1
|
Lv T, Wang M, Zheng HS, Mao JD, Yang F, Yang L, Zhao MG, Liu SB, Zhang K, Liu R, Wu YM. Electroacupuncture alleviates PTSD-like behaviors by modulating hippocampal synaptic plasticity via Wnt/β-catenin signaling pathway. Brain Res Bull 2023; 202:110734. [PMID: 37586426 DOI: 10.1016/j.brainresbull.2023.110734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Abnormalities in hippocampal synaptic plasticity contribute to the pathogenesis of post-traumatic stress disorder (PTSD). The Wnt/β-catenin signaling pathway is critical for the regulation of synaptic plasticity. PTSD symptoms can be alleviated by correcting impaired neural plasticity in the hippocampus (Hipp). Electroacupuncture (EA) has a therapeutic effect by relieving PTSD-like behaviors. However, little is known about whether the Wnt/β-catenin pathway is involved in EA-mediated improvements of PTSD symptoms. In this study, we found that enhanced single prolonged stress (ESPS)-induced PTSD led to abnormal neural plasticity, characterized by the decline of dendritic spines, the expression of postsynaptic density 95 (PSD95), and synaptophysin (Syn) in the stressed Hipp along with the reduction of Wnt3a and β-catenin, and increased GSK-3β. EA significantly alleviated PTSD-like behaviors, as assessed by the open field test, elevated platform maze test and conditioning fear test. This was paralleled by correcting abnormal neural plasticity by promoting the expression of PSD95 and Syn, as well as the number of dendritic spines in the Hipp. Importantly, EA exerted anti-PTSD effects by augmenting the expression levels of Wnt3a and β-catenin, and decreasing that of GSK-3β. The effects mediated by EA were abolished by XAV939, an inhibitor of the Wnt/β-catenin pathway. This suggests that EA relieved ESPS-induced PTSD-like behaviors, which can largely be ascribed to impaired neural plasticity in the Hipp. These findings provide new insights into possible mechanisms linking neural plasticity in the Hipp as potential novel targets for PTSD treatment in EA therapy.
Collapse
Affiliation(s)
- Tao Lv
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - He-Sheng Zheng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China
| | - Jin-Dong Mao
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Fan Yang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Le Yang
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Rui Liu
- Department of Rehabilitation Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712000, PR China.
| |
Collapse
|
2
|
Electroacupuncture Alleviates 46-Trinitrobenzene Sulfonic Acid-Induced Visceral Pain via the Glutamatergic Pathway in the Prefrontal Cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4463063. [PMID: 36713031 PMCID: PMC9879690 DOI: 10.1155/2023/4463063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Visceral pain caused by inflammatory bowel disease (IBD) greatly diminishes the quality of life in affected patients. Yet, the mechanism of how IBD causes visceral pain is currently not fully understood. Previous studies have suggested that the central nervous system (CNS) and gut-brain axis (GBA) play an important role in IBD-inducing visceral pain. As one of the treatments for IBD, electroacupuncture (EA) has been used to treat various types of pain and gastrointestinal diseases in clinical practice. However, whether EA relieves the visceral pain of IBD through the gut-brain axis has not been confirmed. To verify the relationship between visceral pain and CNS, the following experiments were conducted. 1H-NMR analysis was performed on the prefrontal cortex (PFC) tissue obtained from IBD rat models to determine the link between the metabolites and their role in EA treatment against visceral pain. Western blot assay was employed for detecting the contents of glutamate transporter excitatory amino acid transporters 2 (EAAT2) and the glutamate receptor N-methyl-D-aspartate (NMDA) to verify whether EA treatment can alleviate neurotoxic symptoms induced by abnormal increases of glutamate. Study results showed that the glutamate content was significantly increased in the PFC of TNBS-induced IBD rats. This change was reversed after EA treatment. This process was associated with increased EAAT2 expression and decreased expression of NMDA receptors in the PFC. In addition, an increase in intestinal glutamic-metabolizing bacteria was observed. In conclusion, this study suggests that EA treatment can relieve visceral pain by reducing glutamine toxicity in the PFC, and serves an alternative clinical utility.
