1
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Puranik N, Song M. Glutamate: Molecular Mechanisms and Signaling Pathway in Alzheimer's Disease, a Potential Therapeutic Target. Molecules 2024; 29:5744. [PMID: 39683904 DOI: 10.3390/molecules29235744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Gamma-glutamate is an important excitatory neurotransmitter in the central nervous system (CNS), which plays an important role in transmitting synapses, plasticity, and other brain activities. Nevertheless, alterations in the glutamatergic signaling pathway are now accepted as a central element in Alzheimer's disease (AD) pathophysiology. One of the most prevalent types of dementia in older adults is AD, a progressive neurodegenerative illness brought on by a persistent decline in cognitive function. Since AD has been shown to be multifactorial, a variety of pharmaceutical targets may be used to treat the condition. N-methyl-D-aspartic acid receptor (NMDAR) antagonists and acetylcholinesterase inhibitors (AChEIs) are two drug classes that the Food and Drug Administration has authorized for the treatment of AD. The AChEIs approved to treat AD are galantamine, donepezil, and rivastigmine. However, memantine is the only non-competitive NMDAR antagonist that has been authorized for the treatment of AD. This review aims to outline the involvement of glutamate (GLU) at the molecular level and the signaling pathways that are associated with AD to demonstrate the drug target therapeutic potential of glutamate and its receptor. We will also consider the opinion of the leading authorities working in this area, the drawback of the existing therapeutic strategies, and the direction for the further investigation.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Maiwall R, Kulkarni AV, Arab JP, Piano S. Acute liver failure. Lancet 2024; 404:789-802. [PMID: 39098320 DOI: 10.1016/s0140-6736(24)00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disorder characterised by rapid deterioration of liver function, coagulopathy, and hepatic encephalopathy in the absence of pre-existing liver disease. The cause of ALF varies across the world. Common causes of ALF in adults include drug toxicity, hepatotropic and non-hepatotropic viruses, herbal and dietary supplements, antituberculosis drugs, and autoimmune hepatitis. The cause of liver failure affects the management and prognosis, and therefore extensive investigation for cause is strongly suggested. Sepsis with multiorgan failure and cerebral oedema remain the leading causes of death in patients with ALF and early identification and appropriate management can alter the course of ALF. Liver transplantation is the best current therapy, although the role of artificial liver support systems, particularly therapeutic plasma exchange, can be useful for patients with ALF, especially in non-transplant centres. In this Seminar, we discuss the cause, prognostic models, and management of ALF.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, University and Hospital of Padova, Padova, Italy
| |
Collapse
|
4
|
Maghmoul Y, Wiedemann A, Barcat L, Parente F, Allard P, Alvarez F, Jouvet P. Hyperosmolarity in children with hyperammonemia: a risk of brain herniation at the start of renal replacement therapy. Front Pediatr 2024; 12:1431008. [PMID: 39040669 PMCID: PMC11260712 DOI: 10.3389/fped.2024.1431008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Renal replacement therapy (RRT) is used in hyperammonemia to reduce the concentration of ammonia in the blood. In the case of plasma hyperosmolarity, RRT can also rapidly decrease plasma osmolarity, which may increase cerebral edema in these patients and favor the occurrence of brain herniation. Methods We conducted a retrospective clinical study in a tertiary care university-affiliated hospital. All patients admitted in a Pediatric Intensive Care Unit (PICU), less than 18 years old with ammonemia >150 µmol/L and who underwent RRT between January 2015 and June 2023 were included. We collected data on plasma osmolarity levels, osmolar gap and blood ammonia levels before and during RRT. Results Eleven patients were included (10 with acute liver failure and 1 with a urea cycle disorders). Their mean age was 36.2 months. Before RRT, the median highest measured osmolarity was 320 (305-324) mOsm/L, whereas the median calculated osmolarity was 303 (293-314) mOsm/L, corresponding to an osmolar gap of 14 mOsm/L. Ammonia blood level over 400 µmol/L are significantly associated with higher plasma osmolarity (P-Value <0.001). In one case, a patient had a brain herniation episode after a quick osmolar drop. This episode was reversed by the administration of hyperosmolar agents and the temporary suspension of RRT. Conclusion This study highlights the hyperosmolarity and high osmolar gap that occur in children with hyperammonemia. A careful monitoring and control of plasma osmolarity evolution may alert clinician on the risk of occurrence of neurological complication such as brain herniation.
Collapse
Affiliation(s)
- Yousra Maghmoul
- Pediatric Intensive Care Unit, Department of Pediatrics CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Arnaud Wiedemann
- Pediatric Intensive Care Unit, Department of Pediatrics CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Nancy, France
| | - Lucile Barcat
- Pediatric Intensive Care Unit, Department of Pediatrics CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Fabienne Parente
- Biochemical and Molecular Medicine Department CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Pierre Allard
- Department of Pediatrics CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Fernando Alvarez
- Hepato-gastro-enterology and Nutrition Unit, Department of Pediatrics CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Philippe Jouvet
- Pediatric Intensive Care Unit, Department of Pediatrics CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Michel C, Warming S, Neto AS, Abeygunawardana V, Fisher C, Kishore K, Warrillow S, Bellomo R. Early and prolonged continuous hypertonic saline infusion in patients with acute liver failure. J Crit Care 2023; 76:154289. [PMID: 36933387 DOI: 10.1016/j.jcrc.2023.154289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To study patient characteristics, physiological changes, and outcomes associated with prolonged continuous hypertonic saline (HTS) infusion in acute liver failure (ALF). MATERIALS AND METHODS Retrospective observational cohort study of adult patients with ALF. We collected clinical, biochemical, and physiological data six hourly for the first week, daily until day 30 or hospital discharge, and weekly, when documented, until day 180. RESULTS Of 127 patients, 85 received continuous HTS. Compared with non-HTS patients they were more likely to receive continuous renal replacement therapy (CRRT) (p < 0.001) and mechanical ventilation (p < 0.001). Median HTS duration was 150 (Interquartile range (IQR): 84-168) hours, delivering a median 2244 (IQR: 979-4610) mmol sodium load. Median peak sodium concentration was 149 mmol/L vs 138 mmol/L in non-HTS patients (p < 0.001). The median rate of sodium increase with infusion was 0.1 mmol/L/h and median rate of decrease during weaning was 0.1 mmol/L every 6 h. Median lowest pH value was 7.29 vs. 7.35 in non-HTS patients. Survival of HTS patients was 72.9% overall and 72.2% without transplantation. CONCLUSIONS In ALF patients, the prolonged administration of HTS infusion was not associated with severe hypernatremia or rapid shifts in serum sodium upon commencement, delivery, or weaning.
Collapse
Affiliation(s)
- Claire Michel
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia
| | - Scott Warming
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia; Data Analytics Research and Evaluation Centre, Austin Hospital, Melbourne, Australia
| | | | - Caleb Fisher
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
| | - Kartik Kishore
- Data Analytics Research and Evaluation Centre, Austin Hospital, Melbourne, Australia
| | - Stephen Warrillow
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia; Department of Intensive Care, Austin Hospital, Melbourne, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia; Department of Intensive Care, Austin Hospital, Melbourne, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia; Data Analytics Research and Evaluation Centre, Austin Hospital, Melbourne, Australia; Department of Critical Care, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
6
|
Amer K, Flikshteyn B, Lingiah V, Tafesh Z, Pyrsopoulos NT. Mechanisms of Disease and Multisystemic Involvement. Clin Liver Dis 2023; 27:563-579. [PMID: 37380283 DOI: 10.1016/j.cld.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Kamal Amer
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Ben Flikshteyn
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Vivek Lingiah
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Zaid Tafesh
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 53, Newark, NJ 07101-1709, USA
| | - Nikolaos T Pyrsopoulos
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 536, Newark, NJ 07101-1709, USA.
