1
|
Saleh NK, Farrag SM, El-Yamany MF, Kamel AS. Exploring Dapagliflozin's Influence on Autophagic Flux in Mania-like Behaviour: Insights from the LKB1/AMPK/LC3 Pathway in a Mouse Model. J Neuroimmune Pharmacol 2025; 20:57. [PMID: 40402300 DOI: 10.1007/s11481-025-10218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025]
Abstract
Mania-like episodes are neuropsychiatric disturbances associated with bipolar disorder (BD). Autophagic flux disturbance evolved as one of the molecular mechanisms implicated in mania. Recently, Dapagliflozin (DAPA) has corrected autophagic signaling in several neurological disorders. Yet, no endeavours examined the autophagic impact of DAPA in mania-like behaviours. This study aimed to investigate the effect of DAPA on disrupted autophagic pathways in a mouse model of mania-like behaviour. Mania-like behaviour was induced through paradoxical sleep deprivation (PSD) using the multiple-platform method for a duration of 36 h. Mice were divided into three groups, with DAPA (1 mg/kg/day, orally) administered for one week. Behavioural assessments were conducted on the 7th day. DAPA mitigated anxiety-like behaviour in the open field test and improved motor coordination and muscle tone in the rotarod test. Mechanistically, DAPA activated hippocampal autophagy-related markers; liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway, autophagy related gene 7 (ATG7), and microtubule-associated protein light chain 3II (LC3II). This was associated with reduced levels of the autophagosome receptor p62 protein, which subsequently enhanced GABAA receptor-associated protein (GABARAP), facilitating the surface presentation of GABAA receptors. Additionally, DAPA upregulated the GABAB receptor R2 subunit through trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Furthermore, DAPA mitigated elevated serum stress hormones and restored the balance between proinflammatory and anti-inflammatory cytokines in both cortical and hippocampal tissues. These findings highlight the role of autophagic flux modulation by DAPA and its therapeutic potential in mitigating mania-like behaviours.
Collapse
Affiliation(s)
- Nada K Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Sama M Farrag
- Pharmacology and Toxicology Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Mohamed F El-Yamany
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Shishkova VN, Nartsissov YR, Titova VY, Sheshegova EV. MOLECULAR MECHANISMS DEFINING APPLICATION OF GLYCINE AND ZINC COMBINATIONIN CORRECTION OF STRESS AND ANXIETY MAIN MANIFESTATIONS. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-5-404-415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the work was to carry out a systematic analysis of the molecular mechanisms that determine the possibility of a combined use of amino acid glycine and zinc compounds for the treatment of patients with manifestations of stress and anxiety.Materials and methods. Information retrieval (Scopus, PubMed) and library (eLibrary) databases were used as research tools. In some cases, the ResearchGate application was applied for a semantic search. The analysis and generalization of references was carried out on the research topic, covering the period from 2000 to the present time.Results. It has been shown that amino acid glycine, along with gamma-aminobutyric acid (GABA), is a key neurotransmitter that regulates physiological inhibition processes in the central nervous system (CNS) by increasing transmembrane conductance in specific pentameric ligand-gated ion channels. The introduction of zinc ions can potentiate the opening of these receptors by increasing their affinity for glycine, resulting in an inhibitory processes increase in CNS neurons. The replenishment of the glycine and zinc combined deficiency is an important element in the correction of a post-stress dysfunction of the central nervous system. A balanced intake of zinc and glycine is essential for most people who experience daily effects of multiple stresses and anxiety. This combination is especially useful for the people experiencing a state of chronic psycho-emotional stress and maladaptation, including those who have a difficulty in falling asleep.Conclusion. A balanced maintenance of the zinc and glycine concentration in the body of a healthy person leads to the development of a stable anti-anxiety effect, which is accompanied by the normalization of the sleep-wake rhythm, which makes it possible to have a good rest without any loss of working efficiency after waking up.