Collapse
|
3
|
Zhou CH, Xue F, Shi QQ, Xue SS, Zhang T, Ma XX, Yu LS, Liu C, Wang HN, Peng ZW. The Impact of Electroacupuncture Early Intervention on the Brain Lipidome in a Mouse Model of Post-traumatic Stress Disorder. Front Mol Neurosci 2022; 15:812479. [PMID: 35221914 PMCID: PMC8866946 DOI: 10.3389/fnmol.2022.812479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The neuroprotective effect of electroacupuncture (EA) treatment has been well studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of post-traumatic stress disorder (PTSD) and may be a target for treatment. However, the influence of early EA intervention on brain lipid composition in patients with PTSD has never been investigated. Using a modified single prolonged stress (mSPS) model in mice, we assessed the anti-PTSD-like effects of early intervention using EA and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. mSPS induced changes in lipid composition in the hippocampus, notably in the content of sphingolipids, glycerolipids, and fatty acyls. These lipid changes were more robust than those observed in the PFC. Early intervention with EA after mSPS ameliorated PTSD-like behaviors and partly normalized mSPS-induced lipid changes, notably in the hippocampus. Cumulatively, our data suggest that EA may reverse mSPS-induced PTSD-like behaviors due to region-specific regulation of the brain lipidome, providing new insights into the therapeutic mechanism of EA.
Collapse
Affiliation(s)
- Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Qing-Qing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Tian Zhang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xin-Xu Ma
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Li-Sheng Yu
- Department of General Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Chuang Liu
- Department of Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Cao BQ, Tan F, Zhan J, Lai PH. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regen Res 2021; 16:944-954. [PMID: 33229734 PMCID: PMC8178780 DOI: 10.4103/1673-5374.297061] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.
Collapse
Affiliation(s)
- Bing-Qian Cao
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng-Hui Lai
- Department of Rehabilitation, Nan'ao People's Hospital Dapeng New District, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Electroacupuncture Pretreatment Elicits Tolerance to Cerebral Ischemia/Reperfusion through Inhibition of the GluN2B/m-Calpain/p38 MAPK Proapoptotic Pathway. Neural Plast 2020; 2020:8840675. [PMID: 33061951 PMCID: PMC7542475 DOI: 10.1155/2020/8840675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background As one of the first steps in the pathology of cerebral ischemia, glutamate-induced excitotoxicity progresses too fast to be the target of postischemic intervention. However, ischemic preconditioning including electroacupuncture (EA) might elicit cerebral ischemic tolerance through ameliorating excitotoxicity. Objective To investigate whether EA pretreatment based on TCM theory could elicit cerebral tolerance against ischemia/reperfusion (I/R) injury, and explore its potential excitotoxicity inhibition mechanism from regulating proapoptotic pathway of the NMDA subtype of glutamate receptor (GluN2B). Methods The experimental procedure included 5 consecutive days of pretreatment stage and the subsequent modeling stage for one day. All rats were evenly randomized into three groups: sham MCAO/R, MCAO/R, and EA+MCAO/R. During pretreatment procedure, only rats in the EA+MCAO/R group received EA intervention on GV20, SP6, and PC6 once a day for 5 days. Model preparation for MCAO/R or sham MCAO/R started 2 hours after the last pretreatment. 24 hours after model preparation, the Garcia neurobehavioral scoring criteria was used for the evaluation of neurological deficits, TTC for the measurement of infarct volume, TUNEL staining for determination of neural cell apoptosis at hippocampal CA1 area, and WB and double immunofluorescence staining for expression and the cellular localization of GluN2B and m-calpain and p38 MAPK. Results This EA pretreatment regime could improve neurofunction, decrease cerebral infarction volume, and reduce neuronal apoptosis 24 hours after cerebral I/R injury. And EA pretreatment might inhibit the excessive activation of GluN2B receptor, the GluN2B downstream proapoptotic mediator m-calpain, and the phosphorylation of its transcription factor p38 MAPK in the hippocampal neurons after cerebral I/R injury. Conclusion The EA regime might induce tolerance against I/R injury partially through the regulation of the proapoptotic GluN2B/m-calpain/p38 MAPK pathway of glutamate.
