR-325-3p, miR-326-3p, and miR-330-5p, the predicted target miRNAs on TH, were significantly decreased. Based on these results, in this study, we investigated whether miRNA-325-3p, miR-326-3p, and miR-330-5p modulate TH and manic-like behaviors in SD rats. METHODS Manic-like behaviors were assessed using the open field test (OFT) and elevated plus-maze (EPM) test. The direct binding activity of miRNAs to the 3'-untranslated region (3'-UTR) of the Th gene was measured in HEK-293 cells using a luciferase reporter system. We also examined mRNA and protein expression of TH after intracerebroventricular (ICV) injection of miR-330-5p agomir to SD rats, along with manic-like behaviors. RESULTS We observed an upregulation in mRNA and protein expression of TH and downregulation in miRNA-325-3p, miR-326-3p, and miR-330-5p expressions in the prefrontal cortex of SD rats, together with increased manic-like behaviors. The luciferase reporter assay showed that miR-330-5p could repress TH expression through direct binding to its target site in the 3'-UTR of Th, whereas miR-326-3p and miR-330-5p could not. In addition, ICV injection of miR-330-5p agomir alleviated the increase in TH expression in the prefrontal cortex of SD rats and manic-like behaviors. CONCLUSIONS TH expression regulation through miR-330-5p may be implicated in the pathophysiology of mania in SD rats.
Collapse
Affiliation(s)
- Kang Hyun Leem
- Department of Herbology, College of Korean MedicineSemyung UniversityJecheonKorea
| | - Sanga Kim
- Department of Pharmacology, School of MedicineKyung Hee UniversitySeoulKorea
| | - Hee Won Kim
- Department of Medical Engineering, Graduate SchoolKyung Hee UniversitySeoulKorea
| | - Hae Jeong Park
- Department of Pharmacology, School of MedicineKyung Hee UniversitySeoulKorea
| |
Collapse
|
6
|
Ren J, Gao X, Guo X, Wang N, Wang X. Research Progress in Pharmacological Activities and Applications of Cardiotonic Steroids. Front Pharmacol 2022; 13:902459. [PMID: 35721110 PMCID: PMC9205219 DOI: 10.3389/fphar.2022.902459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiotonic steroids (CTS) are a group of compounds existing in animals and plants. CTS are commonly referred to cardiac glycosides (CGs) which are composed of sugar residues, unsaturated lactone rings and steroid cores. Their traditional mechanism of action is to inhibit sodium-potassium ATPase to strengthen the heart and regulate heart rate, so it is currently widely used in the treatment of cardiovascular diseases such as heart failure and tachyarrhythmia. It is worth noticing that recent studies have found an avalanche of inestimable values of CTS applications in many fields such as anti-tumor, anti-virus, neuroprotection, and immune regulation through multi-molecular mechanisms. Thus, the pharmacological activities and applications of CTS have extensive prospects, which would provide a direction for new drug research and development. Here, we review the potential applications of CTS in cardiovascular system and other systems. We also provide suggestions for new clinical practical strategies of CTS, for many diseases. Four main themes will be discussed, in relation to the impact of CTS, on 1) tumors, 2) viral infections, 3) nervous system diseases and 4) immune-inflammation-related diseases.
