1
|
Wen J, Ding Y, Zheng S, Li X, Xiao Y. Sevoflurane Suppresses Glioma Cell Proliferation, Migration, and Invasion Both In Vitro and In Vivo Partially Via Regulating KCNQ1OT1/miR-146b-5p/STC1 Axis. Cancer Biother Radiopharm 2024; 39:105-116. [PMID: 32996777 DOI: 10.1089/cbr.2020.3762] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Sevoflurane (Sev), a volatile anesthetic agent, is widely used in neurosurgery for anesthesia maintenance, accompanied with antitumor activity postanesthesia in multiple human cancers, including glioma. However, the molecular mechanism of Sev in glioma is largely unclear, including associated informative noncoding RNAs, such as long noncoding RNAs (lncRNA) and microRNAs (miRNAs). Methods: Expression of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), miRNA (miR)-146b-5p, and stanniocalcin-1 (STC1) was measured by real-time quantitative polymerase chain reaction and Western blotting. Cell proliferation, apoptosis, migration, and invasion in vitro were examined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, fluorescence-activated cell sorting method, and transwell assays, respectively. Tumor growth in vivo was determined by xenograft models. The direct interaction between genes was confirmed by dual-luciferase reporter assay. Results: Sev enhanced apoptotic rate, but inhibited cell viability, migration, and invasion abilities of human glioma A172 and U251 cells in vitro, as well as tumor growth inhibition in vivo. The tumor-suppressive role of Sev in glioma was accompanied with downregulated KCNQ1OT1 and STC1, and upregulated miR-146b-5p. Overexpression of KCNQ1OT1 through transfection reversed, while KCNQ1OT1 silencing aggravated the antitumor role of Sev in A172 and U251 cells. Moreover, KCNQ1OT1-mediated tumor-promoting activity in A172 and U251 cells under Sev treatment was abrogated by miR-146b-5p restoration or STC1 deletion. Essentially, KCNQ1OT1 could positively regulate STC1 by acting as miR-146b-5p decoy. Conclusion: KCNQ1OT1 knockdown mediated the role of Sev in glioma cell proliferation, apoptosis, migration, and invasion both in vitro and in vivo through miR-146b-5p/STC1 pathway.
Collapse
Affiliation(s)
- Jian Wen
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Ding
- Key laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shaohua Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ying Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Hou Z, Luo D, Luo H, Hui Q, Xu Y, Lin X, Xu Z. Co-expression prognostic-related genes signature base on propofol and sevoflurane anesthesia predict prognosis and immunotherapy response in glioblastoma. Ann Med 2023; 55:778-792. [PMID: 36856519 PMCID: PMC9979995 DOI: 10.1080/07853890.2023.2171109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVES Anesthetic drugs had been reported may impact the bio-behavior of the tumor. Propofol and sevoflurane are common anesthetics in the operation for glioblastoma (GBM). This study aims to establish a co-expression prognostic-related genes signature base on propofol and sevoflurane anesthesia to predict prognosis and immunotherapy response in GBM. METHOD GPM tissues with different anesthetics gene expression profiles (GSE179004) were obtained from the Gene Expression Omnibus (GEO) database. Core modules and central genes associated with propofol and sevoflurane anesthesia were identified by weighted gene coexpression network analysis (WGCNA) and establish a risk score prognostic model. Immune cell signature analysis in TCGA datasets was predicted via CIBERSORT. At last, serum methylation level of O6-methylguanine-DNA methyltransferase (MGMT) promoter was detected in GPM patient in different time during perioperative period. RESULTS The burlywood1 group screened was significantly associated with sevoflurane-treated GBM tissue. 22 independent prognostic differential genes were construct a prognostic-related genes risk score in GBM, and showed good predictive ability. The risk score was strongly correlated with the age of the patients, but not with the sex of the patients. In addition, the differential responses to immunotherapy in high and low risk groups were analyzed, indicating that sevoflurane signature genes were consistent in the classification of gliomas. High-risk patients have high T-cell damage score and are less sensitive to immunotherapy. At last, serum methylation level of MGMT promoter was decreased in GBM patients during propofol and sevoflurane anesthesia. CONCLUSIONS Propofol and sevoflurane anesthesia associated impact on the gene expression of GBM, included the methylation level of MGMT promoter. Propofol and sevoflurane anesthesia-based risk score prognostic model, which has good prognostic power and is an independent prognostic factor in GBM patients. Therefore, this model can be used as a new biomarker for judging the prognosis of GBM patients.KEY MESSAGESPropofol and sevoflurane anesthesia-based risk score prognostic model has good prognostic power and is an independent prognostic factor in GBM patients.High Propofol and sevoflurane anesthesia-based risk score GBM patients have high T-cell damage scores and are less sensitive to immunotherapy.Serum methylation level of MGMT promoter decrease during propofol and sevoflurane anesthesia in GBM patients.
