1
|
Dadi P, Pauling CW, Shrivastava A, Shah DD. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. iScience 2025; 28:112289. [PMID: 40264799 PMCID: PMC12013497 DOI: 10.1016/j.isci.2025.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and β-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity toward the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.
Collapse
Affiliation(s)
- Pavani Dadi
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Clint W. Pauling
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Dhara D. Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| |
Collapse
|
2
|
Dadi P, Pauling CW, Shrivastava A, Shah DD. Synthesis of versatile neuromodulatory molecules by a gut microbial glutamate decarboxylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583032. [PMID: 38915512 PMCID: PMC11195143 DOI: 10.1101/2024.03.02.583032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Dysbiosis of the microbiome correlates with many neurological disorders, yet very little is known about the chemistry that controls the production of neuromodulatory molecules by gut microbes. Here, we found that an enzyme glutamate decarboxylase (BfGAD) of a gut microbe Bacteroides fragilis forms multiple neuromodulatory molecules such as γ-aminobutyric acid (GABA), hypotaurine, taurine, homotaurine, and β-alanine. We evolved BfGAD and doubled its taurine productivity. Additionally, we increased its specificity towards the substrate L-glutamate. Here, we provide a chemical strategy via which the BfGAD activity could be fine-tuned. In future, this strategy could be used to modulate the production of neuromodulatory molecules by gut microbes.
Collapse
Affiliation(s)
- Pavani Dadi
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Clint W. Pauling
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| | - Abhishek Shrivastava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Life Sciences, Arizona State University, Tempe, AZ 85281
| | - Dhara D. Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306
| |
Collapse
|
3
|
Liu P, Xie S, Guo Q, Chen Y, Fan J, Kumar Nadda A, Huang X, Chu X. MpADC, an L-aspartate-α-decarboxylase, from Myzus persicae, that enables production of β-alanine with high yield by whole-cell enzymatic catalysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:157. [PMID: 37876019 PMCID: PMC10594873 DOI: 10.1186/s13068-023-02405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND β-Alanine is a precursor of many important pharmaceutical products and food additives, its market demand is continuously increasing nowadays. Whole-cell catalysis relying on the recombinant expression of key β-alanine synthesizing enzymes is an important method to produce β-alanine. Nevertheless, β-alanine synthesizing enzymes found so far have problems including easy inactivation, low expression or poor catalytic activity, and it remains necessary to develop new enzymes. RESULTS Herein, we characterized an L-aspartate-α-decarboxylase, MpADC, from an aphid, Myzus persicae. It showed excellent catalytic activity at pH 6.0-7.5 and 37 °C. With the help of chaperone co-expression and N-terminal engineering guided by AlphaFold2 structure prediction, the expression and catalytic ability of MpADC in Escherichia coli were significantly improved. Using 50 g/L of E. coli cells expressing the MpADC-∆39 variant cultured in a 15-L fermenter, 232.36 g/L of β-alanine was synthesized in 13.5 h, with the average β-alanine yield of 17.22 g/L/h, which is best known so far. CONCLUSIONS Our research should facilitate the production of β-alanine in an environment-friendly manner.
Collapse
Affiliation(s)
- Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Saixue Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Qian Guo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Junying Fan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, 173234, Waknaghat, Solan, Himachal Pradesh, India
| | - Xiaoluo Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Tramonti A, Contestabile R, Florio R, Nardella C, Barile A, Di Salvo ML. A Novel, Easy Assay Method for Human Cysteine Sulfinic Acid Decarboxylase. Life (Basel) 2021; 11:438. [PMID: 34068845 PMCID: PMC8153620 DOI: 10.3390/life11050438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Cysteine sulfinic acid decarboxylase catalyzes the last step of taurine biosynthesis in mammals, and belongs to the fold type I superfamily of pyridoxal-5'-phosphate (PLP)-dependent enzymes. Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in animal tissues; it is highly present in liver, kidney, muscle, and brain, and plays numerous biological and physiological roles. Despite the importance of taurine in human health, human cysteine sulfinic acid decarboxylase has been poorly characterized at the biochemical level, although its three-dimensional structure has been solved. In the present work, we have recombinantly expressed and purified human cysteine sulfinic acid decarboxylase, and applied a simple spectroscopic direct method based on circular dichroism to measure its enzymatic activity. This method gives a significant advantage in terms of simplicity and reduction of execution time with respect to previously used assays, and will facilitate future studies on the catalytic mechanism of the enzyme. We determined the kinetic constants using L-cysteine sulfinic acid as substrate, and also showed that human cysteine sulfinic acid decarboxylase is capable to catalyze the decarboxylation-besides its natural substrates L-cysteine sulfinic acid and L-cysteic acid-of L-aspartate and L-glutamate, although with much lower efficiency.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.T.); (A.B.)
- Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Roma, Italy; (R.C.); (C.N.)
| | - Roberto Contestabile
- Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Roma, Italy; (R.C.); (C.N.)
| | - Rita Florio
- European Brain Research Institute, Fondazione “Rita Levi-Montalcini”, 00185 Roma, Italy;
| | - Caterina Nardella
- Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Roma, Italy; (R.C.); (C.N.)
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185 Roma, Italy; (A.T.); (A.B.)
- Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Roma, Italy; (R.C.); (C.N.)
| | - Martino L. Di Salvo
- Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Roma, Italy; (R.C.); (C.N.)
| |
Collapse
|
5
|
Li Y, Niu D, Wu Y, Dong Z, Li J. Integrated analysis of transcriptomic and metabolomic data to evaluate responses to hypersalinity stress in the gill of the razor clam (Sinonovacula constricta). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100793. [PMID: 33513539 DOI: 10.1016/j.cbd.2021.100793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023]
Abstract
Salinity is an important ecological factor that affects physiological metabolism, survival, and distribution of marine organisms. Despite changes in the osmolarity and composition of the cytosol during salinity shifts, marine mollusks are able to maintain their metabolic function. The razor clam (Sinonovacula constricta) survives the wide range of salinity in the intertidal zone via changes in behavior and physiology. To explore the stress responses and mechanisms of salinity tolerance in razor clams, we collected transcriptomic and metabolomic data from a control group (salinity 20‰, S20) and a salinity-stress group (salinity 35‰, S35). The transcriptome data showed that genes related to the immune system, cytoskeleton remodeling, and signal transduction pathways dominated in the S35 group to counteract hypersalinity stress in the gill. The metabolomic analysis showed that 142 metabolites were significantly different between the S35 and S20 groups and that amino acid and carbohydrate metabolism were affected by hypersalinity stress. Levels of amino acids and energy substances, such as l-proline, isoleucine, and fructose, were higher in the gill of the S35 group. The combination of transcriptomic and metabolomic data indicated that metabolism of amino acids, carbohydrates, and lipids was enhanced in the gill during adaptation to high salinity. These results clarified the complex physiological processes involved in the response to hyperosmotic stress and maintenance of metabolism in the gill of razor clams. These findings provide a reference for further study of the biological responses of euryhaline shellfish to hyperosmotic stress and a molecular basis for the search for populations with high salinity tolerance.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Yinghan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
6
|
Zhang J, Tang SY, Zhu XB, Li P, Lu JQ, Cong JS, Wang LB, Zhang F, Li Z. Whole exome sequencing and trio analysis to broaden the variant spectrum of genes in idiopathic hypogonadotropic hypogonadism. Asian J Androl 2021; 23:288-293. [PMID: 33208564 PMCID: PMC8152424 DOI: 10.4103/aja.aja_65_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dozens of genes are associated with idiopathic hypogonadotropic hypogonadism (IHH) and an oligogenic etiology has been suggested. However, the associated genes may account for only approximately 50% cases. In addition, a genomic systematic pedigree analysis is still lacking. Here, we conducted whole exome sequencing (WES) on 18 unrelated men affected by IHH and their corresponding parents. Notably, one reported and 10 novel variants in eight known IHH causative genes (AXL, CCDC141, CHD7, DMXL2, FGFR1, PNPLA6, POLR3A, and PROKR2), nine variants in nine recently reported candidate genes (DCAF17, DCC, EGF, IGSF10, NOTCH1, PDE3A, RELN, SLIT2, and TRAPPC9), and four variants in four novel candidate genes for IHH (CCDC88C, CDON, GADL1, and SPRED3) were identified in 77.8% (14/18) of IHH cases. Among them, eight (8/18, 44.4%) cases carried more than one variant in IHH-related genes, supporting the oligogenic model. Interestingly, we found that those variants tended to be maternally inherited (maternal with n = 17 vs paternal with n = 7; P = 0.028). Our further retrospective investigation of published reports replicated the maternal bias (maternal with n = 46 vs paternal with n = 28; P = 0.024). Our study extended a variant spectrum for IHH and provided thefirst evidence that women are probably more tolerant to variants of IHH-related genes than men.