Collapse
Affiliation(s)
- V. N. Shishkova
- National Medical Research Center for Therapy and Preventive Medicine;
Evdokimov Moscow State Medical and Dental University
| | - Y. R. Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology;
Biomedical Research Group, BiDiPharma GmbH
| | - V. Y. Titova
- Institute of Cytochemistry and Molecular Pharmacology
| | | |
Collapse
|
3
|
Mitre M, Saadipour K, Williams K, Khatri L, Froemke RC, Chao MV. Transactivation of TrkB Receptors by Oxytocin and Its G Protein-Coupled Receptor. Front Mol Neurosci 2022; 15:891537. [PMID: 35721318 PMCID: PMC9201241 DOI: 10.3389/fnmol.2022.891537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-derived Neurotrophic Factor (BDNF) binds to the TrkB tyrosine kinase receptor, which dictates the sensitivity of neurons to BDNF. A unique feature of TrkB is the ability to be activated by small molecules in a process called transactivation. Here we report that the brain neuropeptide oxytocin increases BDNF TrkB activity in primary cortical neurons and in the mammalian neocortex during postnatal development. Oxytocin produces its effects through a G protein-coupled receptor (GPCR), however, the receptor signaling events that account for its actions have not been fully defined. We find oxytocin rapidly transactivates TrkB receptors in bath application of acute brain slices of 2-week-old mice and in primary cortical culture by increasing TrkB receptor tyrosine phosphorylation. The effects of oxytocin signaling could be distinguished from the related vasopressin receptor. The transactivation of TrkB receptors by oxytocin enhances the clustering of gephyrin, a scaffold protein responsible to coordinate inhibitory responses. Because oxytocin displays pro-social functions in maternal care, cognition, and social attachment, it is currently a focus of therapeutic strategies in autism spectrum disorders. Interestingly, oxytocin and BDNF are both implicated in the pathophysiology of depression, schizophrenia, anxiety, and cognition. These results imply that oxytocin may rely upon crosstalk with BDNF signaling to facilitate its actions through receptor transactivation.
Collapse
Affiliation(s)
- Mariela Mitre
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Departments of Cell Biology, Psychiatry, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Khalil Saadipour
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
| | - Kevin Williams
- Departments of Biology and Psychology, University of Georgia, Athens, GA, United States
| | - Latika Khatri
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
| | - Robert C. Froemke
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Moses V. Chao
- Departments of Cell Biology, Neuroscience & Physiology, and Psychiatry, Skirball Institute for Biomolecular Medicine, New York, NY, United States
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, United States
- Departments of Cell Biology, Psychiatry, New York University Langone Medical Center, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
4
|
Qi C, Chen A, Mao H, Hu E, Ge J, Ma G, Ren K, Xue Q, Wang W, Wu S. Excitatory and Inhibitory Synaptic Imbalance Caused by Brain-Derived Neurotrophic Factor Deficits During Development in a Valproic Acid Mouse Model of Autism. Front Mol Neurosci 2022; 15:860275. [PMID: 35465089 PMCID: PMC9019547 DOI: 10.3389/fnmol.2022.860275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental factors, such as medication during pregnancy, are one of the major causes of autism spectrum disorder (ASD). Valproic acid (VPA) intake during pregnancy has been reported to dramatically elevate autism risk in offspring. Recently, researchers have proposed that VPA exposure could induce excitatory or inhibitory synaptic dysfunction. However, it remains to be determined whether and how alterations in the excitatory/inhibitory (E/I) balance contribute to VPA-induced ASD in a mouse model. In the present study, we explored changes in the E/I balance during different developmental periods in a VPA mouse model. We found that typical markers of pre- and postsynaptic excitatory and inhibitory function involved in E/I balance markedly decreased during development, reflecting difficulties in the development of synaptic plasticity in VPA-exposed mice. The expression of brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the formation and maturation of glutamatergic and GABAergic synapses during postnatal development, was severely reduced in the VPA-exposed group. Treatment with exogenous BDNF during the critical E/I imbalance period rescued synaptic functions and autism-like behaviors, such as social defects. With these results, we experimentally showed that social dysfunction in the VPA mouse model of autism might be caused by E/I imbalance stemming from BDNF deficits during the developmental stage.