Collapse
Affiliation(s)
- Zhiqi Hou
- Hui Zhou Central People's Hospital, HuiZhou, Guangdong, China
| | - Dexing Luo
- Hui Zhou Central People's Hospital, HuiZhou, Guangdong, China
| | - Huanhuan Luo
- Hui Zhou Central People's Hospital, HuiZhou, Guangdong, China
| | - Qiang Hui
- Hui Zhou Central People's Hospital, HuiZhou, Guangdong, China
| | - Yongqing Xu
- Department of Anesthesiology, Hui Dong County People's Hospital, HuiZhou, Guangdong, China
| | - Xiaofeng Lin
- Hui Zhou Central People's Hospital, HuiZhou, Guangdong, China
| | - Zhibin Xu
- Department of Basic Medical Sciences, Aspire (Hong Kong) Medical Research Center, Hong Kong, China
| |
Collapse
|
3
|
Gray K, Avitsian R, Kakumanu S, Venkatraghavan L, Chowdhury T. The Effects of Anesthetics on Glioma Progression: A Narrative Review. J Neurosurg Anesthesiol 2022; 34:168-175. [PMID: 32658099 DOI: 10.1097/ana.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
There are many established factors that influence glioma progression, including patient age, grade of tumor, genetic mutations, extent of surgical resection, and chemoradiotherapy. Although the exposure time to anesthetics during glioma resection surgery is relatively brief, the hemodynamic changes involved and medications used, as well as the stress response throughout the perioperative period, may also influence postoperative outcomes in glioma patients. There are numerous studies that have demonstrated that choice of anesthesia influences non-brain cancer outcomes; of particular interest are those describing that the use of total intravenous anesthesia may yield superior outcomes compared with volatile agents in in vitro and human studies. Much remains to be discovered on the topic of anesthesia's effect on glioma progression.
Collapse
Affiliation(s)
| | - Rafi Avitsian
- Department of General Anesthesiology, Cleveland Clinic, Cleveland, OH
| | - Saranya Kakumanu
- Department of Radiation Oncology, Cancer Care Manitoba, Winnipeg, MB
| | - Lashmi Venkatraghavan
- Department of Anesthesia and Pain Medicine, Toronto Western Hospital, Toronto, ON, Canada
| | - Tumul Chowdhury
- Department of Anesthesiology, Perioperative, and Pain Medicine, Health Sciences Center, University of Manitoba
| |
Collapse
|
4
|
Jing Y, Zhang Y, Pan R, Ding K, Chen R, Meng Q. Effect of Inhalation Anesthetics on Tumor Metastasis. Technol Cancer Res Treat 2022; 21:15330338221121092. [PMID: 36131554 PMCID: PMC9502254 DOI: 10.1177/15330338221121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many factors affect the prognosis of patients undergoing tumor surgery, and anesthesia is one of the potential influencing factors. In general anesthesia, inhalation anesthesia is widely used in the clinic because of its strong curative effect and high controllability. However, the effect of inhalation anesthetics on the tumor is still controversial. More and more research has proved that inhalation anesthetics can intervene in local recurrence and distant metastasis of tumor by acting on tumor biological behavior, immune response, and gene regulation. In this paper, we reviewed the research progress of diverse inhalation anesthetics promoting or inhibiting cancer in the critical events of tumor recurrence and metastasis, and compared the effects of inhalation anesthetics on patients' prognosis in clinical studies, to provide theoretical reference for anesthesia management of patients undergoing tumor surgery.