Collapse
Affiliation(s)
- Junwei Ren
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyuan Gao
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xi Guo
- Thyroid Surgery, Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ning Wang
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Shin EJ, Nguyen BT, Jeong JH, Hoai Nguyen BC, Tran NKC, Sharma N, Kim DJ, Nah SY, Lichtstein D, Nabeshima T, Kim HC. Ouabain inhibitor rostafuroxin attenuates dextromethorphan-induced manic potential. Food Chem Toxicol 2021; 158:112657. [PMID: 34740715 DOI: 10.1016/j.fct.2021.112657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Dextromethorphan (DM) abuse produces mania-like symptoms in humans. ERK/Akt signaling activation involved in manic potential can be attenuated by the inhibition of ouabain-like cardiac steroids. In this study, increased phosphorylations of ERK/Akt and hyperlocomotion induced by DM (30 mg/kg, i.p./day × 7) were significantly protected by the ouabain inhibitor rostafuroxin (ROSTA), suggesting that DM induces the manic potential. ROSTA significantly attenuated DM-induced protein kinase C δ (PKCδ) phosphorylation, GluN2B (i.e., MDA receptor subunit) expression, and phospho-PKCδ/GluN2B interaction. DM instantly upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent system. However, DM reduced Nrf2 nuclear translocation, Nrf2 DNA binding activity, γ-glutamylcysteine mRNA expression, and subsequent GSH/GSSG level and enhanced oxidative parameters following 1-h of administration. ROSTA, PKCδ inhibitor rottlerin, and GluN2B inhibitor traxoprodil significantly attenuated DM-induced alterations in Nrf2-related redox parameters and locomotor activity induced by DM in wild-type mice. Importantly, in PKCδ knockout mice, DM failed to alter the above parameters. Further, ROSTA and traxoprodil also failed to enhance PKCδ depletion effect, suggesting that PKCδ is a critical target for the anti-manic potential of ROSTA or GluN2B antagonism. Our results suggest that ROSTA inhibits DM-induced manic potential by attenuating ERK/Akt activation, GluN2B/PKCδ signalings, and Nrf2-dependent system.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Bao-Chau Hoai Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - David Lichtstein
- Walter and Greta Stiel Chair in Heart Studies, Dean, Faculty of Medicine 2013-2017, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
9
|
Intracerebroventricular injection of ouabain causes mania-like behavior in mice through D2 receptor activation. Sci Rep 2019; 9:15627. [PMID: 31666560 PMCID: PMC6821712 DOI: 10.1038/s41598-019-52058-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/11/2019] [Indexed: 01/07/2023] Open
Abstract
Intracerebroventricular (ICV) administration of ouabain, an inhibitor of the Na, K-ATPase, is an approach used to study the physiological functions of the Na, K-ATPase and cardiotonic steroids in the central nervous system, known to cause mania-like hyperactivity in rats. We describe a mouse model of ouabain-induced mania-like behavior. ICV administration of 0.5 µl of 50 µM (25 pmol, 14.6 ng) ouabain into each lateral brain ventricle results in increased locomotor activity, stereotypical behavior, and decreased anxiety level an hour at minimum. Fast-scan cyclic voltammetry showed that administration of 50 µM ouabain causes a drastic drop in dopamine uptake rate, confirmed by elevated concentrations of dopamine metabolites detected in the striatum 1 h after administration. Ouabain administration also caused activation of Akt, deactivation of GSK3β and activation of ERK1/2 in the striatum of ouabain-treated mice. All of the abovementioned effects are attenuated by haloperidol (70 µg/kg intraperitoneally). Observed effects were not associated with neurotoxicity, since no dystrophic neuron changes in brain structures were demonstrated by histological analysis. This newly developed mouse model of ouabain-induced mania-like behavior could provide a perspective tool for studying the interactions between the Na,K-ATPase and the dopaminergic system.
Collapse
|
10
|
Na +, K +-ATPase inhibition causes hyperactivity and impulsivity in mice via dopamine D2 receptor-mediated mechanism. Neurosci Res 2018; 146:54-64. [PMID: 30296459 DOI: 10.1016/j.neures.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
Hyperactivity and impulsivity are common symptoms in several psychiatric disorders. Although dysfunction of Na+, K+-ATPase has been reported to be associated with the psychiatric disorders, it is not clear whether inhibition of Na+, K+-ATPase causes behavioral effects, including hyperactivity and impulsivity, in mice. Here, we evaluated the effect of intracerebroventricular (icv) injection of ouabain, an inhibitor of Na+, K+-ATPase, on hyperactivity and impulsivity in mice. At seven days after icv injection, ouabain-injected mice displayed the increase in the distance traveled in the open field arena in the open field test and the increase in the number of head-dipping behavior in the cliff avoidance test. Chlorpromazine or haloperidol, typical antipsychotics, reduced the hyperactivity and impulsivity in ouabain-injected mice. On the other hand, neither lithium carbonate nor valproate, established mood-stabilizing drugs, improved hyperactivity and impulsivity in our mouse model. Furthermore, ouabain-injected mice exhibited the increase in the number of c-fos-positive cells in the nucleus accumbens and the prefrontal cortex but not in the ventral tegmental area, which was reduced by haloperidol. These results suggest that the dysfunction of Na+, K+-ATPase causes hyperactivity and impulsivity via hyperactivation of dopamine D2 receptor-mediated signaling pathway, causing disturbed neuronal circuits in mice.