| |
Collapse
|
7
|
Cuvelier E, Gutium C, Béné J, Henry H, Aquizerate A, Lannoy D, Kosmalski G, Gautier S, Odou P, Cottencin O, Simon N. [Oral drugs containing alcohol: Should we be careful?]. Therapie 2022; 77:673-681. [PMID: 35697536 DOI: 10.1016/j.therap.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/23/2022] [Accepted: 05/12/2022] [Indexed: 12/15/2022]
Abstract
Ethanol is an excipient with known effect whose presence is regulated because it can cause adverse effects, notably a misuse. In order to raise awareness of this risk, this study searched all oral drugs with ethanol as an excipient from the Theriaque® database. All drugs marketed in France with a unit dose ethanol intake of 0.1g or more were identified and analyzed, according to the maximum unit and daily dosage recommended by the manufacturer. This research revealed 106 pharmaceutical specialties responsible for a unit intake of ethanol of 0.1g or more among the 8532 oral drugs containing ethanol (1.2 %): 2 at a daily dose >13g and the majority (57/106; 54 %) at a daily dose <1g. These are mainly oral solutions (97/106; 91 %) of phytotherapy (45/97; 46 %). The most frequently found therapeutic class was antitussive (12/106; 11 %). The majority of drugs are over-the-counter medication (56/106; 53 %). Overall, 106 drugs on the French market can be associated with a risk of misuse and cause adverse effects in vulnerable populations such as children and pregnant women. Vigilance and appropriate monitoring is required for these drugs (especially those over-the-counter ones), and their substitution should be preferred if possible.
Collapse
Affiliation(s)
- Elodie Cuvelier
- Université de. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de recherche sur les formes injectables et les technologies associées, 59000 Lille, France.
| | - Cristi Gutium
- Université de Lille, CHU Lille, institut de pharmacie, 59000 Lille, France
| | - Johana Béné
- Université de Lille, CHU Lille, Inserm U1171, centre régional de pharmacovigilance, 59000 Lille, France
| | - Héloïse Henry
- Université de. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de recherche sur les formes injectables et les technologies associées, 59000 Lille, France
| | - Aurélie Aquizerate
- Université de Nantes, CHU Nantes, centre d'évaluation et d'information sur la pharmacodépendance-addictovigilance, 44093 Nantes, France
| | - Damien Lannoy
- Université de. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de recherche sur les formes injectables et les technologies associées, 59000 Lille, France
| | | | - Sophie Gautier
- Université de Lille, CHU Lille, Inserm U1171, centre régional de pharmacovigilance, 59000 Lille, France
| | - Pascal Odou
- Université de. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de recherche sur les formes injectables et les technologies associées, 59000 Lille, France
| | - Olivier Cottencin
- Université de Lille, CHU Lille, service de troubles du comportement alimentaire, 59000 Lille, France
| | - Nicolas Simon
- Université de. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de recherche sur les formes injectables et les technologies associées, 59000 Lille, France
| |
Collapse
|
8
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
9
|
Long Noncoding RNAs Regulate Hyperammonemia-Induced Neuronal Damage in Hepatic Encephalopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7628522. [PMID: 35464767 PMCID: PMC9021992 DOI: 10.1155/2022/7628522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
Background. Hyperammonemia can result in various neuropathologies, including sleep disturbance, memory loss, and motor dysfunction in hepatic encephalopathy. Long noncoding RNA (lncRNA) as a group of noncoding RNA longer than 200 nucleotides is emerging as a promising therapeutic target to treat diverse diseases. Although lncRNAs have been linked to the pathogenesis of various diseases, their function in hepatic encephalopathy has not yet been elucidated. Research Design and Methods. To identify the roles of lncRNAs in hepatic encephalopathy brain, we used a bile duct ligation (BDL) mouse model and examined the alteration of neuronal cell death markers and neuronal structure-related proteins in BDL mouse cortex tissue. Furthermore, analysis of the transcriptome of BDL mouse brain cortex tissues revealed several lncRNAs critical to the apoptosis and neuronal structural changes associated with hepatic encephalopathy. Results. We confirmed the roles of the lncRNAs, ZFAS1, and GAS5 as strong candidate lncRNAs to regulate neuropathologies in hepatic encephalopathy. Our data revealed the roles of lncRNAs, ZFAS1, and GAS5, on neuronal cell death and neural structure in hyperammonemia in in vivo and in vitro conditions. Conclusion. Thus, we suggest that the modulation of these lncRNAs may be beneficial for the treatment of hepatic encephalopathy.
Collapse
|
10
|
Jeon SJ, Choi SS, Kim HY, Yu IK. Acute Acquired Metabolic Encephalopathy Based on Diffusion MRI. Korean J Radiol 2021; 22:2034-2051. [PMID: 34564957 PMCID: PMC8628163 DOI: 10.3348/kjr.2019.0303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022] Open
Abstract
Metabolic encephalopathy is a critical condition that can be challenging to diagnose. Imaging provides early clues to confirm clinical suspicions and plays an important role in the diagnosis, assessment of the response to therapy, and prognosis prediction. Diffusion-weighted imaging is a sensitive technique used to evaluate metabolic encephalopathy at an early stage. Metabolic encephalopathies often involve the deep regions of the gray matter because they have high energy requirements and are susceptible to metabolic disturbances. Understanding the imaging patterns of various metabolic encephalopathies can help narrow the differential diagnosis and improve the prognosis of patients by initiating proper treatment regimen early.
Collapse
Affiliation(s)
- Se Jeong Jeon
- Department of Radiology, Wonkwang University Hospital, Iksan, Korea
| | - See Sung Choi
- Department of Radiology, Wonkwang University Hospital, Iksan, Korea
| | - Ha Yon Kim
- Department of Radiology, Eulji University Hospital, Deajeon, Korea
| | - In Kyu Yu
- Department of Radiology, Eulji University Hospital, Deajeon, Korea.
| |
Collapse
|
11
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This article describes the neurologic sequelae of various nutritional micronutrient deficiencies, celiac disease, inflammatory bowel disease, and liver disease. Where relevant, appropriate treatments for these conditions are also discussed. The developing field of the microbiome and nervous system interaction is also outlined. RECENT FINDINGS Pathology in the gastrointestinal system can affect the nervous system when it causes micronutrient deficiency, when immune responses created by the gastrointestinal system affect the nervous system, when toxins caused by gastrointestinal organ failure harm the nervous system, and when treatments aimed at a gastrointestinal medical condition cause damage to the nervous system as a side effect. SUMMARY This article addresses familiar concepts and new developments in the treatment and understanding of diseases that affect the gut and nervous system simultaneously.
Collapse
|
13
|
Raina R, Sethi SK, Filler G, Menon S, Mittal A, Khooblall A, Khooblall P, Chakraborty R, Adnani H, Vijayvargiya N, Teo S, Bhatt G, Koh LJ, Mourani C, de Sousa Tavares M, Alhasan K, Forbes M, Dhaliwal M, Raghunathan V, Broering D, Sultana A, Montini G, Brophy P, McCulloch M, Bunchman T, Yap HK, Topalglu R, Díaz-González de Ferris M. PCRRT Expert Committee ICONIC Position Paper on Prescribing Kidney Replacement Therapy in Critically Sick Children With Acute Liver Failure. Front Pediatr 2021; 9:833205. [PMID: 35186830 PMCID: PMC8849201 DOI: 10.3389/fped.2021.833205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
Management of acute liver failure (ALF) and acute on chronic liver failure (ACLF) in the pediatric population can be challenging. Kidney manifestations of liver failure, such as hepatorenal syndrome (HRS) and acute kidney injury (AKI), are increasingly prevalent and may portend a poor prognosis. The overall incidence of AKI in children with ALF has not been well-established, partially due to the difficulty of precisely estimating kidney function in these patients. The true incidence of AKI in pediatric patients may still be underestimated due to decreased creatinine production in patients with advanced liver dysfunction and those with critical conditions including shock and cardiovascular compromise with poor kidney perfusion. Current treatment for kidney dysfunction secondary to liver failure include conservative management, intravenous fluids, and kidney replacement therapy (KRT). Despite the paucity of evidence-based recommendations concerning the application of KRT in children with kidney dysfunction in the setting of ALF, expert clinical opinions have been evaluated regarding the optimal modalities and timing of KRT, dialysis/replacement solutions, blood and dialysate flow rates and dialysis dose, and anticoagulation methods.