Collapse
Affiliation(s)
- Yixin Jing
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiguo Zhang
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Pan
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhu X, Peng C, Peng Z, Chang R, Guo Q. Sevoflurane Inhibits Metastasis in Hepatocellular Carcinoma by Inhibiting MiR-665-Induced Activation of the ERK/MMP Pathway. Cell Transplant 2022; 31:9636897221104447. [PMID: 35699095 PMCID: PMC9201366 DOI: 10.1177/09636897221104447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent evidence has indicated that inhalational anesthetics may affect the growth
and malignant potential of tumor cells and ultimately influence tumor recurrence
after surgery. Sevoflurane, a volatile anesthetic, is used extensively in
hepatectomy. However, the effect of sevoflurane on the growth of hepatocellular
carcinoma (HCC) cells remains unknown. The aim of this study was to explore the
effects of sevoflurane on HCC metastasis and its potential mechanisms in the
human HCC cell lines, HepG2 and SMMC7721. HepG2 and SMMC7721 cells were treated
with 1.7%, 3.4%, and 5.1 % sevoflurane for 6 h. Cell migration was analyzed
using invasion, migration, and scratch assays. Based on previous literature,
several microRNAs (miRNAs) were screened to determine regulatory miRNA targets
of sevoflurane in HepG2 and SMMC7721 cells; miR-665 was detected as a potential
target and overexpressed or inhibited in HepG2 and SMMC7721 cells by a
lentiviral system. The p-ERK/MMP pathway was also measured by western blotting.
Sevoflurane inhibited the migration and invasion of HCC cells in a
dose-dependent manner. It also inhibited miR-665 expression in HCC cells. We
further observed that sevoflurane inhibited HCC metastasis via miR-665.
Sevoflurane-induced downregulation of miRNA-665 led to phosphorylation of ERK and
matrix metalloproteinase (MMP-9) via suppression of SPRED1. These results
demonstrated that sevoflurane may inhibit invasion and migration via the
p-ERK/MMP-9 signaling pathway in HCC cells.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuchu Peng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Peng
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Guangdong, China
| | - Ruimin Chang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Kang X, Li H, Zhang Z. Sevoflurane blocks glioma malignant development by upregulating circRELN through circRELN-mediated miR-1290/RORA axis. BMC Anesthesiol 2021; 21:213. [PMID: 34479497 PMCID: PMC8414757 DOI: 10.1186/s12871-021-01427-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Sevoflurane (Sev) has been reported to inhibit cancer development, and sevoflurane treatment in cancers is implicated with the deregulation of specific non-coding RNAs (ncRNAs). This study aimed to investigate the relationship between sevoflurane and circular RNA reelin (circRELN) in glioma. Methods The expression of circRELN, microRNA-1290 (miR-1290) and RAR-related orphan receptor A (RORA) was measured by quantitative real-time PCR (qPCR). Cell proliferative capacity was assessed by cell counting kit-8 (CCK-8) and colony formation assays. Cell apoptosis and cell cycle distribution were monitored by flow cytometry assay. Cell migration was assessed by wound healing assay and transwell assay, and cell invasion was assessed by transwell assay. The protein levels of matrix metalloproteinase-2 (MMP2), MMP9 and RORA were quantified by western blot. Tumor growth in vivo was assessed by Xenograft models. The binding relationship between miR-1290 and circRELN or RORA was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results We found that circRELN expression was declined in glioma tissues and cells, while Sev treatment enhanced circRELN expression. In function, Sev notably inhibited glioma cell proliferation, migration and invasion and promoted apoptosis and cell cycle arrest, while circRELN knockdown reversed these effects. MiR-1290 served as a target of circRELN, and glioma cell malignant phenotypes recovered by circRELN knockdown were partly repressed by miR-1290 deficiency. In addition, RORA was a target of miR-1290, and glioma cell malignant phenotypes promoted by miR-1290 restoration were partly blocked by RORA overexpression. CircRELN regulated RORA expression by targeting miR-1290. In Xenograft models, Sev inhibited tumor growth by upregulating circRELN. Conclusion Sev blocked the progression of glioma by increasing circRELN expression, and circRELN played roles in glioma partly by regulating the miR-1290/RORA network. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01427-1.
Collapse
Affiliation(s)
- Xiaofang Kang
- Department of Anesthesiology, The 980 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 398, Zhongshan West Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Hongxia Li
- Department of Anesthesiology, The 980 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 398, Zhongshan West Road, Shijiazhuang City, 050000, Hebei Province, China
| | - Zaiwang Zhang
- Department of Anesthesiology, The 980 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 398, Zhongshan West Road, Shijiazhuang City, 050000, Hebei Province, China.