Collapse
Affiliation(s)
- Jian Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Shu-Yan Tang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Xiao-Bin Zhu
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jian-Qi Lu
- Department of Research Institute, Reproduction Medical Center, The first Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jiang-Shan Cong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Ling-Bo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
7
|
Mahootchi E, Raasakka A, Luan W, Muruganandam G, Loris R, Haavik J, Kursula P. Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase. J Struct Biol 2020; 213:107674. [PMID: 33253877 DOI: 10.1016/j.jsb.2020.107674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5́-phosphate (PLP) is an important cofactor for amino acid decarboxylases with many biological functions, including the synthesis of signalling molecules, such as serotonin, dopamine, histamine, γ-aminobutyric acid, and taurine. Taurine is an abundant amino acid with multiple physiological functions, including osmoregulation, pH regulation, antioxidative protection, and neuromodulation. In mammalian tissues, taurine is mainly produced by decarboxylation of cysteine sulphinic acid to hypotaurine, catalysed by the PLP-dependent cysteine sulphinic acid decarboxylase (CSAD), followed by oxidation of the product to taurine. We determined the crystal structure of mouse CSAD and compared it to other PLP-dependent decarboxylases in order to identify determinants of substrate specificity and catalytic activity. Recognition of the substrate involves distinct side chains forming the substrate-binding cavity. In addition, the backbone conformation of a buried active-site loop appears to be a critical determinant for substrate side chain binding in PLP-dependent decarboxylases. Phe94 was predicted to affect substrate specificity, and its mutation to serine altered both the catalytic properties of CSAD and its stability. Using small-angle X-ray scattering, we further showed that CSAD presents open/close motions in solution. The structure of apo-CSAD indicates that the active site gets more ordered upon internal aldimine formation. Taken together, the results highlight details of substrate recognition in PLP-dependent decarboxylases and provide starting points for structure-based inhibitor design with the aim of affecting the biosynthesis of taurine and other abundant amino acid metabolites.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Weisha Luan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Stipanuk MH. Metabolism of Sulfur-Containing Amino Acids: How the Body Copes with Excess Methionine, Cysteine, and Sulfide. J Nutr 2020; 150:2494S-2505S. [PMID: 33000151 DOI: 10.1093/jn/nxaa094] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolism of excess methionine (Met) to homocysteine (Hcy) by transmethylation is facilitated by the expression of methionine adenosyltransferase (MAT) I/III and glycine N-methyltransferase (GNMT) in liver, and a lack of either enzyme results in hypermethioninemia despite normal concentrations of MATII and methyltransferases other than GNMT. The further metabolism of Hcy by the transsulfuration pathway is facilitated by activation of cystathionine β-synthase (CBS) by S-adenosylmethionine (SAM) as well as the relatively high KM of CBS for Hcy. Transmethylation plus transsulfuration effects catabolism of the Met molecule along with transfer of the sulfur atom of Met to serine to synthesize cysteine (Cys). Oxidation and excretion of Met sulfur depend upon Cys catabolism and sulfur oxidation pathways. Excess Cys is oxidized by cysteine dioxygenase 1 (CDO1) and further metabolized to taurine or sulfate. Some Cys is normally metabolized by desulfhydration pathways, and the hydrogen sulfide (H2S) produced is further oxidized to sulfate. If Cys or Hcy concentrations are elevated, Cys or Hcy desulfhydration can result in excess H2S and thiosulfate production. Excess Cys or Met may also promote their limited metabolism by transamination pathways.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Francioso A, Baseggio Conrado A, Mosca L, Fontana M. Chemistry and Biochemistry of Sulfur Natural Compounds: Key Intermediates of Metabolism and Redox Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8294158. [PMID: 33062147 PMCID: PMC7545470 DOI: 10.1155/2020/8294158] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/28/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Sulfur contributes significantly to nature chemical diversity and thanks to its particular features allows fundamental biological reactions that no other element allows. Sulfur natural compounds are utilized by all living beings and depending on the function are distributed in the different kingdoms. It is no coincidence that marine organisms are one of the most important sources of sulfur natural products since most of the inorganic sulfur is metabolized in ocean environments where this element is abundant. Terrestrial organisms such as plants and microorganisms are also able to incorporate sulfur in organic molecules to produce primary metabolites (e.g., methionine, cysteine) and more complex unique chemical structures with diverse biological roles. Animals are not able to fix inorganic sulfur into biomolecules and are completely dependent on preformed organic sulfurous compounds to satisfy their sulfur needs. However, some higher species such as humans are able to build new sulfur-containing chemical entities starting especially from plants' organosulfur precursors. Sulfur metabolism in humans is very complicated and plays a central role in redox biochemistry. The chemical properties, the large number of oxidation states, and the versatile reactivity of the oxygen family chalcogens make sulfur ideal for redox biological reactions and electron transfer processes. This review will explore sulfur metabolism related to redox biochemistry and will describe the various classes of sulfur-containing compounds spread all over the natural kingdoms. We will describe the chemistry and the biochemistry of well-known metabolites and also of the unknown and poorly studied sulfur natural products which are still in search for a biological role.