Collapse
Affiliation(s)
- Rupesh Raina
- Cleveland Clinic Akron General Medical Center, Akron, OH, United States.,Department of Nephrology, Akron Children's Hospital, Akron, OH, United States
| | - Sidharth K Sethi
- Kidney and Renal Transplant Institute, Medanta, The Medicity Hospital, Gurgaon, India
| | - Guido Filler
- Division of Paediatric Nephrology, Department of Paediatrics, Western University, London, ON, Canada
| | - Shina Menon
- Division of Pediatric Nephrology, Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Aliza Mittal
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Amrit Khooblall
- Cleveland Clinic Akron General Medical Center, Akron, OH, United States.,Department of Nephrology, Akron Children's Hospital, Akron, OH, United States.,Akron Nephrology Associates, Akron, OH, United States
| | - Prajit Khooblall
- Akron Nephrology Associates, Akron, OH, United States.,Department of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ronith Chakraborty
- Cleveland Clinic Akron General Medical Center, Akron, OH, United States.,Department of Nephrology, Akron Children's Hospital, Akron, OH, United States.,Akron Nephrology Associates, Akron, OH, United States
| | - Harsha Adnani
- Anne Arundel Medical Center, Annapolis, MD, United States
| | - Nina Vijayvargiya
- Cleveland Clinic Akron General Medical Center, Akron, OH, United States.,Akron Nephrology Associates, Akron, OH, United States
| | - Sharon Teo
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Girish Bhatt
- Department of Pediatrics, ISN-SRC, Pediatric Nephrology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Lee Jin Koh
- Department of Paediatric Nephrology, Starship Children's Hospital, Auckland, New Zealand
| | - Chebl Mourani
- Pediatrics, Hôtel-Dieu de France Hospital (HDF), Beirut, Lebanon
| | | | - Khalid Alhasan
- Pediatric Nephrology, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Michael Forbes
- Department of Pediatric Critical Care, Akron Children's Hospital, Akron, OH, United States
| | - Maninder Dhaliwal
- Department of Pediatric Critical Care, Institute of Liver Transplantation and Regenerative Medicine, Medanta, The Medicity, Gurgaon, India
| | - Veena Raghunathan
- Department of Pediatric Critical Care, Institute of Liver Transplantation and Regenerative Medicine, Medanta, The Medicity, Gurgaon, India
| | - Dieter Broering
- Klinik für Allgemeine und Thoraxchirurgie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Azmeri Sultana
- Department of Pediatric Nephrology, Dr. M R Khan Shishu Hospital & Institute of Child Health, Dhaka, Bangladesh
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Patrick Brophy
- Department of Pediatrics, University of Rochester School of Medicine, Rochester, NY, United States
| | - Mignon McCulloch
- Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Timothy Bunchman
- Pediatric Nephrology and Transplantation, Children's Hospital of Richmond, Virginia Commonwealth University (VCU), Richmond, VA, United States
| | - Hui Kim Yap
- Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rezan Topalglu
- Department of Pediatric Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
14
|
Shunt-Induced Hepatic Encephalopathy in TIPS: Current Approaches and Clinical Challenges. J Clin Med 2020; 9:jcm9113784. [PMID: 33238576 PMCID: PMC7700586 DOI: 10.3390/jcm9113784] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Transjugular intrahepatic portosystemic shunt (TIPS) is an established treatment tool in decompensated liver cirrhosis that has been shown to prolong transplant-free survival. Hepatic encephalopathy (HE) is a frequent complication of decompensated cirrhosis, eventually induced and/or aggravated by TIPS, that remains a clinical challenge especially in these patients. Therefore, patient selection for TIPS requires careful assessment of risk factors for HE. TIPS procedural parameters regarding stent size and invasive portosystemic pressure gradient measurements thereby have an important role. Endovascular shunt modification, in combination with a conservative medical approach, often results in a significant reduction of symptoms. This review summarizes HE molecular mechanisms and pathophysiology as well as diagnostic and therapeutic approaches targeting shunt-induced HE.
Collapse
|
15
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
16
|
MRI Findings in Acute Hyperammonemic Encephalopathy: Three Cases of Different Etiologies: Teaching Point: To recognize MRI findings in acute hyperammonemic encephalopathy. J Belg Soc Radiol 2020; 104:9. [PMID: 32025625 PMCID: PMC6993592 DOI: 10.5334/jbsr.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute hyperammonemic encephalopathy is a rare but life-threatening condition that might complicate liver disease as well as non-hepatic conditions. It can lead to coma and death, secondary to brain edema and intracranial hypertension. We present three cases of acute hyperammonemic encephalopathy of different etiologies and the observed brain MRI findings. Symmetrical extensive cortical signal abnormalities, typically involving the insular and cingulate cortices, often showing restricted diffusion, are commonly described. These specific imaging features should be recognized by the radiologist since prompt treatment of the condition is paramount.
Collapse
|
17
|
Dellatore P, Mishra A, Rustgi V. Prognostic Models in Acute and Acute on Chronic Liver Failure. LIVER FAILURE 2020:91-107. [DOI: 10.1007/978-3-030-50983-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Cudalbu C, Taylor-Robinson SD. Brain Edema in Chronic Hepatic Encephalopathy. J Clin Exp Hepatol 2019; 9:362-382. [PMID: 31360029 PMCID: PMC6637228 DOI: 10.1016/j.jceh.2019.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Brain edema is a common feature associated with hepatic encephalopathy (HE). In patients with acute HE, brain edema has been shown to play a crucial role in the associated neurological deterioration. In chronic HE, advanced magnetic resonance imaging (MRI) techniques have demonstrated that low-grade brain edema appears also to be an important pathological feature. This review explores the different methods used to measure brain edema ex vivo and in vivo in animal models and in humans with chronic HE. In addition, an in-depth description of the main studies performed to date is provided. The role of brain edema in the neurological alterations linked to HE and whether HE and brain edema are the manifestations of the same pathophysiological mechanism or two different cerebral manifestations of brain dysfunction in liver disease are still under debate. In vivo MRI/magnetic resonance spectroscopy studies have allowed insight into the development of brain edema in chronic HE. However, additional in vivo longitudinal and multiparametric/multimodal studies are required (in humans and animal models) to elucidate the relationship between liver function, brain metabolic changes, cellular changes, cell swelling, and neurological manifestations in chronic HE.
Collapse
Key Words
- 1H MRS, proton magnetic resonance spectroscopy
- ADC, apparent diffusion coefficient
- ALF, acute liver failure
- AQP, aquaporins
- BBB, blood-brain barrier
- BDL, bile duct ligation
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Cr, creatine
- DTI, diffusion tensor imaging
- DWI, diffusion-weighted imaging
- FLAIR, fluid-attenuated inversion recovery
- GM, gray matter
- Gln, glutamine
- Glx, sum of glutamine and glutamate
- HE, hepatic encephalopathy
- Ins, inositol
- LPS, lipopolysaccharide
- Lac, lactate
- MD, mean diffusivity
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- MT, magnetization transfer
- MTR, MT ratio
- NMR, nuclear magnetic resonance
- PCA, portocaval anastomosis
- TE, echo time
- WM, white matter
- brain edema
- chronic hepatic encephalopathy
- in vivo magnetic resonance imaging
- in vivo magnetic resonance spectroscopy
- liver cirrhosis
- mIns, myo-inositol
- tCho, total choline
- tCr, total creatine
Collapse
Affiliation(s)
- Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Simon D. Taylor-Robinson
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, St Mary's Hospital Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Li KZ, Liao ZY, Li YX, Ming ZY, Zhong JH, Wu GB, Huang S, Zhao YN. A20 rescues hepatocytes from apoptosis through the NF-κB signaling pathway in rats with acute liver failure. Biosci Rep 2019; 39:BSR20180316. [PMID: 30446523 PMCID: PMC6328859 DOI: 10.1042/bsr20180316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Acute liver failure (ALF) is a disease of acute derangements in the hepatic synthetic function with defects involving innate immune responses, which was reported to be negatively regulated by tumor necrosis factor α-induced protein 3 (A20). Herein, the present study was conducted to investigate the effects the A20 protein on the proliferation and apoptosis of hepatocytes through the nuclear factor (NF)-κB signaling pathway in the rat models simulating ALF.Methods: Male Wistar rats were used to simulate ALF in the model rats. Next, the positive expression of A20 and Caspase-3 proteins was measured in liver tissues. Rat hepatocytes were separated and subjected to pyrrolidine dithiocarbamate (PDTC, inhibitor of NF-κB pathway) or A20 siRNA. Additionally, both mRNA and protein levels of A20, NF-κB, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), and receptor-interacting protein 1 (RIP1) were determined. Finally, we detected the hepatocyte proliferation, cell cycle entry, and apoptosis.Results: ALF rats displayed a lower positive expression of A20 protein and a higher expression of Caspase-3 protein. Furthermore, A20 was down-regulated, while NF-κB, TRAF6, and RIP1 were all up-regulated in ALF rats. Notably, A20 inhibited activation of NF-κB signaling pathway. The blockade of NF-κB signaling pathway enhanced proliferation and cell cycle progression of hepatocytes, whereas inhibited apoptosis of hepatocytes. On the contrary, A20 siRNA reversed the above situation.Conclusion: A20 inhibits apoptosis of hepatocytes and promotes the proliferation through the NF-κB signaling pathway in ALF rats, potentially providing new insight into the treatment of ALF.