| |
Collapse
|
7
|
Alam A, Rampes S, Patel S, Hana Z, Ma D. Anesthetics or anesthetic techniques and cancer surgical outcomes: a possible link. Korean J Anesthesiol 2021; 74:191-203. [PMID: 33596628 PMCID: PMC8175878 DOI: 10.4097/kja.20679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
As of 2018 cancer is responsible for almost 9.6 million deaths annually and, with an aging population, the incidence of cancer is expected to continue to rise. Surgery is an important treatment modality for patients with solid organ cancers. It has been postulated that, due to potentially overlapping processes underlying the development of malignancy and the therapeutic pathways of various anesthetic agents, the choice of anesthetic type and method of administration may affect post-operative outcomes in patients with cancer. This is a literature review of the most recent evidence extracted from various databases including PubMed, EMBASE, and the Cochrane, as well as journals and book reference lists. The review highlights the pathophysiological processes underpinning cancer development and the molecular actions of anesthetic agents, pre-clinical and retrospective studies investigating cancer and anesthetics, as well as ongoing clinical trials. Overall, there are conflicting results regarding the impact of regional vs. general anesthesia on cancer recurrence, whilst the majority of data suggest a benefit of the use of intravenous propofol over inhalational volatile anesthetics. The biological changes associated with the surgical inflammatory response offer a unique opportunity to intervene to counteract any potentially cancer-promoting effects.
Collapse
Affiliation(s)
- Azeem Alam
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Sanketh Rampes
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Sonam Patel
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Zac Hana
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
8
|
Abstract
Glioma is one of the most frequent primary brain tumors. Currently, the most common therapeutic strategy for patients with glioma is surgical resection combined with radiotherapy or/and adjuvant chemotherapy. However, due to the metastatic and invasive nature of glioma cells, the recurrence rate is high, resulting in poor prognosis. In recent years, gas therapy has become an emerging treatment. Studies have shown that the proliferation, metastasis and invasiveness of glioma cells exposed to anesthetic gases are obviously inhibited. Therefore, anesthetic gas may play a special therapeutic role in gliomas. In this review, we aim to collect existing research and summarize the rules of using anesthetic gases on glioma, providing potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi-Guang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Gao C, Xu YJ, Qi L, Bao YF, Zhang L, Zheng L. CircRNA VIM silence synergizes with sevoflurane to inhibit immune escape and multiple oncogenic activities of esophageal cancer by simultaneously regulating miR-124/PD-L1 axis. Cell Biol Toxicol 2021; 38:825-845. [PMID: 34018092 DOI: 10.1007/s10565-021-09613-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circular RNA of vimentin (circ-VIM) is a predictor for poor prognosis of acute myeloid leukemia, but we had little information on its function in esophageal cancer (EC). Here we examined the effects of circ-VIM together with sevoflurane on immune escape and multiple oncogenic activities of EC. METHODS Bioinformatic tools, luciferase assay, and RNA immunoprecipitation were used to examine regulations between circ-VIM, miR-124-3p (miR-124), and PD-L1. CCK-8, wound healing, and Transwell assays were used to measure cell proliferation, migration, and invasion, respectively. The impacts of EC cells on cytotoxicity, proliferation, and apoptosis of CD8+ T cells were examined using LDH assay, CFSE staining, and Annexin V/PI staining, respectively. The in vivo tumorigenesis and lung metastases were assessed using xenograft model and tail vein injection of EC cells. RESULTS Significant upregulation of circ-VIM and PD-L1 and downregulation of miR-124 were detected in EC tissues or cells. Circ-VIM sponged miR-124 and released its suppression on the downstream target PD-L1. Sevoflurane, independent of circ-VIM, also upregulated miR-124 to lower PD-L1 expression. By modulating miR-124/PD-L1 axis, silencing circ-VIM and applying sevoflurane both inhibited immune escape and multiple oncogenic activities of EC in vitro, and suppressed xenograft growth and lung metastases in vivo. The inactivation of Ras/ERK signaling pathway was involved in suppression of malignant phenotypes by silencing circ-VIM and sevoflurane treatment. CONCLUSIONS Silencing circ-VIM and applying sevoflurane, by separately regulating miR-124/PD-L1 axis, presented synergistic effects in inhibiting immune escape and multiple malignant phenotypes of EC cells.