Collapse
Affiliation(s)
- Antonio Francioso
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
- Department of Organic Chemistry, Instituto Universitario de Bio-Orgánica Antonio González, University of La Laguna, La Laguna, 38296 Tenerife, Spain
| | - Alessia Baseggio Conrado
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Mario Fontana
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Mahootchi E, Cannon Homaei S, Kleppe R, Winge I, Hegvik TA, Megias-Perez R, Totland C, Mogavero F, Baumann A, Glennon JC, Miletic H, Kursula P, Haavik J. GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. SCIENCE ADVANCES 2020; 6:eabb3713. [PMID: 32733999 PMCID: PMC7367687 DOI: 10.1126/sciadv.abb3713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/05/2020] [Indexed: 05/26/2023]
Abstract
Carnosine and related β-alanine-containing peptides are believed to be important antioxidants, pH buffers, and neuromodulators. However, their biosynthetic routes and therapeutic potential are still being debated. This study describes the first animal model lacking the enzyme glutamic acid decarboxylase-like 1 (GADL1). We show that Gadl1-/- mice are deficient in β-alanine, carnosine, and anserine, particularly in the olfactory bulb, cerebral cortex, and skeletal muscle. Gadl1-/- mice also exhibited decreased anxiety, increased levels of oxidative stress markers, alterations in energy and lipid metabolism, and age-related changes. Examination of the GADL1 active site indicated that the enzyme may have multiple physiological substrates, including aspartate and cysteine sulfinic acid. Human genetic studies show strong associations of the GADL1 locus with plasma levels of carnosine, subjective well-being, and muscle strength. Together, this shows the multifaceted and organ-specific roles of carnosine peptides and establishes Gadl1 knockout mice as a versatile model to explore carnosine biology and its therapeutic potential.
Collapse
Affiliation(s)
| | - Selina Cannon Homaei
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Rune Kleppe
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg Winge
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tor-Arne Hegvik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Christian Totland
- Department of Chemistry, University of Bergen, Bergen, Norway
- Norwegian Geotechnical Institute, Oslo, Norway
| | - Floriana Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jeffrey Colm Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
11
|
Immunophenotypes associated with bipolar disorder and lithium treatment. Sci Rep 2019; 9:17453. [PMID: 31767892 PMCID: PMC6877517 DOI: 10.1038/s41598-019-53745-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Immune dysfunction is implicated in the etiology of bipolar disorder. The single-nucleotide polymorphism rs17026688 in the gene encoding glutamate decarboxylase–like protein 1 (GADL1) has been found to be associated with lithium response in Han Chinese patients with bipolar I disorder (BDI). However, whether patients with GADL1 polymorphisms have different immunophenotypes is unknown. To address this issue, differences in the immune profiles based on analysis of peripheral blood mononuclear cells (PBMCs) were compared among BDI patients and healthy controls who lack or carry the T allele of rs17026688. BDI patients had significantly higher percentages of total T cells, CD4+ T cells, activated B cells, and monocytes than healthy controls, suggesting that immunologic imbalance might be involved in BDI development or progression. Treatment of BDI patients-derived PBMCs with lithium in vitro increased the percentage of CD14+ monocytes and dendritic cells, suggesting that lithium plays an immunomodulatory role in CD14+ monocytes and dendritic cells. Among BDI patients, non-T carriers had a significantly higher percentage of CD11b+/CD33lo/HLA-DR− myeloid-derived suppressor cells than T carriers. Moreover, only T carriers exhibited differential sensitivity to lithium therapeutic use with respect to the percentage of myeloid cells. These findings suggest that rs17026688 polymorphisms in GADL1 are associated with immune dysfunction in BDI patients.
Collapse
|
12
|
Park E, Elidrissi A, Schuller-Levis G, Chadman KK. Taurine Partially Improves Abnormal Anxiety in Taurine-Deficient Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:905-921. [PMID: 31468456 DOI: 10.1007/978-981-13-8023-5_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Taurine is abundant in various tissues including the brain, muscle, heart, spleen, liver and kidney with various physiological functions. Since taurine is produced by cysteine sulfinic acid decarboxylase (CSAD) in the liver and kidney, taurine-deficient mice without CSAD have been investigated for abnormal physiological functions such as retinal development, immune, pancreatic and liver function. In this study, the behavioral effects and abnormal brain development caused by low taurine in the developing brain were examined. In neonatal brains of homozygous CSAD knockout mice (HO), taurine was reduced by 85%, compared to wild-type mice (WT). Taurine was reduced by 35% in the brains of 2 month-old HO, compared to WT. Anxiety, motor coordination and autistic-like behaviors were evaluated at 2 months of age using five behavioral tests: elevated plus maze, open field, social approach, marble burying and accelerating rotarod. Mice were tested from 3 groups including WT, HO and HO with oral treatment of 0.2% taurine in the drinking water (HOT). HOT were born from HO dams treated with taurine from before pregnancy and were continuously treated with taurine in the drinking water after weaning. The taurine levels in the brain and plasma of HOT were restored to WT at 2 months of age. Taurine-deficiency did not lead to changes in autistic-like behaviors as the HO were not significantly different from WT in marble burying and social approach. However, taurine-deficiency increased anxiety-like behavior in HO in the elevated plus maze and open field, compared to WT. Taurine treatment significantly restored the HOT to WT levels of anxiety-like behavior in the elevated plus maze. However, changes in exploratory activity in the open field were not improved with taurine treatment. There was a slight difference in motor ability as the WT mice stayed on the accelerating rotarod longer that the HO and HOT, but the difference was significant in the HOT during the first trial only, compared to WT.These data support hypothesis that taurine is essential for the emotional development of the brain. First, taurine is remarkably low in the neonatal brain of HO, compared to the adult brain of HO. Second, taurine treatment in HO partially improves anxiety-like behavior to WT.