Collapse
Affiliation(s)
- Ke-Zhi Li
- Department of Basic Experimental Research, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhi-Yi Liao
- The First Department of Surgery, Affiliated Wuming Hospital of Guangxi Medical University, Nanning 530199, P.R. China
| | - Yu-Xuan Li
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhi-Yong Ming
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Guo-Bin Wu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Shan Huang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yin-Ning Zhao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
20
|
Escorsell À, Castellote J, Sánchez-Delgado J, Charco R, Crespo G, Fernández J. Manejo de la insuficiencia hepática aguda grave. Documento de posicionamiento de la Societat Catalana de Digestologia. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:51-64. [DOI: 10.1016/j.gastrohep.2018.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 02/08/2023]
|
21
|
Is the Response of Tumours Dependent on the Dietary Input of Some Amino Acids or Ratios among Essential and Non-Essential Amino Acids? All That Glitters Is Not Gold. Int J Mol Sci 2018; 19:ijms19113631. [PMID: 30453654 PMCID: PMC6275049 DOI: 10.3390/ijms19113631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Energy production is the main task of the cancer cell metabolism because the costs of duplicating are enormous. Although energy is derived in cells by dismantling the carbon-to-carbon bonds of any macronutrient, cancer nutritional needs for energetic purposes have been studied primarily as being dependent on glycolysis. Since the end of the last century, the awareness of the dependence of cancer metabolism on amino acids not only for protein synthesis but also to match energy needs has grown. The roles of specific amino acids such as glutamine, glycine and serine have been explored in different experimental conditions and reviewed. Moreover, epidemiological evidence has revealed that some amino acids used as a supplement for therapeutic reasons, particularly the branched-chain ones, may reduce the incidence of liver cancer and a specific molecular mechanism has been proposed as functional to their protective action. By contrast and puzzling clinicians, the metabolomic signature of some pathologies connected to an increased risk of cancer, such as prolonged hyperinsulinemia in insulin-resistant patients, is identified by elevated plasma levels of the same branched-chain amino acids. Most recently, certain formulations of amino acids, deeply different from the amino acid compositions normally present in foods, have shown the power to master cancer cells epigenetically, slowing growth or driving cancer cells to apoptotic death, while being both beneficial for normal cell function and the animal’s health and lifespan. In this review, we will analyze and try to disentangle some of the many knots dealing with the complexities of amino acid biology and links to cancer metabolism.
Collapse
|
22
|
Dąbrowska K, Albrecht J, Zielińska M. Protein kinase C-mediated impairment of glutamine outward transport and SN1 transporter distribution by ammonia in mouse cortical astrocytes. Neurochem Int 2018; 118:225-232. [DOI: 10.1016/j.neuint.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/07/2023]
|
23
|
Prognostic factors and treatment effect of standard-volume plasma exchange for acute and acute-on-chronic liver failure: A single-center retrospective study. Transfus Apher Sci 2018; 57:537-543. [PMID: 29880246 DOI: 10.1016/j.transci.2018.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Patients with acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) have a high risk of mortality. Few studies have reported prognostic factors for patients receiving plasma exchange (PE) for liver support. We conducted a retrospective analysis using data of 55 patients with severe ACLF (n = 45) and ALF (n = 10) who received standard-volume PE (1-1.5 plasma volume) in the ICU. Hepatitis B virus infection accounts for the majority of ACLF (87%) and ALF (50%) patients. PE significantly improved the levels of total bilirubin, prothrombin time and liver enzymes (P<0.05). Thirteen ACLF patients (29%) and one ALF patient (10%) underwent liver transplantation. Two ALF patients (20%) recovered spontaneously without transplantation. The overall in-hospital survival rates for ACLF and ALF patients were 24% and 30%, and the transplant-free survival rates were 0% and 20%, respectively. For the 14 transplanted patients, the one-year survival rate was 86%. Multivariate analysis showed that pre-PE hemoglobin (P = 0.008), post-PE hemoglobin (P = 0.039), and post-PE CLIF-C ACLF scores (P = 0.061) were independent predictors of survival in ACLF. The post-PE CLIF-C ACLF scores ≥59 were a discriminator predicting the in-hospital mortality (area under the curve = 0.719, P = 0.030). Cumulative survival rates differed significantly between patients with CLIF-C ACLF scores ≤ 58 and those with CLIF-C ACLF scores ≥ 59 after PE (P< 0.05). The findings suggest that PE is mainly a bridge for liver transplantation and spontaneous recovery is exceptional even in patients treated with PE. A higher improvement in the post-PE CLIF-C ACLF score is associated with a superior in-hospital survival rate.
Collapse
|
24
|
Krawitz S, Lingiah V, Pyrsopoulos NT. Acute Liver Failure: Mechanisms of Disease and Multisystemic Involvement. Clin Liver Dis 2018; 22:243-256. [PMID: 29605064 DOI: 10.1016/j.cld.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute liver failure is accompanied by a pathologic syndrome common to numerous different etiologies of liver injury. This acute liver failure syndrome leads to potentially widespread devastating end-organ consequences. Systemic dysregulation and dysfunction is likely propagated via inflammation as well as underlying hepatic failure itself. Decoding the mechanisms of the disease process and multisystemic involvement of acute liver failure offers potential for targeted treatment opportunities and improved clinical outcomes in this sick population.
Collapse
Affiliation(s)
- Steven Krawitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-534, Newark, NJ 07103, USA.
| | - Vivek Lingiah
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-530, Newark, NJ 07103, USA
| | - Nikolaos T Pyrsopoulos
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-536, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Abstract
Hepatic encephalopathy (HE) is a common complication of liver dysfunction, including acute liver failure and liver cirrhosis. HE presents as a spectrum of neuropsychiatric symptoms ranging from subtle fluctuating cognitive impairment to coma. It is a significant contributor of morbidity in patients with liver disease. HE is observed in acute liver failure, liver bypass procedures, for example, shunt surgry and transjugular intrahepatic portosystemic shunt, and cirrhosis. These are classified as Type A, B and C HE, respectively. HE can also be classified according to whether its presence is overt or covert. The pathogenesis is linked with ammonia and glutamine production, and treatment is based on mechanisms to reduce the formation and/or removal of these compounds. There is no specific diagnostic test for HE, and diagnosis is based on clinical suspicion, excluding other causes and use of clinical tests that may support its diagnosis. Many tests are used in trials and experimentally, but have not yet gained universal acceptance. This review focuses on the definitions, pathogenesis and treatment of HE. Consideration will be given to existing treatment, including avoidance of precipitating factors and novel therapies such as prebiotics, probiotics, antibiotics, laxatives, branched-chain amino acids, shunt embolization and the importance of considering liver transplant in appropriate cases.