Collapse
Affiliation(s)
- Cao Gao
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Yan-Jie Xu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Lei Qi
- Department of Gastroenterology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Ya-Fei Bao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Ishikawa M, Iwasaki M, Zhao H, Saito J, Hu C, Sun Q, Sakamoto A, Ma D. Inhalational Anesthetics Inhibit Neuroglioma Cell Proliferation and Migration via miR-138, -210 and -335. Int J Mol Sci 2021; 22:ijms22094355. [PMID: 33919449 PMCID: PMC8122527 DOI: 10.3390/ijms22094355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Inhalational anesthetics was previously reported to suppress glioma cell malignancy but underlying mechanisms remain unclear. The present study aims to investigate the effects of sevoflurane and desflurane on glioma cell malignancy changes via microRNA (miRNA) modulation. The cultured H4 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. The miR-138, -210 and -335 expression were determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and cell count kit 8 (CCK8) assay with/without miR-138/-210/-335 inhibitor transfections. The miRNA downstream proteins, hypoxia inducible factor-1α (HIF-1α) and matrix metalloproteinase 9 (MMP9), were also determined with immunofluorescent staining. Sevoflurane and desflurane exposure to glioma cells inhibited their proliferation and migration. Sevoflurane exposure increased miR-210 expression whereas desflurane exposure upregulated both miR-138 and miR-335 expressions. The administration of inhibitor of miR-138, -210 or -335 inhibited the suppressing effects of sevoflurane or desflurane on cell proliferation and migration, in line with the HIF-1α and MMP9 expression changes. These data indicated that inhalational anesthetics, sevoflurane and desflurane, inhibited glioma cell malignancy via miRNAs upregulation and their downstream effectors, HIF-1α and MMP9, downregulation. The implication of the current study warrants further study.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (A.S.)
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Correspondence: (M.I.); (D.M.)
| | - Masae Iwasaki
- Department of Anesthesiology and Pain medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (A.S.)
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8562, Japan
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain medicine, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (M.I.); (A.S.)
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK; (H.Z.); (J.S.); (C.H.); (Q.S.)
- Correspondence: (M.I.); (D.M.)
| |
Collapse
|
11
|
Wang J, Cheng CS, Lu Y, Sun S, Huang S. Volatile Anesthetics Regulate Anti-Cancer Relevant Signaling. Front Oncol 2021; 11:610514. [PMID: 33718164 PMCID: PMC7952859 DOI: 10.3389/fonc.2021.610514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/22/2021] [Indexed: 11/27/2022] Open
Abstract
Volatile anesthetics are widely used inhalation anesthetics in clinical anesthesia. In recent years, the regulation of anti-cancer relevant signaling of volatile anesthetics has drawn the attention of investigators. However, their underlying mechanism remains unclear. This review summarizes the research progress on the regulation of anti-cancer relevant signaling of volatile anesthetics, including sevoflurane, desflurane, xenon, isoflurane, and halothane in vitro, in vivo, and clinical studies. The present review article aims to provide a general overview of regulation of anti-cancer relevant signaling and explore potential underlying molecular mechanisms of volatile anesthetics. It may promote promising insights of guiding clinical anesthesia procedure and instructing enhance recovery after surgery (ERAS) with latent benefits.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Lu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shen Sun
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shaoqiang Huang
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Khandelwal A, Jangra K, Katikar MD, Durga P, Maheswara Rao GSU. Choosing Neuroanaesthesia as a career: Marching towards new horizons. Indian J Anaesth 2021; 65:35-42. [PMID: 33767501 PMCID: PMC7980245 DOI: 10.4103/ija.ija_1531_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Anaesthesiology is an ever-changing science and amongst its sub-specialities, the field of neuroanaesthesia is making rapid strides. The fragility of the brain and spinal cord and the multitude of complexities involved in neurosurgery and interventional neuroradiological procedures demand dedicated training in neuroanaesthesia. With rapid advancement in other neuroscience specialties, neuroanaesthesia too has made outstanding progress, owing to establishment of structured training, publication of high-quality scientific research, and invention of novel medications and monitoring modalities. The opportunities for training in India and abroad and resources to broaden knowledge in neuroanaesthesia have increased over the last two decades. A career in neuroanaesthesia offers a great future for budding anaesthesiologists.