Collapse
|
11
|
Riveros ME, Retamal MA. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS. Front Physiol 2018; 9:693. [PMID: 29946266 PMCID: PMC6005883 DOI: 10.3389/fphys.2018.00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder (BD) is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania) and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids) balance. In particular, the amount of fatty acids in the brain corresponds to a 50–70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.
Collapse
Affiliation(s)
- María E Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
12
|
Lopachev AV, Abaimov DA, Fedorova TN, Lopacheva OM, Akkuratova NV, Akkuratov EE. Cardiotonic Steroids as Potential Endogenous Regulators in the Nervous System. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Lopachev AV, Lopacheva OM, Nikiforova KA, Filimonov IS, Fedorova TN, Akkuratov EE. Comparative Action of Cardiotonic Steroids on Intracellular Processes in Rat Cortical Neurons. BIOCHEMISTRY (MOSCOW) 2018; 83:140-151. [DOI: 10.1134/s0006297918020062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo. J Pharmacol Sci 2018; 136:42-45. [DOI: 10.1016/j.jphs.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022] Open
|
15
|
The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism. J Neurosci 2017; 37:9288-9304. [PMID: 28842414 DOI: 10.1523/jneurosci.1582-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 12/26/2022] Open
Abstract
The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function.SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders.
Collapse
|
16
|
Amodeo DA, Grospe G, Zang H, Dwivedi Y, Ragozzino ME. Cognitive flexibility impairment and reduced frontal cortex BDNF expression in the ouabain model of mania. Neuroscience 2017; 345:229-242. [PMID: 27267245 PMCID: PMC5136525 DOI: 10.1016/j.neuroscience.2016.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022]
Abstract
Central infusion of the Na+/K+-ATPase inhibitor, ouabain in rats serves as an animal model of mania because it leads to hyperactivity, as well as reproduces ion dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels similar to that observed in bipolar disorder. Bipolar disorder is also associated with cognitive inflexibility and working memory deficits. It is unknown whether ouabain treatment in rats leads to similar cognitive flexibility and working memory deficits. The present study examined the effects of an intracerebral ventricular infusion of ouabain in rats on spontaneous alternation, probabilistic reversal learning and BDNF expression levels in the frontal cortex. Ouabain treatment significantly increased locomotor activity, but did not affect alternation performance in a Y-maze. Ouabain treatment selectively impaired reversal learning in a spatial discrimination task using an 80/20 probabilistic reinforcement procedure. The reversal learning deficit in ouabain-treated rats resulted from an impaired ability to maintain a new choice pattern (increased regressive errors). Ouabain treatment also decreased sensitivity to negative feedback during the initial phase of reversal learning. Expression of BDNF mRNA and protein levels was downregulated in the frontal cortex which also negatively correlated with regressive errors. These findings suggest that the ouabain model of mania may be useful in understanding the neuropathophysiology that contributes to cognitive flexibility deficits and test potential treatments to alleviate cognitive deficits in bipolar disorder.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Gena Grospe
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Hui Zang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Yogesh Dwivedi
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35209, United States
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
17
|
Lopachev AV, Lopacheva OM, Osipova EA, Vladychenskaya EA, Smolyaninova LV, Fedorova TN, Koroleva OV, Akkuratov EE. Ouabain-induced changes in MAP kinase phosphorylation in primary culture of rat cerebellar cells. Cell Biochem Funct 2017; 34:367-77. [PMID: 27338714 DOI: 10.1002/cbf.3199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
Cardiotonic steroid (CTS) ouabain is a well-established inhibitor of Na,K-ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain-induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 μM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long-term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain-induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten-micromolar ouabain leads to cell death, and we conclude that different effects of 1-μM and 10-μM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alexander V Lopachev