Collapse
Affiliation(s)
| | - Mark Alexander Ellul
- Faculty of Health and Life Sciences, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Timothy JS Cross
- Department of Gastroenterology, Royal Liverpool University Hospital
| |
Collapse
|
26
|
Brain and the Liver: Cerebral Edema, Hepatic Encephalopathy and Beyond. HEPATIC CRITICAL CARE 2018. [PMCID: PMC7122599 DOI: 10.1007/978-3-319-66432-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occurrence of brain dysfunction is common in both chronic liver disease as well as acute liver failure. While brain dysfunction most commonly manifests as hepatic encephalopathy is chronic liver disease; devastating complications of cerebral edema and brain herniation syndromes may occur with acute liver failure. Ammonia seems to play a central role in the pathogenesis of brain dysfunction in both chronic liver disease and acute liver failure. In this chapter we outline the pathophysiology and clinical management of brain dysfunction in the critically ill patients with liver disease.
Collapse
|
27
|
|
28
|
Mendes NF, Mariotti FFN, de Andrade JS, de Barros Viana M, Céspedes IC, Nagaoka MR, Le Sueur-Maluf L. Lactulose decreases neuronal activation and attenuates motor behavioral deficits in hyperammonemic rats. Metab Brain Dis 2017; 32:2073-2083. [PMID: 28875419 DOI: 10.1007/s11011-017-0098-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
Lactulose is a nonabsorbable disaccharide commonly used in clinical practice to treat hepatic encephalopathy. However, its effects on neuropsychiatric disorders and motor behavior have not been fully elucidated. Male Wistar rats were bile-duct ligated, and 3 weeks after surgery, treated with lactulose administrated by gavage (1.43 or 3.57 g/kg), once a day for seven days. Plasma levels of ammonia, aspartate aminotransferase, total bilirubin, and creatinine were quantified and histopathological analysis of the livers was performed. Locomotor activity measurements were performed in an open field. The expression of water channel aquaporin-4 was investigated and the analysis of Fos protein immunoreactivity was used to evaluate the pattern of neural activation in brain areas related to motor behavior. Bile-duct ligated rats showed hyperammonemia, loss of liver integrity and function, impaired locomotor activity, reduced aquaporin-4 protein expression, and neuronal hyperactivity. Lactulose treatment was able to reduce ammonia plasma levels, despite not having an effect on biochemical parameters of liver function, such as aspartate aminotransferase activity and total bilirubin levels, or on the cirrhotic hepatic architecture. Lactulose was also able to reduce the locomotor activity impairments and to mitigate or reverse most changes in neuronal activation. Lactulose had no effect on reduced aquaporin-4 protein expression. Our findings confirm the effectiveness of lactulose in reducing hyperammonemia and neuronal hyperactivity in brain areas related to motor behavior, reinforcing the importance of its clinical use in the treatment of the symptoms of cirrhosis-associated encephalopathy.
Collapse
Affiliation(s)
- Natália Ferreira Mendes
- Departmento de Biociências, Universidade Federal de São Paulo, UNIFESP, 133/136 - Vila Mathias, Santos/SP, 11015-020, Brazil
- Laboratório de Sinalização Celular, Universidade Estadual de Campinas, UNICAMP, Campinas/SP, 13083-864, Brazil
| | - Flora França Nogueira Mariotti
- Departmento de Biociências, Universidade Federal de São Paulo, UNIFESP, 133/136 - Vila Mathias, Santos/SP, 11015-020, Brazil
| | - José Simões de Andrade
- Departmento de Biociências, Universidade Federal de São Paulo, UNIFESP, 133/136 - Vila Mathias, Santos/SP, 11015-020, Brazil
| | - Milena de Barros Viana
- Departmento de Biociências, Universidade Federal de São Paulo, UNIFESP, 133/136 - Vila Mathias, Santos/SP, 11015-020, Brazil
| | - Isabel Cristina Céspedes
- Departmento de Biociências, Universidade Federal de São Paulo, UNIFESP, 133/136 - Vila Mathias, Santos/SP, 11015-020, Brazil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, UNIFESP, 11015-020, São Paulo/SP, 04023-900, Brazil
| | - Márcia Regina Nagaoka
- Departmento de Biociências, Universidade Federal de São Paulo, UNIFESP, 133/136 - Vila Mathias, Santos/SP, 11015-020, Brazil
| | - Luciana Le Sueur-Maluf
- Departmento de Biociências, Universidade Federal de São Paulo, UNIFESP, 133/136 - Vila Mathias, Santos/SP, 11015-020, Brazil.
| |
Collapse
|
29
|
Effect of Continuous Renal Replacement Therapy on Outcome in Pediatric Acute Liver Failure. Crit Care Med 2017; 44:1910-9. [PMID: 27347761 DOI: 10.1097/ccm.0000000000001826] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To establish the effect of continuous renal replacement therapy on outcome in pediatric acute liver failure. DESIGN Retrospective cohort study. SETTING Sixteen-bed PICU in a university-affiliated tertiary care hospital and specialist liver centre. PATIENTS All children (0-18 yr) admitted to PICU with pediatric acute liver failure between January 2003 and December 2013. INTERVENTIONS Children with pediatric acute liver failure were managed according to a set protocol. The guidelines for continuous renal replacement therapy in pediatric acute liver failure were changed in 2011 following preliminary results to indicate the earlier use of continuous renal replacement therapy for both renal dysfunction and detoxification. MEASUREMENTS AND MAIN RESULTS Of 165 children admitted with pediatric acute liver failure, 136 met the inclusion criteria and 45 of these received continuous renal replacement therapy prior to transplantation or recovery. Of the children managed with continuous renal replacement therapy, 26 (58%) survived: 19 were successfully bridged to liver transplantation and 7 spontaneously recovered. Cox proportional hazards regression model clearly showed reducing hyperammonemia by 48 hours after initiating continuous renal replacement therapy significantly improved survival (HR, 1.04; 95% CI, 1.013-1.073; p = 0.004). On average, for every 10% decrease in ammonia from baseline at 48 hours, the likelihood of survival increased by 50%. Time to initiate continuous renal replacement therapy from PICU admission was lower in survivors compared to nonsurvivors (HR, 0.96; 95% CI, 0.916-1.007; p = 0.095). Change in practice to initiate early and high-dose continuous renal replacement therapy led to increased survival with maximum effect being visible in the first 14 days (HR, 3; 95% CI, 1.0-10.3; p = 0.063). Among children with pediatric acute liver failure who did not receive a liver transplant, use of continuous renal replacement therapy significantly improved survival (HR, 4; 95% CI, 1.5-11.6; p = 0.006). CONCLUSION Continuous renal replacement therapy can be used successfully in critically ill children with pediatric acute liver failure to provide stability and bridge to transplantation. Inability to reduce ammonia by 48 hours confers poor prognosis. Continuous renal replacement therapy should be considered at an early stage to help prevent further deterioration and buy time for potential spontaneous recovery or bridge to liver transplantation.
Collapse
|
30
|
In vivo N-15 MRS study of glutamate metabolism in the rat brain. Anal Biochem 2016; 529:179-192. [PMID: 27580850 DOI: 10.1016/j.ab.2016.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
In vivo 15N MRS has made a unique contribution to kinetic studies of the individual pathways that control glutamate flux in the rat brain. This review covers the following topics: (1) the advantages and limitations of in vivo 15N MRS and its indirect detection through coupled 1H; (2) kinetic methods; (3) major findings from our and other laboratories in the areas: (a) the uptake of the neurotransmitter glutamate from the extracellular fluid into glia; (b) the metabolism of glutamate to glutamine; (c) glutamine transport to the extracellular fluid; (d) hydrolysis of neuronal glutamine to glutamate; and (e) contribution of transamination from leucine to replenish the glutamate nitrogen. In vivo glutamine synthetase activities measured at several levels of hyperammonemia showed that this enzyme becomes saturated at blood ammonia concentration >0.9 μmol/g, and causes the elevation of brain ammonia. Implications of the results for the cause of hyperammonemic encephalopathy are discussed. Leucine provides >25% of glutamate nitrogen. An intriguing possibility that supplementing leucine may restore cognitive function after brain injury is discussed. Finally, some characteristics of 15N MRS that may facilitate the future application of this technique to the study of the human brain at 4 or 7 T are described.