Collapse
Affiliation(s)
- Eunkyue Park
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Abdeslem Elidrissi
- Department of Biological Science, College of Staten Island, Staten Island, NY, USA
| | - Georgia Schuller-Levis
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Kathryn K Chadman
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
13
|
Lithium and GADL1 regulate glycogen synthase kinase-3 activity to modulate KCTD12 expression. Sci Rep 2019; 9:10255. [PMID: 31311980 PMCID: PMC6635502 DOI: 10.1038/s41598-019-46655-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Potassium channel tetramerization domain containing 12 (KCTD12), the auxiliary GABAB receptor subunit, is identified as a susceptibility gene for bipolar I (BPI) disorder in the Han Chinese population. Moreover, the single-nucleotide polymorphism (SNP) rs17026688 in glutamate decarboxylase–like protein 1 (GADL1) is shown to be associated with lithium response in Han Chinese BPI patients. In this study, we demonstrated for the first time the relationship among lithium, GADL1, and KCTD12. In circulating CD11b+ macrophage cells, BPI patients showed a significantly higher percentage of KCTD12 expression than healthy controls. Among BPI patients, carriers of the ‘T’ allele (i.e., CT or TT) at site rs17026688 were found to secrete lower amounts of GADL1 but higher amounts of GABA b receptor 2 (GABBR2) in the plasma. In human SH-SY5Y neuroblastoma cells, lithium treatment increased the percentage of KCTD12 expression. Through inhibition of glycogen synthase kinase-3 (GSK-3), lithium induced cyclic AMP-response element binding protein (CREB)–mediated KCTD12 promoter activation. On the other hand, GADL1 overexpression enhanced GSK-3 activation and inhibited KCTD12 expression. We found that lithium induced, whereas GADL1 inhibited, KCTD12 expression. These findings suggested that KCTD12 may be an important gene with respect to neuron excitability and lithium response in BPI patients. Therefore, targeting GSK-3 activity and/or KCTD12 expression may constitute a possible therapeutic strategy for treating patients with BPI disorder.
Collapse
|
14
|
Effects of GADL1 overexpression on cell migration and the associated morphological changes. Sci Rep 2019; 9:5298. [PMID: 30923325 PMCID: PMC6438977 DOI: 10.1038/s41598-019-41689-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Lithium has been used for maintenance treatment of bipolar disorder, but drug response varies among patients. Single-nucleotide polymorphisms in glutamate decarboxylase–like protein 1 (GADL1) are found to be associated with lithium response in Han Chinese bipolar patients. In this study, we assessed GADL1 function using a neuroblastoma cell line that stably overexpressed GADL1. Genes encoding factors involved in cell migration, such as FN1, ITGA2, ITGAV and CCL2, were downregulated in GADL1-overexpressing cells. GADL1 overexpression indeed suppressed cell migration. Cell migration speed and perimeter length exhibited similar trends, both of which were decreased under GADL1 overexpression or lithium treatment but increased upon stimulation with CCL2. Secreted GADL1 or its enzyme product, taurine, in the conditioned medium might exert only mild effects on the observed changes. Compared with SH-SY5Y cells, GADL1-overexpressing cells were much more sensitive to CCL2 treatment but less sensitive to lithium, indicating that the level of GADL1 expression can affect cell sensitivity to lithium or CCL2 treatment. Together, these results suggest that cell migration and related morphological changes might provide good indicators of the sensitivity toward lithium treatment, and the GADL1 stable overexpression cell line might serve as a useful platform to screen novel therapeutics for bipolar disorder.