Collapse
Affiliation(s)
- Ankur Khandelwal
- Department of Anaesthesia and Critical Care, School of Medical Sciences and Research & Sharda Hospital, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Kiran Jangra
- Department of Anaesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Manisha D Katikar
- Balwant Institute of Neurosurgery & Intensive Trauma Care, Solapur, Maharashtra, India
| | - Padmaja Durga
- Department of Anaesthesiology and Intensive Care, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - G S Uma Maheswara Rao
- Department of Neuronaesthesia, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
13
|
Sevoflurane downregulates insulin-like growth factor-1 to inhibit cell proliferation, invasion and trigger apoptosis in glioma through the PI3K/AKT signaling pathway. Anticancer Drugs 2020; 30:e0744. [PMID: 31305291 DOI: 10.1097/cad.0000000000000744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sevoflurane is a new type of inhalation anesthetic used widely in the clinic. It has the characteristics of rapid induction, rapid recovery, and less irritative to the airway. Studies have shown that sevoflurane can affect the invasion and migration of a variety of malignant tumors. However, its effects on human glioma cells and related mechanisms are not clear. Cultured U251 and U87 cells were pretreated with sevoflurane. The effect of sevoflurane on proliferation was evaluated by MTT, and cell migration assay, cell apoptosis, and invasion ability were evaluated by wound-healing assay, cell apoptosis, and Transwell assays. Insulin-like growth factor-1 (IGF-1) and PI3K/AKT signaling pathway gene expression in sevoflurane-treated cell lines was measured by western blotting analysis, respectively. 5% sevoflurane significantly inhibited proliferation ability in both U251 and U87 cells. Sevoflurane inhibited glioma cells invasion and migration, and promoted apoptosis. Sevoflurane inhibited IGF-1 and promoted the expression of apoptosis-related proteins in glioma cells. In addition, sevoflurane inhibited the PI3K/AKT signaling pathway in glioma cells. This study clarifies that sevoflurane inhibits proliferation, invasion, and migration, and promotes apoptosis in glioma cells. These effects are regulated by IGF-1, an upstream gene of the PI3K/AKT signaling pathway. These findings may be significant for the selection of anesthetic agents in glioma surgery to improve the prognosis of patients.
Collapse
|
14
|
Fan X, Wang D, Chen X, Wang R. Effects of Anesthesia on Postoperative Recurrence and Metastasis of Malignant Tumors. Cancer Manag Res 2020; 12:7619-7633. [PMID: 32922072 PMCID: PMC7457832 DOI: 10.2147/cmar.s265529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
It is difficult to control the recurrence and metastasis of malignant tumors; furthermore, anesthesia is considered one of the main influencing factors. There has been increasing clinical attention on the effects of anesthetic drugs and methods on postoperative tumor growth and metastasis. We reviewed the effects of anesthesia on tumor recurrence and metastasis; specifically, the effects of anesthetic agents, anesthesia methods, and related factors during the perioperative period on the tumor growth and metastasis were analyzed. This study can provide reference standards for rational anesthesia formulations and cancer-related pain analgesia protocols for surgical procedures in patients with malignant tumors. Moreover, it contributes toward an experimental basis for the improvement and development of novel anesthetic agents and methods.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, People's Republic of China.,Department of Anesthesiology, Anhui Provincial Hospital, Hefei 230001, Anhui, People's Republic of China
| | - Delong Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, People's Republic of China.,Department of Anesthesiology, Anhui Provincial Hospital, Hefei 230001, Anhui, People's Republic of China
| | - Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China.,Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ruiting Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, People's Republic of China.,Department of Anesthesiology, Anhui Provincial Hospital, Hefei 230001, Anhui, People's Republic of China
| |
Collapse
|
15
|
Zhao H, Xing F, Yuan J, Li Z, Zhang W. Sevoflurane inhibits migration and invasion of glioma cells via regulating miR-34a-5p/MMP-2 axis. Life Sci 2020; 256:117897. [PMID: 32502543 DOI: 10.1016/j.lfs.2020.117897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
Glioma is the most common brain malignancy and surgical resection is the primary option for patient with glioma. Anesthetics could be used to inhibit cancer dissemination and metastasis during surgery. This study aims to assess the function of volatile anesthetic sevoflurane in glioma migration and invasion and explore the potential mechanism. Twenty-five patients with glioma were recruited in this study. LN229 and U251 cells were used in vitro experiments. Cell viability was analyzed by MTT analysis. Cell migration and invasion were examined via transwell analysis. microRNA-34a-5p (miR-34a-5p) and matrix metalloproteinase-2 (MMP-2) levels were measured via quantitative real-time polymerase chain reaction. The relationship of miR-34a-5p and MMP-2 was tested via bioinformatics analysis, luciferase reporter analysis, RNA immunoprecipitation and RNA pull-down. Sevoflurane decreased glioma cell migration and invasion. In glioma cells, sevoflurane up-regulated miR-34a-5p abundance and down-regulated MMP-2 level. Overexpression of miR-34a-5p contributed to sevoflurane-caused suppression of migration and invasion, while its knockdown played an opposite effect. MMP-2 was targeted via miR-34a-5p and MMP-2 silence reversed the influence of miR-34a-5p knockdown under sevoflurane. Sevoflurane exposure represses cell migration and invasion, which might be related to inhibition of MMP-2 by up-regulating miR-34a-5p. This study provides a novel mechanism for understanding the pharmacological effects of sevoflurane on glioma.