Collapse
|
6
|
Ma Z, Zhang Z, Bai F, Jiang T, Yan C, Wang Q. Electroacupuncture Pretreatment Alleviates Cerebral Ischemic Injury Through α7 Nicotinic Acetylcholine Receptor-Mediated Phenotypic Conversion of Microglia. Front Cell Neurosci 2019; 13:537. [PMID: 31866829 PMCID: PMC6908971 DOI: 10.3389/fncel.2019.00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) pretreatment alleviates cerebral ischemic injury through α7 nicotinic acetylcholine receptor (α7nAChR). We attempted to investigate whether the phenotypic conversion of microglia was involved in the therapeutic effect of EA pretreatment in cerebral ischemia through α7nAChR. Adult male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion (MCAO) after EA or α7nAChR agonist N-(3R)-1-azabicyclo[2.2.2]oct-3-yl-furo[2,3-c]pyridine-5-carboxamide hydrochloride (PHA-543,613 hydrochloride) and antagonist α-bungarotoxin (α-BGT) pretreatment. Primary microglia were subjected to drug pretreatment and oxygen-glucose deprivation (OGD). The expressions of the classical activated phenotype (M1) microglia markers induced nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and cluster of differentiation 86 (CD86); the alternative activated phenotype (M2) microglia markers arginase-1 (Arg-1), transforming growth factor-β1 (TGF-β1), and cluster of differentiation 206 (CD206); and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) in the ischemic penumbra or in the supernatant of primary microglia were analyzed. The infarction volume and neurological scores were assessed 72 h after reperfusion. The cell viability and lactate dehydrogenase (LDH) release of neurons co-cultured with microglia were analyzed using cell counting kit-8 (CCK-8) and LDH release assays. EA pretreatment decreased the expressions of M1 markers (iNOS, IL-1β, and CD86) and pro-inflammatory cytokines (TNF-α and IL-6), whereas it increased the expressions of M2 markers (Arg-1, TGF-β1, and CD206) and anti-inflammatory cytokines (IL-4 and IL-10) by activating α7nAChR. EA pretreatment also significantly reduced the infarction volume and improved the neurological deficit. The activation of α7nAChR in microglia relieved the inflammatory response of primary microglia subjected to OGD and attenuated the injury of neurons co-cultured with microglia. In conclusion, EA pretreatment alleviates cerebral ischemic injury through α7nAChR-mediated phenotypic conversion of microglia, which may be a new mechanism for the EA pretreatment-induced neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Zhi Ma
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zengli Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuhai Bai
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Jiang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaoying Yan
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Wu Y, Jiang Y, Shao X, He X, Shen Z, Shi Y, Wang C, Fang J. Proteomics analysis of the amygdala in rats with CFA-induced pain aversion with electro-acupuncture stimulation. J Pain Res 2019; 12:3067-3078. [PMID: 32009812 PMCID: PMC6859335 DOI: 10.2147/jpr.s211826] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Clinical patients suffering from pain usually exhibit aversion to pain-associated environments (pain aversion). Electro-acupuncture (EA) has been proven to be effective for the treatment of pain aversion in our previous studies. The amygdala could have substantial consequences on emotion and pain consolidation as well as general pain aversion behavior, however, the underlying mechanism remains unclear. Purpose The current study was performed to investigate Isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative proteomic analysis of the amygdala in rats with complete Freund’s adjuvant (CFA)-induced pain