Collapse
|
31
|
Cittolin-Santos GF, de Assis AM, Guazzelli PA, Paniz LG, da Silva JS, Calcagnotto ME, Hansel G, Zenki KC, Kalinine E, Duarte MM, Souza DO. Guanosine Exerts Neuroprotective Effect in an Experimental Model of Acute Ammonia Intoxication. Mol Neurobiol 2016; 54:3137-3148. [PMID: 27052954 DOI: 10.1007/s12035-016-9892-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
The nucleoside guanosine (GUO) increases glutamate uptake by astrocytes and acts as antioxidant, thereby providing neuroprotection against glutamatergic excitotoxicity, as we have recently demonstrated in an animal model of chronic hepatic encephalopathy. Here, we investigated the neuroprotective effect of GUO in an acute ammonia intoxication model. Adult male Wistar rats received an intraperitoneal (i.p.) injection of vehicle or GUO 60 mg/kg, followed 20 min later by an i.p. injection of vehicle or 550 mg/kg of ammonium acetate. Afterwards, animals were observed for 45 min, being evaluated as normal, coma (i.e., absence of corneal reflex), or death status. In a second cohort of rats, video-electroencephalogram (EEG) recordings were performed. In a third cohort of rats, the following were measured: (i) plasma levels of glucose, transaminases, and urea; (ii) cerebrospinal fluid (CSF) levels of ammonia, glutamine, glutamate, and alanine; (iii) glutamate uptake in brain slices; and (iv) brain redox status and glutamine synthetase activity in cerebral cortex. GUO drastically reduced the lethality rate and the duration of coma. Animals treated with GUO had improved EEG traces, decreased CSF levels of glutamate and alanine, lowered oxidative stress in the cerebral cortex, and increased glutamate uptake by astrocytes in brain slices compared with animals that received vehicle prior to ammonium acetate administration. This study provides new evidence on mechanisms of guanine-derived purines in their potential modulation of glutamatergic system, contributing to GUO neuroprotective effects in a rodent model of by acute ammonia intoxication.
Collapse
Affiliation(s)
- G F Cittolin-Santos
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - A M de Assis
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - P A Guazzelli
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - L G Paniz
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - J S da Silva
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - M E Calcagnotto
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - G Hansel
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - K C Zenki
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Physiology, Federal University of Sergipe, São Cristovão, SE, 49100-000, Brazil
| | - E Kalinine
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.,Department of Physiology, Federal University of Sergipe, São Cristovão, SE, 49100-000, Brazil
| | - M M Duarte
- Health Sciences Center, Lutheran University of Brazil (ULBRA), Campus Santa Maria, Santa Maria, RS, 97020-001, Brazil
| | - D O Souza
- Postgraduate Program in Biological Sciences: Biochemistry, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil. .,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
32
|
The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:223-257. [PMID: 27885631 DOI: 10.1007/978-3-319-45096-4_8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y+LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y+LAT2 facilitate the exchange of neutral amino acids and cationic amino acids (y+LAT2 isoform) and have been associated with glutamine efflux from astrocytes. ASCT2 is a Na+-dependent antiporter, the participation of which in the GGC also remains to be better characterized. All these isoforms are tightly regulated by transcriptional and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters are thoroughly investigated.
Collapse
|
33
|
|
34
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
35
|
Zielińska M, Dąbrowska K, Hadera MG, Sonnewald U, Albrecht J. System N transporters are critical for glutamine release and modulate metabolic fluxes of glucose and acetate in cultured cortical astrocytes: changes induced by ammonia. J Neurochem 2015; 136:329-38. [DOI: 10.1111/jnc.13376] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Katarzyna Dąbrowska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Mussie Ghezu Hadera
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Ursula Sonnewald
- Department of Neuroscience; Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jan Albrecht
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
36
|
Cioccari L, Gautschi M, Etter R, Weck A, Takala J. Further Concerns About Glutamine: A Case Report on Hyperammonemic Encephalopathy. Crit Care Med 2015; 43:e458-e460. [PMID: 26035146 DOI: 10.1097/ccm.0000000000001151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We report a case of a woman with hyperammonemic encephalopathy following glutamine supplementation. DESIGN Case report. INTERVENTIONS Plasma amino acid analysis suggestive of a urea cycle defect and initiation of a treatment with lactulose and the two ammonia scavenger drugs sodium benzoate and phenylacetate. Together with a restricted protein intake ammonia and glutamine plasma levels decreased with subsequent improvement of the neurological status. MEASUREMENTS AND MAIN RESULTS Massive catabolism and exogenous glutamine administration may have contributed to hyperammonemia and hyperglutaminemia in this patient. CONCLUSION This case adds further concerns regarding glutamine administration to critically ill patients and implies the importance of monitoring ammonia and glutamine serum levels in such patients.
Collapse
Affiliation(s)
- Luca Cioccari
- 1Department of Intensive Care Medicine, Bern University Hospital (Inselspital) and University of Bern, Bern, Switzerland. 2Institute of Clinical Chemistry and University Children's Hospital, Bern University Hospital (Inselspital) and University of Bern, Bern, Switzerland. 3Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Schroeter A, Wen S, Mölders A, Erlenhardt N, Stein V, Klöcker N. Depletion of the AMPAR reserve pool impairs synaptic plasticity in a model of hepatic encephalopathy. Mol Cell Neurosci 2015; 68:331-9. [DOI: 10.1016/j.mcn.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/22/2015] [Accepted: 09/06/2015] [Indexed: 02/07/2023] Open
|
38
|
Prasun P, Altinok D, Misra VK. Ornithine transcarbamylase deficiency presenting with acute reversible cortical blindness. J Child Neurol 2015; 30:782-5. [PMID: 24850570 DOI: 10.1177/0883073814535490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/14/2014] [Indexed: 11/17/2022]
Abstract
Acute focal neurologic deficits are a rare but known presentation of ornithine transcarbamylase deficiency, particularly in females. We describe here a 6-year-old girl with newly diagnosed ornithine transcarbamylase deficiency who presents with an episode of acute cortical blindness lasting for 72 hours in the absence of hyperammonemia. Her symptoms were associated with a subcortical low-intensity lesion with overlying cortical hyperintensity on fluid-attenuated inversion recovery magnetic resonance imaging (MRI) of the occipital lobes. Acute reversible vision loss with these MRI findings is an unusual finding in patients with ornithine transcarbamylase deficiency. Our findings suggest a role for oxidative stress and aberrant glutamine metabolism in the acute clinical features of ornithine transcarbamylase deficiency even in the absence of hyperammonemia.
Collapse
Affiliation(s)
- Pankaj Prasun
- Division of Genetics & Metabolic Disorders, Children's Hospital of Michigan, Detroit, MI, USA
| | - Deniz Altinok
- Pediatric Imaging, Children's Hospital of Michigan, Detroit, MI, USA
| | - Vinod K Misra
- Division of Genetics & Metabolic Disorders, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
39
|
Leke R, Escobar TDC, Rao KVR, Silveira TR, Norenberg MD, Schousboe A. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy. Neurochem Int 2015; 88:32-7. [PMID: 25842041 DOI: 10.1016/j.neuint.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been described in bile duct ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA-glutamine cycle efficacy might influence these pathways. Given this potential outcome, the aim of the present study was to investigate whether the expression of the glutamine transporters SAT1, SAT2, SN1 and SN2 would be affected in chronic HE. We verified that mRNA expression of the neuronal glutamine transporters SAT1 and SAT2 was found unaltered in the cerebral cortex of BDL rats. Similarly, no changes were found in the mRNA level for the astrocytic transporter SN1, whereas the gene expression of SN2 was increased by two-fold in animals with chronic HE. However, SN2 protein immuno-reactivity did not correspond with the increase in gene transcription since it remained unaltered. These data indicate that the expression of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system observed in this neurologic condition.