Collapse
Affiliation(s)
- Huaping Zhao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fei Xing
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingjing Yuan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhisong Li
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
16
|
Sevoflurane Enhances Proliferation, Metastatic Potential of Cervical Cancer Cells via the Histone Deacetylase 6 Modulation In Vitro. Anesthesiology 2020; 132:1469-1481. [DOI: 10.1097/aln.0000000000003129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
Sevoflurane is commonly used for cervical cancer surgery, but its effect on cervical cancer cell biology remains unclear. This mechanistic study explores how sevoflurane affects the proliferation and metastatic potential of immortalized cervical cancer cell lines.
Methods
Cultured cervical cancer Caski and HeLa lines were exposed to 1, 2, or 3% sevoflurane for 2 or 4 h. Cell proliferation was determined through the Kit-8 assay and Ki-67 immunofluorescent staining. Cell migration and invasion were evaluated with the Transwell assay. Immunofluorescent staining and Western blot analysis were used to identify sevoflurane-induced morphological and biochemical changes.
Results
Sevoflurane exposure for either 2 or 4 h significantly increased HeLa cell proliferation in a time- and concentration-dependent manner to be 106 ± 2.7% and 107 ± 1.4% relative to the controls (n = 10; P = 0.036; P = 0.022) at 24 h after exposure and to be 106 ± 2.2% and 106 ± 1.7% relative to the controls (n = 10; P = 0.031; P = 0.023) at the highest concentration of 3% sevoflurane studied, respectively, but not Caski cells. Sevoflurane promoted invasion ability (1.63 ± 0.14 and 1.92 ± 0.12 relative to the controls) and increased cell size (1.69 ± 0.21 and 1.76 ± 0.13 relative to the controls) of Caski and HeLa cells (n = 6; all P < 0.001), respectively. Sevoflurane increased histone deacetylase 6 expression in both cells, and histone deacetylase 6 knockdown abolished the prometastatic effects of sevoflurane. Sevoflurane also induced deacetylation of α-tubulin in a histone deacetylase 6–dependent manner. The protein kinase B (AKT) or extracellular regulated protein kinase (ERK1/2) phosphorylation inhibition attenuated sevoflurane-induced histone deacetylase 6 expression.
Conclusions
Sevoflurane enhanced proliferation, migration, and invasion of immortalized cervical cancer cells, which was likely associated with increasing histone deacetylase 6 expression caused by phosphatidylinositide 3-kinase/AKT- and ERK1/2-signaling pathway activation.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
17
|
Han XC, Zhang YJ, Dong X, Xing QZ, Li KH, Zhang L. Sevoflurane modulates the cancer stem cell-like properties and mitochondrial membrane potential of glioma via Ca 2+-dependent CaMKII/JNK cascade. Life Sci 2020; 253:117675. [PMID: 32360621 DOI: 10.1016/j.lfs.2020.117675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
AIMS Gliomas are responsible for the majority of deaths from primary brain tumours. Sevoflurane showed inhibition effects on the tumor progression in vitro. However, whether sevoflurane could affect the stemness of glioma stem cells (GSCs) and the potential molecular mechanism have not been well elucidated. MAIN METHODS Effects of sevoflurane on cell viability, proliferation and invasion ability of glioma cells as well as tumor growth in vivo were assessed. Sphere formation assay was performed to evaluate the effect of sevoflurane on the stemness of GSCs. Effects of sevoflurane on mitochondrial function was evaluated by intracellular/mitochondrial reactive oxygen species (ROS) level and mitochondrial membrane potential. Expression levels of proliferation-related proteins, stemness markers and proteins in CaMKII/JNK cascade were measured by Western blot. KEY FINDINGS Sevoflurane inhibited the viability, proliferation and invasion ability of glioma cells (U87MG and U373MG). Western blot showed that sevoflurane decreased the expression levels of proliferation and invasion-related proteins. Sphere formation ability of GSCs, expression levels of stemness markers and mitochondrial function were significantly suppressed by sevoflurane. Moreover, sevoflurane treatment significantly increased the Ca2+ concentration and stimulated phosphorylation of CaMKII, JNK and IRS1. Ca2+ chelator BAPTA-AM combined with sevoflurane synergistically inhibited colony forming ability and the expression levels of proliferation-related proteins and stemness markers. In addition, the in vivo study further confirmed that sevoflurane inhibited tumor growth via Ca2+-dependent CaMKII/JNK cascade. SIGNIFICANCE The present study demonstrated that sevoflurane inhibited glioma tumorigenesis and modulated the cancer stem cell-like properties and mitochondrial membrane potential via activation of Ca2+-dependent CaMKII/JNK cascade.