- Research Center of Neurology, Moscow, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olga M Lopacheva
- Research Center of Neurology, Moscow, Russia.,Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia
| | - Ekaterina A Osipova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Enzymology, Moscow, Russia
| | | | - Larisa V Smolyaninova
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, Russia.,Lomonosov Moscow State University, Faculty of Biology, Department of Biochemistry, Moscow, Russia
| | | | - Olga V Koroleva
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny E Akkuratov
- St. Petersburg State University, Institute of Translational Biomedicine, St. Petersburg, Russia
| |
Collapse
|
18
|
Hodes A, Rosen H, Deutsch J, Lifschytz T, Einat H, Lichtstein D. Endogenous cardiac steroids in animal models of mania. Bipolar Disord 2016; 18:451-9. [PMID: 27393337 DOI: 10.1111/bdi.12413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/25/2016] [Accepted: 06/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a complex psychiatric disorder characterized by mania and depression. Alterations in brain Na(+) , K(+) -ATPase and cardiac steroids (CSs) have been detected in BD, raising the hypothesis of their involvement in this pathology. The present study investigated the behavioral and biochemical consequences of a reduction in endogenous brain CS activity in animal models of mania. METHODS Amphetamine (AMPH)-induced hyperactivity in BALB/c and black Swiss mice served as a model of mania. Behavior was evaluated in the open-field test in naïve mice or in mice treated with anti-ouabain antibodies. CS levels were determined by enzyme-linked immunosorbent assay (ELISA), using sensitive and specific anti-ouabain antibodies. Extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) phosphorylation levels in the frontal cortex were determined by western blot analysis. RESULTS Administration of AMPH to BALB/c and black Swiss mice resulted in a marked increase in locomotor activity, accompanied by a threefold increase in brain CSs. The lowering of brain CSs by the administration of anti-ouabain antibodies prevented the hyperactivity and the increase in brain CS levels. AMPH caused an increase in phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt) levels in the frontal cortex, which was significantly reduced by administration of the antibodies. A synthetic 'functional antagonist' of CSs, 4-(3'α-15'β-dihydroxy-5'β-estran-17'β-yl) furan-2-methyl alcohol, also resulted in attenuation of AMPH-induced hyperactivity. CONCLUSIONS These results are in accordance with the notion that malfunctioning of the Na(+) , K(+) -ATPase/CS system may be involved in the manifestation of mania and identify this system as a potential new target for drug development.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Haim Rosen
- Departments of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah Hospital, Jerusalem, Israel
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
19
|
Kalra J, Prakash A, Kumar P, Majeed ABA. Cerebroprotective effects of RAS inhibitors: Beyond their cardio-renal actions. J Renin Angiotensin Aldosterone Syst 2015; 16:459-68. [PMID: 25944853 DOI: 10.1177/1470320315583582] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 03/22/2015] [Indexed: 01/25/2023] Open
Abstract
Work on the brain renin-angiotensin system has been explored by various researchers and has led to elucidation of its basic physiologies and behavior, including its role in reabsorption and uptake of body fluid, blood pressure maintenance with angiotensin II being its prominent effector. Currently, this system has been implicated for its newly established effects, which are far beyond its cardio-renal effects accounting for maintenance of cerebral blood flow and cerebroprotection, seizure, in the etiology of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and bipolar disorder. In this review, we have discussed the distribution of angiotensin receptor subtypes in the central nervous system (CNS) together with enzymatic pathways leading to active angiotensin ligands and its interaction with angiotensin receptor 2 (AT2) and Mas receptors. Secondly, the use of angiotensin analogues (angiotensin converting enzyme inhibitors and AT1 and/or AT2 receptor blockers) in the treatment and management of the CNS disorders mentioned above has been discussed.