Collapse
Affiliation(s)
- Renata Leke
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA.
| | - Thayssa D C Escobar
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Themis Reverbel Silveira
- Experimental Hepatology and Gastroenterology Laboratory, Research Center of Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine and Veterans Administration Medical Center, Miami, FL 33101, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
40
|
Butterworth RF. Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure. J Clin Exp Hepatol 2015; 5:S96-S103. [PMID: 26041966 PMCID: PMC4442857 DOI: 10.1016/j.jceh.2014.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/07/2014] [Indexed: 12/12/2022] Open
Abstract
Neuropathologic investigations in acute liver failure (ALF) reveal significant alterations to neuroglia consisting of swelling of astrocytes leading to cytotoxic brain edema and intracranial hypertension as well as activation of microglia indicative of a central neuroinflammatory response. Increased arterial ammonia concentrations in patients with ALF are predictors of patients at risk for the development of brain herniation. Molecular and spectroscopic techniques in ALF reveal alterations in expression of an array of genes coding for neuroglial proteins involved in cell volume regulation and mitochondrial function as well as in the transport of neurotransmitter amino acids and in the synthesis of pro-inflammatory cytokines. Liver-brain pro-inflammatory signaling mechanisms involving transduction of systemically-derived cytokines, ammonia neurotoxicity and exposure to increased brain lactate have been proposed. Mild hypothermia and N-Acetyl cysteine have both hepato-protective and neuro-protective properties in ALF. Potentially effective anti-inflammatory agents aimed at control of encephalopathy and brain edema in ALF include etanercept and the antibiotic minocycline, a potent inhibitor of microglial activation. Translation of these potentially-interesting findings to the clinic is anxiously awaited.
Collapse
Key Words
- ALF, acute liver failure
- ATP, adenosine triphosphate
- BBB, blood-brain barrier
- CCL2, chemokine ligand-2
- CMRO2, cerebral metabolic rate for oxygen
- CNS, central nervous system
- EEG, electroencephalography
- GABA, gamma-aminobutyric acid
- GFAP, glial fibrillary acidic protein
- IgG, immunoglobulin
- MRS, magnetic resonance spectroscopy
- NAC, N-Acetyl cysteine
- NMDA, N-methyl-d-aspartate
- SIRS, systemic inflammatory response syndrome
- SNATs, several neutral amino acid transport systems
- TLP, translocator protein
- TNFα, tumor necrosis factor alpha
- acute liver failure
- hepatic encephalopathy
- intracranial hypertension
- microglial activation
- neuroinflammation
Collapse
Affiliation(s)
- Roger F. Butterworth
- Neuroscience Research Unit, Hopital St-Luc (CHUM) and Department of Medicine, University of Montreal, Montreal, QC H2W 3J4, Canada,Address for correspondence: Roger F. Butterworth, Neuroscience Research Unit, Hospital St-Luc (CHUM) and Department of Medicine, University of Montreal, 1058 St Denis, Montreal, QC H2W 3J4, Canada. Tel.: +1 902 929 2470.
| |
Collapse
|
41
|
Castillo L, Bugedo G, Rovegno M. Therapeutic hypothermia as a bridge to transplantation in patients with fulminant hepatic failure. Rev Bras Ter Intensiva 2015; 27:72-6. [PMID: 25909316 PMCID: PMC4396900 DOI: 10.5935/0103-507x.20150012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/06/2015] [Indexed: 11/20/2022] Open
Abstract
The most important topics in fulminant hepatic failure are cerebral edema and intracranial hypertension. Among all therapeutic options, systemic induced hypothermia to 33 - 34ºC has been reported to reduce the high pressure and increase the time during which patients can tolerate a graft. This review discusses the indications and adverse effects of hypothermia.
Collapse
Affiliation(s)
- Luis Castillo
- Departamento de Medicina Intensiva, Pontificia Universidad
Católica de Chile - Santiago, Chile
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Pontificia Universidad
Católica de Chile - Santiago, Chile
| | - Max Rovegno
- Departamento de Medicina Intensiva, Pontificia Universidad
Católica de Chile - Santiago, Chile
| |
Collapse
|
42
|
Cooper AJL, Kuhara T. α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 2014; 29:991-1006. [PMID: 24234505 PMCID: PMC4020999 DOI: 10.1007/s11011-013-9444-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/21/2013] [Indexed: 01/16/2023]
Abstract
Glutamine metabolism is generally regarded as proceeding via glutaminase-catalyzed hydrolysis to glutamate and ammonia, followed by conversion of glutamate to α-ketoglutarate catalyzed by glutamate dehydrogenase or by a glutamate-linked aminotransferase (transaminase). However, another pathway exists for the conversion of glutamine to α-ketoglutarate that is often overlooked, but is widely distributed in nature. This pathway, referred to as the glutaminase II pathway, consists of a glutamine transaminase coupled to ω-amidase. Transamination of glutamine results in formation of the corresponding α-keto acid, namely, α-ketoglutaramate (KGM). KGM is hydrolyzed by ω-amidase to α-ketoglutarate and ammonia. The net glutaminase II reaction is: L - Glutamine + α - keto acid + H2O → α - ketoglutarate + L - amino acid + ammonia. In this mini-review the biochemical importance of the glutaminase II pathway is summarized, with emphasis on the key component KGM. Forty years ago it was noted that the concentration of KGM is increased in the cerebrospinal fluid (CSF) of patients with hepatic encephalopathy (HE) and that the level of KGM in the CSF correlates well with the degree of encephalopathy. In more recent work, we have shown that KGM is markedly elevated in the urine of patients with inborn errors of the urea cycle. It is suggested that KGM may be a useful biomarker for many hyperammonemic diseases including hepatic encephalopathy, inborn errors of the urea cycle, citrin deficiency and lysinuric protein intolerance.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA,
| | | |
Collapse
|
43
|
Abstract
Human adults produce around 1000 mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
44
|
Mladenović D, Hrnčić D, Petronijević N, Jevtić G, Radosavljević T, Rašić-Marković A, Puškaš N, Maksić N, Stanojlović O. Finasteride improves motor, EEG, and cellular changes in rat brain in thioacetamide-induced hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 2014; 307:G931-G940. [PMID: 25104500 DOI: 10.1152/ajpgi.00463.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurosteroids are involved in the pathogenesis of hepatic encephalopathy (HE). This study evaluated the effects of finasteride, inhibitor of neurosteroid synthesis, on motor, EEG, and cellular changes in rat brain in thioacetamide-induced HE. Male Wistar rats were divided into the following groups: 1) control; 2) thioacetamide-treated group, TAA (300 mg·kg(-1)·day(-1)); 3) finasteride-treated group, FIN (50 mg·kg(-1)·day(-1)); and 4) group treated with FIN and TAA (FIN + TAA). Daily doses of TAA and FIN were administered in three subsequent days intraperitoneally, and in the FIN + TAA group FIN was administered 2 h before every dose of TAA. Motor and reflex activity was determined at 0, 2, 4, 6, and 24 h, whereas EEG activity was registered about 24 h after treatment. The expressions of neuronal (NeuN), astrocytic [glial fibrilary acidic protein (GFAP)], microglial (Iba1), and oligodendrocyte (myelin oligodendrocyte glycoprotein) marker were determined 24 h after treatment. While TAA decreased all tests, FIN pretreatment (FIN + TAA) significantly improved equilibrium, placement test, auditory startle, head shake reflex, motor activity, and exploratory behavior vs. the TAA group. Vital reflexes (withdrawal, grasping, righting and corneal reflex) together with mean EEG voltage were significantly higher (P < 0.01) in the FIN + TAA vs. the TAA group. Hippocampal NeuN expression was significantly lower in TAA vs. control (P < 0.05). Cortical Iba1 expression was significantly higher in experimental groups vs. control (P < 0.05), whereas hippocampal GFAP expression was increased in TAA and decreased in the FIN + TAA group vs. control (P < 0.05). Finasteride improves motor and EEG changes in TAA-induced HE and completely prevents the development of hepatic coma.