aversion, and comprehensive analysis of protein expression were performed to explore the underlying mechanism by which EA affects pain aversion. Materials and methods Inflammatory pain was induced with an intraplantar injection of 100 μL of CFA in the plantar surface of the left hind paw of the male Spragure-Dawley (SD) rats. Then the CFA-induced conditioned place aversion (C-CPA) test was performed. EA stimulation on the bilateral Zusanli and Sanyinjiao acu-points was used for 14 days and the EA stimulation frequency is 2 Hz. Based on iTRAQ-based proteomics analysis, we investigated the protein expression in the amygdala. Results EA can increase the paw withdrawal threshold in inflammatory pain induced by noxious stimulation. A total of 6319 proteins were quantified in amygdala. Of these identified proteins, 123 were identified in the pain aversion group relative to those in the saline group, and 125 significantly altered proteins were identified in the pain aversion + EA group relative to the pain aversion group. A total of 11 proteins were found to be differentially expressed in the amygdala of pain aversion and EA-treated rats. The expression of three proteins, glyceraldehyde-3-phosphate dehydrogenase, glutamate transporter-1, and p21-activated kinase 6, were confirmed to be consistent with the results of the proteome. Conclusion Our investigation demonstrated the possible mechanism of central nerve system by which EA intervetion on pain aversion.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yan Shi
- Department of Acupuncture and Moxibustion, The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Chao Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jianqiao Fang
- Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Xue F, Xue SS, Liu L, Sang HF, Ma QR, Tan QR, Wang HN, Zhou CH, Peng ZW. Early intervention with electroacupuncture prevents PTSD-like behaviors in rats through enhancing hippocampal endocannabinoid signaling. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:171-181. [PMID: 30946940 DOI: 10.1016/j.pnpbp.2019.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Electroacupuncture (EA) is a clinically useful physiological therapy that has been recently adopted to treat several brain disorders. However, the potential role of early EA intervention in the prevention of posttraumatic stress disorder (PTSD) as well as its potential cellular and molecular mechanism has never been investigated previously. In the present study, we used an enhanced single prolonged stress (ESPS) model to access the effects of early EA intervention on the prevention of anxiety-like and fear learning behaviors, as well as the influence of the expression of post-synaptic density protein 95 (PSD95), synaptophysin (Syn), brain derived neurotrophic factor (BDNF), diacylglycerol lipase alpha (DAGLα) and cannabinoid type 1 receptor (CB1R) in the hippocampus with or without DAGLα or CB1R knockdown by a short hairpin RNA (shRNA) in the hippocampus. Moreover, the effects of electrical stimulation with different parameters on the expression of DAGLα and CB1R in the hippocampal astrocytes were also observed. The results showed that Early EA intervention improved hippocampal synaptic plasticity and ameliorated PTSD-like behaviors and also increased expression of BDNF, DAGLα and CB1R. However, either DAGLα or CB1R knockdown by a short hairpin RNA (shRNA) eliminated the neuroprotective effects of early EA intervention. Furthermore, electrical stimulation with 2/15 Hz 1 mA elevated the expression of DAGLα and CB1R. Altogether, our findings provide new insights regarding the possibility of using early EA intervention in the prevention of PTSD, and the protective effects of EA is involving the activation of DAGLα and CB1R.