Collapse
Affiliation(s)
- Chuchu Qi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Andi Chen
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Erling Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Junye Ge
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, China
| | - Guaiguai Ma
- Department of Physiology, Medical College of Yan’an University, Yan’an, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenting Wang,
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- Shengxi Wu,
| |
Collapse
|
5
|
Tomoda T, Sumitomo A, Shukla R, Hirota-Tsuyada Y, Miyachi H, Oh H, French L, Sibille E. BDNF controls GABA AR trafficking and related cognitive processes via autophagic regulation of p62. Neuropsychopharmacology 2022; 47:553-563. [PMID: 34341497 PMCID: PMC8674239 DOI: 10.1038/s41386-021-01116-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
Reduced brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) neurotransmission co-occur in brain conditions (depression, schizophrenia and age-related disorders) and are associated with symptomatology. Rodent studies show they are causally linked, suggesting the presence of biological pathways mediating this link. Here we first show that reduced BDNF and GABA also co-occur with attenuated autophagy in human depression. Using mice, we then show that reducing Bdnf levels (Bdnf+/-) leads to upregulated sequestosome-1/p62, a key autophagy-associated adaptor protein, whose levels are inversely correlated with autophagic activity. Reduced Bdnf levels also caused reduced surface presentation of α5 subunit-containing GABAA receptor (α5-GABAAR) in prefrontal cortex (PFC) pyramidal neurons. Reducing p62 gene dosage restored α5-GABAAR surface expression and rescued PFC-relevant behavioral deficits of Bdnf+/- mice, including cognitive inflexibility and reduced sensorimotor gating. Increasing p62 levels was sufficient to recreate the molecular and behavioral profiles of Bdnf+/- mice. Collectively, the data reveal a novel mechanism by which deficient BDNF leads to targeted reduced GABAergic signaling through autophagic dysregulation of p62, potentially underlying cognitive impairment across brain conditions.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada. .,Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akiko Sumitomo
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.258799.80000 0004 0372 2033Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rammohan Shukla
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo, Toledo, OH USA
| | - Yuki Hirota-Tsuyada
- grid.258799.80000 0004 0372 2033Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitoshi Miyachi
- grid.258799.80000 0004 0372 2033Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hyunjung Oh
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada
| | - Leon French
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Turovskaya MV, Gaidin SG, Vedunova MV, Babaev AA, Turovsky EA. BDNF Overexpression Enhances the Preconditioning Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons. Neurosci Bull 2020; 36:733-760. [PMID: 32219700 PMCID: PMC7340710 DOI: 10.1007/s12264-020-00480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia causes depression of synaptic plasticity, hyperexcitation of neuronal networks, and the death of specific populations of neurons. However, brief episodes of hypoxia can promote the adaptation of cells. Hypoxic preconditioning is well manifested in glutamatergic neurons, while this adaptive mechanism is virtually suppressed in GABAergic neurons. Here, we show that brain-derived neurotrophic factor (BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia. The amplitudes of the NMDAR- and AMPAR-mediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the (AAV)-Syn-BDNF-EGFP virus construct. In contrast, the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning. The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning. Preconditioning suppressed apoptotic or necrotic cell death. This effect was most pronounced in cultures with BDNF overexpression. Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons. Moreover, the expression of the anti-apoptotic genes Stat3, Socs3, and Bcl-xl substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls. The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased. In turn, the expression of pro-apoptotic (Bax, Casp-3, and Fas) and pro-inflammatory (IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression. Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation (OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons, thus promoting their death. Bafilomycin A1, Brefeldin A, and tetanus toxin suppressed vesicular release (including BDNF) and shifted the gene expression profile towards excitotoxicity, inflammation, and apoptosis. These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons 24 h after hypoxia/reoxygenation cycles. This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning. Thus, our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.