Collapse
Affiliation(s)
- Dušan Mladenović
- Faculty of Medicine, Institute of Pathophysiology "Ljubodrag Buba Mihailovic," University of Belgrade, Belgrade, Serbia
| | - Dragan Hrnčić
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian," University of Belgrade, Belgrade, Serbia
| | - Nataša Petronijević
- Faculty of Medicine, Institute of Clinical and Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Gordana Jevtić
- Faculty of Medicine, Institute of Clinical and Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Tatjana Radosavljević
- Faculty of Medicine, Institute of Pathophysiology "Ljubodrag Buba Mihailovic," University of Belgrade, Belgrade, Serbia
| | - Aleksandra Rašić-Marković
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian," University of Belgrade, Belgrade, Serbia
| | - Nela Puškaš
- Faculty of Medicine, Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia; and
| | - Nebojša Maksić
- Centre for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Olivera Stanojlović
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian," University of Belgrade, Belgrade, Serbia;
| |
Collapse
|
45
|
Butterworth RF. Pathophysiology of brain dysfunction in hyperammonemic syndromes: The many faces of glutamine. Mol Genet Metab 2014; 113:113-7. [PMID: 25034052 DOI: 10.1016/j.ymgme.2014.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
Abstract
Ineffective hepatic clearance of excess ammonia in the form of urea, as occurs in urea cycle enzymopathies (UCDs) and in liver failure, leads to increases in circulating and tissue concentrations of glutamine and a positive correlation between brain glutamine and the severity of neurological symptoms. Studies using 1H/13C Nuclear Magnetic Resonance (NMR) spectroscopy reveal increased de novo synthesis of glutamine in the brain in acute liver failure (ALF) but increases of synthesis rates per se do not correlate with either the severity of encephalopathy or brain edema. Skeletal muscle becomes primarily responsible for removal of excess ammonia in liver failure and in UCDs, an adaptation that results from a post-translational induction of the glutamine synthetase (GS) gene. The importance of muscle in ammonia removal in hyperammonemia accounts for the resurgence of interest in maintaining adequate dietary protein and the use of agents aimed at the stimulation of muscle GS. Alternative or additional metabolic and regulatory pathways that impact on brain glutamine homeostasis in hyperammonemia include (i) glutamine deamination by the two isoforms of glutaminase, (ii) glutamine transamination leading to the production of the putative neurotoxin alpha-ketoglutaramate and (iii) alterations of high affinity astrocytic glutamine transporters (SNATs). Findings of reduced expression of the glutamine transporter SNAT-5 (responsible for glutamine clearance from the astrocyte) in ALF raise the possibility of "glutamine trapping" within these cells. Such a trapping mechanism could contribute to cytotoxic brain edema and to the imbalance between excitatory and inhibitory neurotransmission in this disorder.
Collapse
Affiliation(s)
- Roger F Butterworth
- Dept. of Medicine, University of Montreal and Neuroscience Research Unit, St-Luc Hospital (CHUM), Montreal, Qc, Canada
| |
Collapse
|
46
|
Haack N, Dublin P, Rose CR. Dysbalance of astrocyte calcium under hyperammonemic conditions. PLoS One 2014; 9:e105832. [PMID: 25153709 PMCID: PMC4143319 DOI: 10.1371/journal.pone.0105832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022] Open
Abstract
Increased brain ammonium (NH4+/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4+/NH3, developed within 10–20 minutes and was maintained as long as the NH4+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE.
Collapse
Affiliation(s)
- Nicole Haack
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Pavel Dublin
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This article summarizes the most common neurologic sequelae of acute and chronic liver failure, liver transplantation, and other treatments for liver disease, and outlines the pathogenesis, neurologic manifestations, and treatment of Wilson disease. RECENT FINDINGS The neurologic manifestations of liver disease are caused by the liver's failure to detoxify active compounds that have deleterious effects on the central and peripheral nervous systems. In addition, treatments for liver disease such as liver transplantation, transjugular intrahepatic portosystemic shunt, and antiviral medications can also be neurotoxic. Wilson disease affects the liver and nervous system simultaneously and may often initially be diagnosed by a neurologist; treatment options have evolved over recent years. SUMMARY Acute and chronic liver diseases are encountered commonly in the general population. Neurologic dysfunction will eventually affect a significant number of these individuals, especially if the disease progresses to liver failure. Early recognition of these neurologic manifestations can lead to more effective management of these patients.
Collapse
|
48
|
Pham HP, Sireci AN, Kim CH, Schwartz J. Cost-Effectiveness Analysis of Plasma Versus Recombinant Factor VIIa for Placing Intracranial Pressure Monitors in Pretransplant Patients With Acute Liver Failure. Clin Appl Thromb Hemost 2014; 20:607-14. [DOI: 10.1177/1076029614524621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Both plasma- and recombinant activated factor VII (rFVIIa)-based algorithms can be used to correct coagulopathy in preliver transplant patients with acute liver failure requiring intracranial pressure monitor (ICPM) placement. A decision model was created to compare the cost-effectiveness of these methods. A 70-kg patient could receive either 1 round of plasma followed by coagulation testing or 2 units of plasma and 40 μg/kg rFVIIa. Intracranial pressure monitor is placed without coagulation testing after rFVIIa administration. In the plasma algorithm, the probability of ICPM placement was estimated based on expected international normalized ratio (INR) after plasma administration. Risks of rFVIIa thrombosis and transfusion reactions were also included. The model was run for patients with INRs ranging from 2 to 6 with concomitant adjustments to model parameters. The model supported the initial use of rFVIIa for ICPM placement as a cost-effective treatment when INR ≥2 (with incremental cost-effectiveness ratio of at most US$7088.02).
Collapse
Affiliation(s)
- Huy P. Pham
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York-Presbyterian Hospital, New York, NY, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anthony N. Sireci
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York-Presbyterian Hospital, New York, NY, USA
| | - Chong H. Kim
- Department of Health Policy Management, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
49
|
Morphological changes of cortical pyramidal neurons in hepatic encephalopathy. BMC Neurosci 2014; 15:15. [PMID: 24433342 PMCID: PMC3898242 DOI: 10.1186/1471-2202-15-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
Background Hepatic encephalopathy (HE) is a reversible neuropsychiatric syndrome associated with acute and chronic liver diseases. It includes a number of neuropsychiatric disturbances including impaired motor activity and coordination, intellectual and cognitive function. Results In the present study, we used a chronic rat HE model by ligation of the bile duct (BDL) for 4 weeks. These rats showed increased plasma ammonia level, bile duct hyperplasia and impaired spatial learning memory and motor coordination when tested with Rota-rod and Morris water maze tests, respectively. By immunohistochemistry, the cerebral cortex showed swelling of astrocytes and microglia activation. To gain a better understanding of the effect of HE on the brain, the dendritic arbors of layer V cortical pyramidal neurons and hippocampal CA1 pyramidal neurons were revealed by an intracellular dye injection combined with a 3-dimensional reconstruction. Although the dendritic arbors remained unaltered, the dendritic spine density on these neurons was significantly reduced. It was suggested that the reduction of dendritic spines may be the underlying cause for increased motor evoked potential threshold and prolonged central motor conduction time in clinical finding in cirrhosis. Conclusions We found that HE perturbs CNS functions by altering the dendritic morphology of cortical and hippocampal pyramidal neurons, which may be the underlying cause for the motor and intellectual impairments associated with HE patients.
Collapse
|
50
|
Jung YC, Namkoong K. Alcohol: intoxication and poisoning - diagnosis and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:115-121. [PMID: 25307571 DOI: 10.1016/b978-0-444-62619-6.00007-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alcohol intoxication refers to a clinically harmful condition induced by recent ingestion of alcohol, when alcohol and its metabolites accumulate in the blood stream faster than it can be metabolized by the liver. The major adverse effects of alcohol that gain clinical attention are the neurologic, gastrointestinal, and cardiovascular problems, which are usually related to blood alcohol concentration; however, the extent of acute alcohol intoxication also depends on several factors. Individuals who seek medical treatment for acute alcohol intoxication likely have additional medical problems related to chronic alcohol consumption or alcohol dependence. For this reason, additional investigations to identify potential problems needing particular attention should be considered, depending on the clinical features of the patient.
Collapse
Affiliation(s)
- Young-Chul Jung
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Kee Namkoong
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|