Collapse
Affiliation(s)
- Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Liu
- Institution of Neuroscience, Fourth Military Medical University, Xi'an 710032, China
| | - Han-Fei Sang
- Department of Anesthesiology, Xiang'an Hospital, Xiamen University, Xiamen 361101, China
| | - Quan-Rui Ma
- Department of Human Anatomy and Histology and Embryology, Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Zhou CH, Xue F, Xue SS, Sang HF, Liu L, Wang Y, Cai M, Zhang ZJ, Tan QR, Wang HN, Peng ZW. Electroacupuncture Pretreatment Ameliorates PTSD-Like Behaviors in Rats by Enhancing Hippocampal Neurogenesis via the Keap1/Nrf2 Antioxidant Signaling Pathway. Front Cell Neurosci 2019; 13:275. [PMID: 31293390 PMCID: PMC6598452 DOI: 10.3389/fncel.2019.00275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Electroacupuncture (EA) pretreatment is a clinically useful therapy for several brain disorders. However, whether and via which exact molecular mechanisms it ameliorates post-traumatic stress disorder (PTSD) remains unclear. In the present study, rats received EA stimulation for seven consecutive days before exposure to enhanced single prolonged stress (ESPS). Anxiety-like and fear learning behaviors; hippocampal neurogenesis; the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (keap1), and heme oxygenase 1 (HO-1); and the activity of AMP-activated kinase (AMPK) were evaluated at 14 days after ESPS. EA pretreatment improved hippocampal neurogenesis and ameliorated anxiety-like behaviors in ESPS-treated rats. EA pretreatment also increased the expression of Nrf2 and HO-1 and the activity of AMPK. Furthermore, Nrf2 knockdown by a short hairpin RNA affected anxiety-like behaviors and expression of neuroprotective markers (BDNF, DCX) in a manner similar to ESPS alone and dampened the neuroprotective effects of EA pretreatment. In contrast, Keap1 knockdown increased the expression of HO-1, improved hippocampal neurogenesis, and alleviated PTSD-like behaviors. Altogether, our results suggest that EA pretreatment ameliorates ESPS-induced anxiety-like behaviors and prevents hippocampal neurogenesis disruption in a rat model of PTSD possibly through regulation of the keap1/Nrf2 antioxidant defense pathway.
Collapse
Affiliation(s)
- Cui-hong Zhou
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fen Xue
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shan-shan Xue
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Han-fei Sang
- Department of Anesthesiology, Xiang’an Hospital, Xiamen, China
| | - Ling Liu
- Institution of Neuroscience, Fourth Military Medical University, Xi’an, China
| | - Ying Wang
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Min Cai
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qing-rong Tan
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hua-ning Wang
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng-wu Peng
- Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Zhang GF, Yang P, Yin Z, Chen HL, Ma FG, Wang B, Sun LX, Bi YL, Shi F, Wang MS. Electroacupuncture preconditioning protects against focal cerebral ischemia/reperfusion injury via suppression of dynamin-related protein 1. Neural Regen Res 2018; 13:86-93. [PMID: 29451211 PMCID: PMC5840997 DOI: 10.4103/1673-5374.224373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.
Collapse
Affiliation(s)
- Gao-Feng Zhang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Pei Yang
- Department of Public Health, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zeng Yin
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fu-Guo Ma
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bin Wang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Li-Xin Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
11
|
Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J Neuroimmune Pharmacol 2017; 12:575-592. [DOI: 10.1007/s11481-017-9747-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
12
|
The endocannabinoid system, a novel and key participant in acupuncture's multiple beneficial effects. Neurosci Biobehav Rev 2017; 77:340-357. [PMID: 28412017 DOI: 10.1016/j.neubiorev.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
Abstract
Acupuncture and its modified forms have been used to treat multiple medical conditions, but whether the diverse effects of acupuncture are intrinsically linked at the cellular and molecular level and how they might be connected have yet to be determined. Recently, an emerging role for the endocannabinoid system (ECS) in the regulation of a variety of physiological/pathological conditions has been identified. Overlap between the biological and therapeutic effects induced by ECS activation and acupuncture has facilitated investigations into the participation of ECS in the acupuncture-induced beneficial effects, which have shed light on the idea that the ECS may be a primary mediator and regulatory factor of acupuncture's beneficial effects. This review seeks to provide a comprehensive summary of the existing literature concerning the role of endocannabinoid signaling in the various effects of acupuncture, and suggests a novel notion that acupuncture may restore homeostasis under different pathological conditions by regulating similar networks of signaling pathways, resulting in the activation of different reaction cascades in specific tissues in response to pathological insults.
