1
|
Amphetamine Reverses Escalated Cocaine Intake via Restoration of Dopamine Transporter Conformation. J Neurosci 2017; 38:484-497. [PMID: 29175958 DOI: 10.1523/jneurosci.2604-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Cocaine abuse disrupts dopamine system function, and reduces cocaine inhibition of the dopamine transporter (DAT), which results in tolerance. Although tolerance is a hallmark of cocaine addiction and a DSM-V criterion for substance abuse disorders, the molecular adaptations producing tolerance are unknown, and testing the impact of DAT changes on drug taking behaviors has proven difficult. In regard to treatment, amphetamine has shown efficacy in reducing cocaine intake; however, the mechanisms underlying these effects have not been explored. The goals of this study were twofold; we sought to (1) identify the molecular mechanisms by which cocaine exposure produces tolerance and (2) determine whether amphetamine-induced reductions in cocaine intake are connected to these mechanisms. Using cocaine self-administration and fast-scan cyclic voltammetry in male rats, we show that low-dose, continuous amphetamine treatment, during self-administration or abstinence, completely reversed cocaine tolerance. Amphetamine treatment also reversed escalated cocaine intake and decreased motivation to obtain cocaine as measured in a behavioral economics task, thereby linking tolerance to multiple facets of cocaine use. Finally, using fluorescence resonance energy transfer imaging, we found that cocaine tolerance is associated with the formation of DAT-DAT complexes, and that amphetamine disperses these complexes. In addition to extending our basic understanding of DATs and their role in cocaine reinforcement, we serendipitously identified a novel therapeutic target: DAT oligomer complexes. We show that dispersion of oligomers is concomitant with reduced cocaine intake, and propose that pharmacotherapeutics aimed at these complexes may have potential for cocaine addiction treatment.SIGNIFICANCE STATEMENT Tolerance to cocaine's subjective effects is a cardinal symptom of cocaine addiction and a DSM-V criterion for substance abuse disorders. However, elucidating the molecular adaptions that produce tolerance and determining its behavioral impact have proven difficult. Using cocaine self-administration in rats, we link tolerance to cocaine effects at the dopamine transporter (DAT) with aberrant cocaine-taking behaviors. Further, tolerance was associated with multi-DAT complexes, which formed after cocaine exposure. Treatment with amphetamine deconstructed DAT complexes, reversed tolerance, and decreased cocaine seeking. These data describe the behavioral consequence of cocaine tolerance, provide a putative mechanism for its development, and suggest that compounds that disperse DAT complexes may be efficacious treatments for cocaine addiction.
Collapse
|
2
|
Krout D, Pramod AB, Dahal RA, Tomlinson MJ, Sharma B, Foster JD, Zou MF, Boatang C, Newman AH, Lever JR, Vaughan RA, Henry LK. Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Biochem Pharmacol 2017; 142:204-215. [PMID: 28734777 DOI: 10.1016/j.bcp.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2β position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2-24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2-24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2-24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (-)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.
Collapse
Affiliation(s)
- Danielle Krout
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Akula Bala Pramod
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Rejwi Acharya Dahal
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Michael J Tomlinson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Babita Sharma
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA
| | - Mu-Fa Zou
- Medicinal Chemistry Section, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Comfort Boatang
- Medicinal Chemistry Section, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - John R Lever
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, MO 65211, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, ND 58202, USA.
| |
Collapse
|
3
|
Sweeney CG, Tremblay BP, Stockner T, Sitte HH, Melikian HE. Dopamine Transporter Amino and Carboxyl Termini Synergistically Contribute to Substrate and Inhibitor Affinities. J Biol Chem 2016; 292:1302-1309. [PMID: 27986813 DOI: 10.1074/jbc.m116.762872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
Extracellular dopamine and serotonin concentrations are determined by the presynaptic dopamine (DAT) and serotonin (SERT) transporters, respectively. Numerous studies have investigated the DAT and SERT structural elements contributing to inhibitor and substrate binding. To date, crystallographic studies have focused on conserved transmembrane domains, where multiple substrate binding and translocation features are conserved. However, it is unknown what, if any, role the highly divergent intracellular N and C termini contribute to these processes. Here, we used chimeric proteins to test whether DAT and SERT N and C termini contribute to transporter substrate and inhibitor affinities. Replacing the DAT N terminus with that of SERT had no effect on DA transport Vmax but significantly decreased DAT substrate affinities for DA and amphetamine. Similar losses in uptake inhibition were observed for small DAT inhibitors, whereas substituting the DAT C terminus with that of SERT affected neither substrate nor inhibitor affinities. In contrast, the N-terminal substitution was completely tolerated by the larger DAT inhibitors, which exhibited no loss in apparent affinity. Remarkably, all affinity losses were rescued in DAT chimeras encoding both SERT N and C termini. The sensitivity to amino-terminal substitution was specific for DAT, because replacing the SERT N and/or C termini affected neither substrate nor inhibitor affinities. Taken together, these findings provide compelling experimental evidence that DAT N and C termini synergistically contribute to substrate and inhibitor affinities.