Collapse
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India
| | - Atish Prakash
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
| | - Puneet Kumar
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, India
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
| |
Collapse
|
20
|
Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014; 121:1451-81. [PMID: 24866693 DOI: 10.1007/s00702-014-1238-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022]
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
Collapse
|
21
|
|
22
|
Kim SH, Yu HS, Park HG, Ha K, Kim YS, Shin SY, Ahn YM. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates mTOR signal pathways and protein translation in the rat frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:73-82. [PMID: 23643758 DOI: 10.1016/j.pnpbp.2013.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/02/2013] [Accepted: 04/21/2013] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (ICV) injection of ouabain, a specific Na/K-ATPase inhibitor, induces behavioral changes in rats in a putative animal model of mania. The binding of ouabain to Na/K-ATPase affects signaling molecules in vitro, including ERK1/2 and Akt, which promote protein translation. We have also reported that ERK1/2 and Akt in the brain are involved in the ouabain-induced hyperactivity of rats. In this study, rats were given an ICV injection of ouabain, and then their frontal cortices were examined to determine the effects of ouabain on the mTOR/p70S6K/S6 signaling pathway and protein translation, which are important in modifications of neural circuits and behavior. Rats showed ouabain-induced hyperactivity up to 8h following injection, and increased phosphorylation levels of mTOR, p70S6K, S6, eIF4B, and 4E-BP at 1, 2, 4, and 8h following ouabain injection. Immunohistochemical analyses revealed that increased p-S6 immunoreactivity in the cytoplasm of neurons by ouabain was evident in the prefrontal, cingulate, and orbital cortex. These findings suggested increased translation initiation in response to ouabain. The rate of protein synthesis was measured as the amount of [(3)H]-leucine incorporation in the cell-free extracts of frontal cortical tissues, and showed a significant increase at 8h after ouabain injection. These results suggest that ICV injection of ouabain induced activation of the protein translation initiation pathway regulated by ERK1/2 and Akt, and prolonged hyperactivity in rats. In conclusion, protein translation pathway could play an important role in ouabain-induced hyperactivity in a rodent model of mania.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Psychiatry and Behavioral Science & Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
de Góis Queiroz AI, Medeiros CD, Ribeiro BMM, de Lucena DF, Macêdo DS. Angiotensin receptor blockers for bipolar disorder. Med Hypotheses 2012; 80:259-63. [PMID: 23265360 DOI: 10.1016/j.mehy.2012.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 12/20/2022]
Abstract
Studies have suggested that the brain renin angiotensin system (RAS) regulates cerebral flow, autonomic and hormonal systems, stress, innate immune response and behavior, being implicated in several brain disorders such as major depression, Parkinson's and Alzheimer's disease. The angiotensin II receptor subtype 1 (AT1R) is distributed in brain regions responsible for the control of stress response through peripheral and central sympathetic hyperactivation as well as in the hypothalamic paraventricular region, areas known for the release of several neurotransmitters related to inflammatory response facilitation. This relationship leads to the assumption that AT1R might be the receptor most related to the central deleterious actions of angiotensin II. New evidences from clinical studies have shown a possible role for RAS in the pathogenesis of bipolar disorder (BD), a multifactorial disorder with acknowledged presence of neuronal damage via oxidative stress in brain areas such as hippocampus, prefrontal cortex and striatum. Given the studies highlighting AT1R activation as a central pro-inflammatory pathway and, conversely, the involvement of inflammatory response in the pathogenesis of BD; this paper hypothesizes the use of AT1R antagonists for BD management and prevention of its neuroprogression, due to their anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Ana Isabelle de Góis Queiroz
- Neuropharmacology Laboratory, Postgraduate Pharmacology Program, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | |
Collapse
|