Collapse
|
13
|
Zhu XL, Chen X, Wang W, Li X, Huo J, Wang Y, Min YY, Su BX, Pei JM. Electroacupuncture pretreatment attenuates spinal cord ischemia-reperfusion injury via inhibition of high-mobility group box 1 production in a LXA 4 receptor-dependent manner. Brain Res 2017; 1659:113-120. [PMID: 28089662 DOI: 10.1016/j.brainres.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/01/2017] [Accepted: 01/08/2017] [Indexed: 12/29/2022]
Abstract
Paraplegia caused by spinal cord ischemia is a severe complication following surgeries in the thoracic aneurysm. HMGB1 has been recognized as a key mediator in spinal inflammatory response after spinal cord injury. Electroacupuncture (EA) pretreatment could provide neuroprotection against cerebral ischemic injury through inhibition of HMGB1 release. Therefore, the present study aims to test the hypothesis that EA pretreatment protects against spinal cord ischemia-reperfusion (I/R) injury via inhibition of HMGB1 release. Animals were pre-treated with EA stimulations 30min daily for 4 successive days, followed by 20-min spinal cord ischemia induced by using a balloon catheter placed into the aorta. We found that spinal I/R significantly increased mRNA and cytosolic protein levels of HMGB1 after reperfusion in the spinal cord. The EA-pretreated animals displayed better motor performance after reperfusion along with the decrease of apoptosis, HMGB1, TNF-α and IL-1β expressions in the spinal cord, whereas these effects by EA pretreatment was reversed by rHMGB1 administration. Furthermore, EA pretreatment attenuated the down-regulation of LXA4 receptor (ALX) expression induced by I/R injury, while the decrease of HMGB1 release in EA-pretreated rats was reversed by the combined BOC-2 (an inhibitor of LXA4 receptor) treatment. In conclusion, EA pretreatment may promote spinal I/R injury through the inhibition of HMGB1 release in a LXA4 receptor-dependent manner. Our data may represent a new therapeutic technique for treating spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China; Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Wei Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Li
- Department of Anesthesiology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Jia Huo
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Yuan Min
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bin-Xiao Su
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jian-Ming Pei
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
14
|
Jin XL, Li PF, Zhang CB, Wu JP, Feng XL, Zhang Y, Shen MH. Electroacupuncture alleviates cerebral ischemia and reperfusion injury via modulation of the ERK1/2 signaling pathway. Neural Regen Res 2016; 11:1090-8. [PMID: 27630691 PMCID: PMC4994450 DOI: 10.4103/1673-5374.187041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Electroacupuncture (EA) has anti-oxidative and anti-inflammatory actions, but whether the neuroprotective effect of EA against cerebral ischemia-reperfusion (I/R) injury involves modulation of the extracellular regulated kinase 1/2 (ERK1/2) signaling pathway is unclear. Middle cerebral artery occlusion (MCAO) was performed in Sprague-Dawley rats for 2 hours followed by reperfusion for 24 hours. A 30-minute period of EA stimulation was applied to both Baihui (DU20) and Dazhui (DU14) acupoints in each rat (10 mm EA penetration depth, continuous wave with a frequency of 3 Hz, and a current intensity of 1-3 mA) when reperfusion was initiated. EA significantly reduced infarct volume, alleviated neuronal injury, and improved neurological function in rats with MCAO. Furthermore, high mRNA expression of Bax and low mRNA expression of Bcl-2 induced by MCAO was prevented by EA. EA substantially restored total glutathione reductase (GR), glutathione (GSH) and glutathione peroxidase (GSH-Px) levels. Additionally, Nrf2 and glutamylcysteine synthetase (GCS) expression levels were markedly increased by EA. Interestingly, the neuroprotective effects of EA were attenuated when ERK1/2 activity was blocked by PD98059 (a specific MEK inhibitor). Collectively, our findings indicate that activation of the ERK1/2 signaling pathway contributes to the neuroprotective effects of EA. Our study provides a better understanding of the regulatory mechanisms underlying the therapeutic effectiveness of EA.