Collapse
|
15
|
Miles AR, Hawrysh PJ, Hossein-Javaheri N, Buck LT. Taurine activates glycine and GABA A receptor currents in anoxia-tolerant painted turtle pyramidal neurons. ACTA ACUST UNITED AC 2018; 221:jeb.181529. [PMID: 30237241 DOI: 10.1242/jeb.181529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022]
Abstract
Unlike anoxia-intolerant mammals, painted turtles can survive extended periods without oxygen. This is partly accomplished by an anoxia-mediated increase in gamma-aminobutyric acid (GABA) release, which activates GABA receptors and mediates spike arrest in turtle neurons via shunting inhibition. Extracellular taurine levels also increase during anoxia; why this occurs is unknown but it is speculated that glycine and/or GABAA/B receptors are involved. Given the general importance of inhibitory neurotransmission in the anoxia-tolerant painted turtle brain, we investigated the function of taurine as an inhibitory neuromodulator in turtle pyramidal neurons. Using whole-cell patch-clamp electrophysiological methods to record from neurons within a cortical brain sheet, we found that taurine depolarized membrane potential by ∼8 mV, increased whole-cell conductance ∼2-fold, and induced an inward current that possessed characteristics similar to GABA- and glycine-evoked currents. These effects were mitigated following glycine receptor antagonism with strychnine and GABAA receptor antagonism with gabazine, bicuculine or picrotoxin, but were unchanged following GABAB or glutamatergic receptor inhibition. These data indicate that a high concentration of taurine in vitro mediates its effects through both glycine and GABAA receptors, and suggests that taurine, in addition to GABA, inhibits neuronal activity during anoxia in the turtle cortex.
Collapse
Affiliation(s)
- Ashley R Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | - Peter J Hawrysh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | | | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5 .,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| |
Collapse
|
16
|
Park E, Park SY, Cho IS, Kim BS, Schuller-Levis G. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Taurine Distribution in Various Tissues With and Without Taurine Supplementation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:461-474. [PMID: 28849475 DOI: 10.1007/978-94-024-1079-2_37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Taurine, a sulfur containing amino acid, has various physiological functions including development of the eye and brain, immune function, reproduction, osmo-regulatory function as well as anti-oxidant and anti-inflammatory activities. In order to understand the physiological role, we developed taurine deficient mice deleting a rate-liming enzyme, cysteine sulfinic acid decarboxylase (CSAD) for biosynthesis of taurine. Taurine was measured in various tissues including the liver, brain, lung, spleen, thymus, pancreas, heart, muscle and kidney as well as plasma from CSAD knock-out mice (CSAD KO) with and without treatment of taurine in the drinking water at the age of 2 months (2 M). Taurine was determined using HPLC as a phenylisothiocyanate derivative of taurine at 254 nm. Taurine concentrations in the liver and kidney from homozygotes of CSAD KO (HO), in which CSAD level is high, were 90% and 70% lower than WT, respectively. Taurine concentrations in the brain, spleen and lung, where CSAD level is low, were 21%, 20% and 28% lower than WT, respectively. At 2 M, 1% taurine treatment of HO restored taurine concentrations in all tissues compared to that of WT. To select an appropriate taurine treatment, HO were treated with various concentrations (0.05, 0.2, 1%) of taurine for 4 months (4 M). Restoration of taurine in all tissues except the liver, kidney and lung requires 0.05% taurine to be restored to that of WT. The liver and kidney restore taurine back to WT with 0.2% taurine. To examine which enzymes influence taurine concentrations in various tissues from WT and HO at 2 M, expression of five taurine-related enzymes, two antioxidant enzymes as well as lactoferrin (Lft) and prolactin receptor (Prlr) was determined using RT2 qPCR. The expression of taurine transporter in the liver, brain, muscle and kidney from HO was increased except in the lung. Our data showed expression of glutamate decarboxylase-like 1(Gadl-1) was increased in the brain and muscle in HO, compared to WT, indicating taurine in the brain and muscle from HO was replenished through taurine transporter and increased biosynthesis of taurine by up-regulated Gadl-1. The expression of glutathione peroxidase 3 was increased in the brain and peroxireductase 2 was increased in the liver and lung, suggesting taurine has anti-oxidant activity. In contrast to newborn and 1 month CSAD KO, Ltf and Prlr in the liver from CSAD KO at 2 M were increased more than two times and 52%, respectively, indicating these two proteins may be required for pregnancy of CSAD KO. Ltf in HOT1.0 was restored to WT, while Prlr in HOT1.0 was increased more than HO, explaining improvement of neonatal survival with taurine supplementation.These data are essential for investigating the role of taurine in development of the brain and eye, immune function, reproduction and glucose tolerance.