Collapse
Affiliation(s)
- M V Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - M V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
7
|
Kim HY, Yang YR, Hwang H, Lee HE, Jang HJ, Kim J, Yang E, Kim H, Rhim H, Suh PG, Kim JI. Deletion of PLCγ1 in GABAergic neurons increases seizure susceptibility in aged mice. Sci Rep 2019; 9:17761. [PMID: 31780806 PMCID: PMC6882884 DOI: 10.1038/s41598-019-54477-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
Synaptic inhibition plays a fundamental role in the information processing of neural circuits. It sculpts excitatory signals and prevents hyperexcitability of neurons. Owing to these essential functions, dysregulated synaptic inhibition causes a plethora of neurological disorders, including epilepsy, autism, and schizophrenia. Among these disorders, epilepsy is associated with abnormal hyperexcitability of neurons caused by the deficits of GABAergic neuron or decreased GABAergic inhibition at synapses. Although many antiepileptic drugs are intended to improve GABA-mediated inhibition, the molecular mechanisms of synaptic inhibition regulated by GABAergic neurons are not fully understood. Increasing evidence indicates that phospholipase Cγ1 (PLCγ1) is involved in the generation of seizure, while the causal relationship between PLCγ1 and seizure has not been firmly established yet. Here, we show that genetic deletion of PLCγ1 in GABAergic neurons leads to handling-induced seizure in aged mice. In addition, aged Plcg1F/F; Dlx5/6-Cre mice exhibit other behavioral alterations, including hypoactivity, reduced anxiety, and fear memory deficit. Notably, inhibitory synaptic transmission as well as the number of inhibitory synapses are decreased in the subregions of hippocampus. These findings suggest that PLCγ1 may be a key determinant of maintaining both inhibitory synapses and synaptic transmission, potentially contributing to the regulation of E/I balance in the hippocampus.
Collapse
Affiliation(s)
- Hye Yun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
| | - Ha-Eun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 136-705, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 136-705, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| | - Jae-Ick Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
8
|
González MI. Calpain-dependent cleavage of GABAergic proteins during epileptogenesis. Epilepsy Res 2019; 157:106206. [PMID: 31585309 DOI: 10.1016/j.eplepsyres.2019.106206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/31/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Abstract
Epileptogenesis is the processes by which a normal brain transforms and becomes capable of generate spontaneous seizures. In acquired epilepsy, it is thought that epileptogenesis can be triggered by a brain injury but the understanding of the cellular or molecular changes unraveling is incomplete. In the CA1 region of hippocampus less GABAergic activity precede the appearance of spontaneous seizures and calpain overactivation has been detected after chemoconvulsant-induced status epilepticus (SE). Inhibition of calpain overactivation following SE ameliorates seizure burden, suggesting a role for calpain dysregulation in epileptogenesis. The current study analyzed if GABAergic proteins (i.e., gephyrin, the vesicular GABA transporter and the potassium chloride co-transporter 2) undergo calpain-dependent cleavage during epileptogenesis. A time-dependent generation of break down products (BDPs) for these proteins was observed in the CA1 region of hippocampus after pilocarpine-induced SE. Generation of these BDPs was partially blocked by treatment with the calpain inhibitor MDL-28170. These findings suggest that calpain-dependent loss of GABAergic proteins might promote the erosion of inhibitory drive and contribute to hyperexcitability during epileptogenesis.
Collapse
Affiliation(s)
- Marco I González
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Porcher C, Medina I, Gaiarsa JL. Mechanism of BDNF Modulation in GABAergic Synaptic Transmission in Healthy and Disease Brains. Front Cell Neurosci 2018; 12:273. [PMID: 30210299 PMCID: PMC6121065 DOI: 10.3389/fncel.2018.00273] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
In the mature healthy mammalian neuronal networks, γ-aminobutyric acid (GABA) mediates synaptic inhibition by acting on GABAA and GABAB receptors (GABAAR, GABABR). In immature networks and during numerous pathological conditions the strength of GABAergic synaptic inhibition is much less pronounced. In these neurons the activation of GABAAR produces paradoxical depolarizing action that favors neuronal network excitation. The depolarizing action of GABAAR is a consequence of deregulated chloride ion homeostasis. In addition to depolarizing action of GABAAR, the GABABR mediated inhibition is also less efficient. One of the key molecules regulating the GABAergic synaptic transmission is the brain derived neurotrophic factor (BDNF). BDNF and its precursor proBDNF, can be released in an activity-dependent manner. Mature BDNF operates via its cognate receptors tropomyosin related kinase B (TrkB) whereas proBDNF binds the p75 neurotrophin receptor (p75NTR). In this review article, we discuss recent finding illuminating how mBDNF-TrkB and proBDNF-p75NTR signaling pathways regulate GABA related neurotransmission under physiological conditions and during epilepsy.