Collapse
Affiliation(s)
- Xiao-Lu Jin
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Peng-Fei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Chun-Bing Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China; College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jin-Ping Wu
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xi-Lian Feng
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ying Zhang
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Mei-Hong Shen
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
15
|
Electroacupuncture Attenuates Cerebral Ischemia and Reperfusion Injury in Middle Cerebral Artery Occlusion of Rat via Modulation of Apoptosis, Inflammation, Oxidative Stress, and Excitotoxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9438650. [PMID: 27123035 PMCID: PMC4830716 DOI: 10.1155/2016/9438650] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
Electroacupuncture (EA) has several properties such as antioxidant, antiapoptosis, and anti-inflammatory properties. The current study was to investigate the effects of EA on the prevention and treatment of cerebral ischemia-reperfusion (I/R) injury and to elucidate possible molecular mechanisms. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. EA stimulation was applied to both Baihui and Dazhui acupoints for 30 min in each rat per day for 5 successive days before MCAO (pretreatment) or when the reperfusion was initiated (treatment). Neurologic deficit scores, infarction volumes, brain water content, and neuronal apoptosis were evaluated. The expressions of related inflammatory cytokines, apoptotic molecules, antioxidant systems, and excitotoxic receptors in the brain were also investigated. Results showed that both EA pretreatment and treatment significantly reduced infarct volumes, decreased brain water content, and alleviated neuronal injury in MCAO rats. Notably, EA exerts neuroprotection against I/R injury through improving neurological function, attenuating the inflammation cytokines, upregulating antioxidant systems, and reducing the excitotoxicity. This study provides a better understanding of the molecular mechanism underlying the traditional use of EA.
Collapse
|
16
|
Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. Altern Ther Health Med 2015; 15:241. [PMID: 26187498 PMCID: PMC4506591 DOI: 10.1186/s12906-015-0752-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 06/29/2015] [Indexed: 11/10/2022]
Abstract
Background This study aimed to determine the effects of electroacupuncture stimulation at the Baihui (GV20) and Fengfu (GV16) acupoints, at frequencies of 5Hz (EA-5Hz) and 25Hz (EA-25Hz), 7 days after cerebral ischemia-reperfusion (I/R) injury, and to evaluate the possible signaling mechanisms involved in mitogen-activated protein kinase (MAPK) pathways. Methods Rats were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 7 days of reperfusion. EA-5Hz or EA-25Hz was applied immediately after MCAo and then once daily for 7 consecutive days. Results Results indicated that EA-5Hz and EA-25Hz both markedly attenuated cerebral infarction and neurological deficits. EA-5Hz and EA-25Hz both markedly downregulated cytosolic glial fibrillary acidic protein (GFAP), mitochondrial Bax, mitochondrial and cytosolic second mitochondrial-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with low isoelectric point (Smac/DIABLO), and cytosolic cleaved caspase-3 expression, and effectively restored cytosolic phospho-p38 MAPK (p-p38 MAPK), cytosolic cAMP response element-binding protein (CREB), mitochondrial Bcl-xL, and cytosolic X-linked inhibitor of apoptosis protein (XIAP) expression, in the ischemic cortical penumbra 7 days after reperfusion. Both EA-5Hz and EA-25Hz also significantly increased the ratios of mitochondrial Bcl-xL/Bax and Bcl-2/Bax, respectively. Conclusions Both EA-5Hz and EA-25Hz effectively downregulate reactive astrocytosis to provide neuroprotection against cerebral infarction, most likely by activating the p38 MAPK/CREB signaling pathway. The modulating effects of EA-5Hz and EA-25Hz on Bax-mediated apoptosis are possibly due to the activation of p38 MAPK/CREB/Bcl-xL and p38 MAPK/CREB/Bcl-2 signaling pathways, respectively, and eventually contribute to the prevention of Smac/DIABLO translocation and subsequent restoration of XIAP-mediated suppression of caspase-3 in the cortical periinfarct area 7 days after reperfusion.
Collapse
|