Collapse
Affiliation(s)
- Eunkyue Park
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Seung Yong Park
- School of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - In Soo Cho
- Department of Virology, National Veterinary Research and Quarantine Service, Anyang, South Korea
| | | | - Georgia Schuller-Levis
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
17
|
Holm MB, Kristiansen O, Holme AM, Bastani NE, Horne H, Blomhoff R, Haugen G, Henriksen T, Michelsen TM. Placental release of taurine to both the maternal and fetal circulations in human term pregnancies. Amino Acids 2018; 50:1205-1214. [PMID: 29858686 DOI: 10.1007/s00726-018-2576-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/23/2018] [Indexed: 10/14/2022]
Abstract
Taurine is regarded as an essential amino acid in utero, and fetal taurine supply is believed to rely solely on placental transfer from maternal plasma. Despite its potential role in intrauterine growth restriction and other developmental disturbances, human in vivo studies of taurine transfer between the maternal, placental, and fetal compartments are scarce. We studied placental transfer of taurine in uncomplicated human term pregnancies in vivo in a cross-sectional study of 179 mother-fetus pairs. During cesarean section, we obtained placental tissue and plasma from incoming and outgoing vessels on the maternal and fetal sides of the placenta. Taurine was measured by liquid chromatography-tandem mass spectrometry. We calculated paired arteriovenous differences, and measured placental expression of the taurine biosynthetic enzyme cysteine sulfinic acid decarboxylase (CSAD) with quantitative real-time polymerase chain reaction and western blot. We observed a fetal uptake (p < 0.001), an uteroplacental release (p < 0.001), and a negative placental consumption of taurine (p = 0.001), demonstrating a bilateral placental release to the maternal and fetal compartments. Increasing umbilical vein concentrations and fetal uptake was associated with the uteroplacental release to the maternal circulation (rs = - 0.19, p = 0.01/rs = - 0.24, p = 0.003), but not with taurine concentrations in placental tissue. CSAD-mRNA was expressed in placental tissue, suggesting a potential for placental taurine synthesis. Our observations show that the placenta has the capacity to a bilateral taurine release, indicating a fundamental role of taurine in the human placental homeostasis beyond the supply to the fetus.
Collapse
Affiliation(s)
- Maia Blomhoff Holm
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway.
| | - Oddrun Kristiansen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Ane Moe Holme
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Nasser Ezzatkhah Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO BOKS 1046, Blindern, 0316, Oslo, Norway
| | - Hildegunn Horne
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO BOKS 1046, Blindern, 0316, Oslo, Norway.,Division of Cancer Medicine, Department of Clinical Service, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| | - Guttorm Haugen
- Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway.,Division of Obstetrics and Gynecology, Department of Fetal Medicine, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| | - Tore Henriksen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Trond Melbye Michelsen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Norwegian Advisory Unit on Women's Health, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| |
Collapse
|
18
|
Zhao F, Gao L, Qin X, Du G, Zhou Y. The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway. Food Funct 2018; 9:4814-4821. [DOI: 10.1039/c8fo00740c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A potential protective mechanism of licorice in d-galactose induced aging rats.
Collapse
Affiliation(s)
- Fanfan Zhao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan
- China
- College of Chemistry and Chemical Engineering
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan
- China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan
- China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan
- China
- Institute of Materia Medica
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan
- China
| |
Collapse
|
19
|
Raasakka A, Mahootchi E, Winge I, Luan W, Kursula P, Haavik J. Structure of the mouse acidic amino acid decarboxylase GADL1. Acta Crystallogr F Struct Biol Commun 2018; 74:65-73. [PMID: 29372909 PMCID: PMC5947694 DOI: 10.1107/s2053230x17017848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a ubiquitous cofactor in various enzyme classes, including PLP-dependent decarboxylases. A recently discovered member of this class is glutamic acid decarboxylase-like protein 1 (GADL1), which lacks the activity to decarboxylate glutamate to γ-aminobutyrate, despite its homology to glutamic acid decarboxylase. Among the acidic amino acid decarboxylases, GADL1 is most similar to cysteine sulfinic acid decarboxylase (CSAD), but the physiological function of GADL1 is unclear, although its expression pattern and activity suggest a role in neurotransmitter and neuroprotectant metabolism. The crystal structure of mouse GADL1 is described, together with a solution model based on small-angle X-ray scattering data. While the overall fold and the conformation of the bound PLP are similar to those in other PLP-dependent decarboxylases, GADL1 adopts a more loose conformation in solution, which might have functional relevance in ligand binding and catalysis. The structural data raise new questions about the compactness, flexibility and conformational dynamics of PLP-dependent decarboxylases, including GADL1.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Elaheh Mahootchi
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
- K. G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Ingeborg Winge
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
- K. G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Weisha Luan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, 90014 Oulu, Finland
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, 90014 Oulu, Finland
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
- K. G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
20
|
Dougherty JD. Generation and characterization of a mouse line for monitoring translation in dopaminergic neurons. Sci Rep 2017; 7:8117. [PMID: 28808330 PMCID: PMC5556054 DOI: 10.1038/s41598-017-08618-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
We developed a mouse line targeting midbrain dopamine neurons for Translating Ribosome Affinity Purification(TRAP). Here, we briefly report on the basic characterization of this mouse line including confirmation of expression of the transgene in midbrain dopamine neurons and validation of its effectiveness in capturing mRNA from these cells. We also report a translational profile of these neurons which may be of use to investigators studying the gene expression of these cells. Finally, we have provided the line to Jackson Laboratories for distribution and use in future studies.