Collapse
Affiliation(s)
- Christophe Porcher
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Igor Medina
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix Marseille University, Marseille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Marseille, France.,Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
| |
Collapse
|
10
|
Stachys sieboldii Extract Supplementation Attenuates Memory Deficits by Modulating BDNF-CREB and Its Downstream Molecules, in Animal Models of Memory Impairment. Nutrients 2018; 10:nu10070917. [PMID: 30018265 PMCID: PMC6073797 DOI: 10.3390/nu10070917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
Cholinergic dysfunction, impaired brain-derived neurotrophic factor and cAMP response element binding protein (BDNF-CREB) signaling are one of the major pathological hallmarks of cognitive impairment. Therefore, improving cholinergic neurotransmission, and regulating the BDNF-CREB pathway by downregulating apoptosis genes is one strategy for inhibiting the etiology of dementia. This study evaluates the potential effects of Stachys sieboldii MIQ (SS) extract against cognitive dysfunction and its underlying mechanisms. SS supplementation for 33 days improved scopolamine-induced memory impairment symptoms in Morris water maze test and Y-maze test. SS reduced the acetylcholineesterase activity and significantly increase acetylcholine and cholineacetyltransferase activity in the brain. In the subsequent mechanism study, SS regulated the mRNA expression level of neuronal plasticity molecules such as (nerve growth factor) NGF, BDNF, CREB, and its downstream molecules such as Bcl-2 and Egr-1 by downregulating the neuronal apoptosis targets in both hippocampus and frontal cortex. Additionally, inward currents caused by SS in hippocampal CA1 neurons was partially blocked by the GABA receptor antagonist picrotoxin (50 μM), suggesting that SS acts on synaptic/extrasynaptic GABAA receptors. These findings indicate that SS may function in a way that is similar to nootropic drugs by inhibiting cholinergic abnormalities, and neuronal apoptosis targets and ultimately increasing the expression of BDNF-CREB.
Collapse
|
11
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
12
|
Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum. Sci Rep 2016; 6:20201. [PMID: 26830657 PMCID: PMC4735332 DOI: 10.1038/srep20201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023] Open
Abstract
To study mechanisms that regulate the construction of inhibitory circuits, we examined the role of brain-derived neurotrophic factor (BDNF) in the assembly of GABAergic inhibitory synapses in the mouse cerebellar cortex. We show that within the cerebellum, BDNF-expressing cells are restricted to the internal granular layer (IGL), but that the BDNF protein is present within mossy fibers which originate from cells located outside of the cerebellum. In contrast to deletion of TrkB, the cognate receptor for BDNF, deletion of Bdnf from cerebellar cell bodies alone did not perturb the localization of pre- or postsynaptic constituents at the GABAergic synapses formed by Golgi cell axons on granule cell dendrites within the IGL. Instead, we found that BDNF derived from excitatory mossy fiber endings controls their differentiation. Our findings thus indicate that cerebellar BDNF is derived primarily from excitatory neurons--precerebellar nuclei/spinal cord neurons that give rise to mossy fibers--and promotes GABAergic synapse formation as a result of release from axons. Thus, within the cerebellum the preferential localization of BDNF to axons enhances the specificity through which BDNF promotes GABAergic synaptic differentiation.
Collapse
|
13
|
Abstract
Effective traumatic brain injury (TBI) therapeutics remains stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development because it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Finally, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for patients with TBI.
Collapse
Affiliation(s)
- Pavel N. Lizhnyak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Andrew K. Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|