Collapse
Affiliation(s)
- Carolyn G Sweeney
- From the Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and
| | - Bradford P Tremblay
- From the Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and
| | - Thomas Stockner
- the Institute for Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald H Sitte
- the Institute for Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Haley E Melikian
- From the Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and
| |
Collapse
|
4
|
Söderhielm PC, Andersen J, Munro L, Nielsen AT, Kristensen AS. Substrate and Inhibitor-Specific Conformational Changes in the Human Serotonin Transporter Revealed by Voltage-Clamp Fluorometry. Mol Pharmacol 2015; 88:676-88. [PMID: 26174773 DOI: 10.1124/mol.115.099911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/13/2015] [Indexed: 01/05/2023] Open
Abstract
The serotonin transporter (SERT) regulates neurotransmission by the biogenic monoamine neurotransmitter serotonin (5-HT, 5-hydroxytryptamine) in the central nervous system, and drugs inhibiting SERT are widely used for the treatment of a variety of central nervous system diseases. The conformational dynamics of SERT transport function and inhibition is currently poorly understood. We used voltage-clamp fluorometry to study conformational changes in human SERT (hSERT) during 5-HT transport and inhibitor binding. Cys residues were introduced at 12 positions in hSERT to enable covalent attachment of a rhodamine-based fluorophore. Transport-associated changes in fluorescence from fluorophore-labeled hSERT expressed in Xenopus oocytes could be robustly detected at four positions in hSERT: endogenous Cys109 in the top of transmembrane domain (TM) 1b, Cys substituted for Thr323 in the top of TM6, Ala419 in the interface between TM8 and extracellular loop (EL) 4, and Leu481 in EL5. The reporter positions were used for time-resolved measurement of conformational changes during 5-HT transport and binding of cocaine and the selective serotonin reuptake inhibitors fluoxetine and escitalopram. At all reporter positions, fluorescence changes observed upon substrate application were distinctly different from those observed upon inhibitor application, with respect to relative amplitude or direction. Furthermore, escitalopram, fluoxetine, and cocaine induced a very similar pattern of fluorescent changes overall, which included movements within or around TM1b, EL4, and EL5. Taken together, our data lead us to suggest that competitive inhibitors stabilize hSERT in a state that is different from the apo outward-open conformation as well as inward-facing conformations.
Collapse
Affiliation(s)
- Pella C Söderhielm
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lachlan Munro
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anne T Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Cheng MH, Block E, Hu F, Cobanoglu MC, Sorkin A, Bahar I. Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding. Front Neurol 2015; 6:134. [PMID: 26106364 PMCID: PMC4460958 DOI: 10.3389/fneur.2015.00134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/26/2015] [Indexed: 12/29/2022] Open
Abstract
Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Ethan Block
- Department of Cell Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Feizhuo Hu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University , Beijing , China
| | - Murat Can Cobanoglu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
6
|
Dahal RA, Pramod AB, Sharma B, Krout D, Foster JD, Cha JH, Cao J, Newman AH, Lever JR, Vaughan RA, Henry LK. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site. J Biol Chem 2014; 289:29712-27. [PMID: 25179220 PMCID: PMC4207985 DOI: 10.1074/jbc.m114.571521] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/09/2014] [Indexed: 12/20/2022] Open
Abstract
The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3β-(p-chlorophenyl)tropane-2β-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.
Collapse
Affiliation(s)
- Rejwi Acharya Dahal
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Akula Bala Pramod
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Babita Sharma
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Danielle Krout
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - James D Foster
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Joo Hwan Cha
- the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224
| | - Jianjing Cao
- the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224
| | - Amy Hauck Newman
- the Medicinal Chemistry Section, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland 21224
| | - John R Lever
- the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201, and the Department of Radiology, Radiopharmaceutical Sciences Institute, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211
| | - Roxanne A Vaughan
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203,
| | - L Keith Henry
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203,
| |
Collapse
|
7
|
The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS. Neurochem Int 2014; 73:1-3. [DOI: 10.1016/j.neuint.2014.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/30/2022]
|