Collapse
Affiliation(s)
- Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Glick NR, Fischer MH. Potential Benefits of Ameliorating Metabolic and Nutritional Abnormalities in People With Profound Developmental Disabilities. Nutr Metab Insights 2017; 10:1178638817716457. [PMID: 35185339 PMCID: PMC8855413 DOI: 10.1177/1178638817716457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
Background: People with profound developmental disabilities have some of the most severe neurological impairments seen in society, have accelerated mortality due to huge medical challenges, and yet are often excluded from scientific studies. They actually have at least 2 layers of conditions: (1) the original disability and (2) multiple under-recognized and underexplored metabolic and nutritional imbalances involving minerals (calcium, zinc, and selenium), amino acids (taurine, tryptophan), fatty acids (linoleic acid, docosahexaenoic acid, arachidonic acid, adrenic acid, Mead acid, plasmalogens), carnitine, hormones (insulinlike growth factor 1), measures of oxidative stress, and likely other substances and systems. Summary: This review provides the first list of metabolic and nutritional abnormalities commonly found in people with profound developmental disabilities and, based on the quality of life effects of similar abnormalities in neurotypical people, indicates the potential effects of these abnormalities in this population which often cannot communicate symptoms. Key messages: We propose that improved understanding and management of these disturbed mechanisms would enhance the quality of life of people with profound developmental disabilities. Such insights may also apply to people with other conditions associated with disability, including some diseases requiring stem cell implantation and living in microgravity.
Collapse
Affiliation(s)
- Norris R Glick
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Milton H Fischer
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
22
|
Moreira J, Courtin C, Geoffroy PA, Curis E, Bellivier F, Marie-Claire C. Lithium response in bipolar disorder: No difference in GADL1 gene expression between cell lines from excellent-responders and non-responders. Psychiatry Res 2017; 251:217-220. [PMID: 28214779 DOI: 10.1016/j.psychres.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/02/2017] [Accepted: 02/09/2017] [Indexed: 11/15/2022]
Abstract
Previous association studies have shown mixed results between glutamic acid decarboxylase like-1 (GADL1) gene polymorphism and prophylactic lithium response in bipolar disorder (BD) patients. In the present study, GADL1 gene expression was investigated in regard to lithium response, using Alda scale, in lymphoblastoid cells (LCLs) of 36 Caucasian BD patients. No difference in GADL1 expression was observed among LCLs from excellent-responders, non-responders or controls. Furthermore, lithium did not induce significant changes in GADL1 expression levels after 4 or 8 days. These results did not support an association of GADL1 expression in the determination of a lithium response in BD patients.
Collapse
Affiliation(s)
- Jeverson Moreira
- Inserm, U1144, Paris F-75006, France; Université Sorbonne Paris Cité, UMR-S 1144, Paris F-75006, France.
| | - Cindie Courtin
- Inserm, U1144, Paris F-75006, France; Université Sorbonne Paris Cité, UMR-S 1144, Paris F-75006, France
| | - Pierre A Geoffroy
- Inserm, U1144, Paris F-75006, France; Université Sorbonne Paris Cité, UMR-S 1144, Paris F-75006, France; AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France; Fondation FondaMental, Créteil, 94000, France
| | - Emmanuel Curis
- Inserm, U1144, Paris F-75006, France; Université Sorbonne Paris Cité, UMR-S 1144, Paris F-75006, France; Département de Biostatistique et Informatique Médicale, Hôpital Saint-Louis, APHP, Paris, France; Laboratoire de biomathématiques, plateau iB(2), Faculté de pharmacie de Paris, France
| | - Frank Bellivier
- Inserm, U1144, Paris F-75006, France; Université Sorbonne Paris Cité, UMR-S 1144, Paris F-75006, France; AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France; Fondation FondaMental, Créteil, 94000, France
| | - Cynthia Marie-Claire
- Inserm, U1144, Paris F-75006, France; Université Sorbonne Paris Cité, UMR-S 1144, Paris F-75006, France.
| |
Collapse
|
23
|
Grone BP, Maruska KP. Three Distinct Glutamate Decarboxylase Genes in Vertebrates. Sci Rep 2016; 6:30507. [PMID: 27461130 PMCID: PMC4962313 DOI: 10.1038/srep30507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/14/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems.
Collapse
Affiliation(s)
- Brian P. Grone
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Karen P. Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|