Collapse
Affiliation(s)
- Xue-Chang Han
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China.
| | - Ya-Jie Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Xu Dong
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Qun-Zhi Xing
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Ke-Han Li
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Lu Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| |
Collapse
|
18
|
Cao Y, Lv W, Ding W, Li J. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/Akt/GSK‑3β/β‑catenin signaling pathway by downregulating miR‑25‑3p. Int J Mol Med 2020; 46:97-106. [PMID: 32319540 PMCID: PMC7255470 DOI: 10.3892/ijmm.2020.4577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022] Open
Abstract
Sevoflurane (Sevo) is one of the most frequently used volatile anesthetic agents in surgical oncology and has various effects on tumors, including inhibiting tumor growth, recurrence, and metastases; however, the molecular mechanisms are unknown. This study tried to investigate the influence of Sevo on hepatocellular carcinoma (HCC) cells and its possible mechanisms of action. The present study found that Sevo suppressed both the proliferative and invasive capabilities of both HCCLM3 and Huh7 cells in a dose-dependent manner. Moreover, 53 differentially expressed microRNAs (miRNAs/miRs) in HCC cells that resulted from Sevo were screened out using miRNA microarray assay. In particular, miR-25-3p displayed a significant decrease in response to Sevo treatment. Further studies showed that Sevo's inhibitory actions on HCC cells were attenuated by overexpression of miR-25-3p but enhanced by its inhibitor. Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN), a tumor suppressor gene, was directly targeted by miR-25-3p and its expression was upregulated by Sevo. In addition, Sevo suppressed the expression of phosphorylated-protein kinase B (p-Akt) (S473), glycogen synthase kinase (GSK) 3β (p-GSK3β) (S9), β-catenin, c-Myc and matrix metalloproteinase 9; whereas these inhibitory effects were reversed by miR-25-3p overexpression. More importantly, Sevo's tumor-suppressive effects were enhanced by LY294002 (a PI3-kinase inhibitor) but weakened by insulin growth factor-1 (an agonist of the Akt signaling pathway). These data suggest that Sevo's antitumor effects on HCC could be explained, in part, by Sevo inhibiting the miR-25-3p/PTEN/Akt/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wenfei Lv
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wan Ding
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| | - Jun Li
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| |
Collapse
|
19
|
Xu Y, Jiang W, Xie S, Xue F, Zhu X. The Role of Inhaled Anesthetics in Tumorigenesis and Tumor Immunity. Cancer Manag Res 2020; 12:1601-1609. [PMID: 32184663 PMCID: PMC7061426 DOI: 10.2147/cmar.s244280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Inhaled anesthetics are widely used for induction and maintenance of anesthesia during surgery, including isoflurane, sevoflurane, desflurane, haloflurane, nitrous oxide (N2O), enflurane and xenon. Nowadays, it is controversial whether inhaled anesthetics may influence the tumor progression, which urges us to describe the roles of different inhaled anesthetics in human cancers. In the review, the relationships among the diverse inhaled anesthetics and patient outcomes, immune response and cancer cell biology were discussed. Moreover, the mechanisms of various inhaled anesthetics in the promotion or inhibition of carcinogenesis were also reviewed. In summary, we concluded that several inhaled anesthetics have different immune functions, clinical outcomes and cancer cell biology, which could contribute to opening new avenues for selecting suitable inhaled anesthetics in cancer surgery.
Collapse
Affiliation(s)
- Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
20
|
Anesthesia and brain tumor surgery: technical considerations based on current research evidence. Curr Opin Anaesthesiol 2020; 32:553-562. [PMID: 31145197 DOI: 10.1097/aco.0000000000000749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Anesthetics may influence cancer recurrence and metastasis following surgery by modulating the neuroendocrine stress response or by directly affecting cancer cell biology. This review summarizes the current evidence on whether commonly used anesthetics potentially affect postoperative outcomes following solid organ cancer surgery with particular focus on neurological malignancies. RECENT FINDINGS Despite significant improvement in diagnostic and therapeutic technology over the past decades, mortality rates after cancer surgery (including brain tumor resection) remains high. With regards to brain tumors, interaction between microglia/macrophages and tumor cells by multiple biological factors play an important role in tumor progression and metastasis. Preclinical studies have demonstrated an association between anesthetics and brain tumor cell biology, and a potential effect on tumor progression and metastasis has been revealed. However, in the clinical setting, the current evidence is inadequate to draw firm conclusions on the optimal anesthetic technique for brain tumor surgery. SUMMARY Further work at both the basic science and clinical level is urgently needed to evaluate the association between perioperative factors, including anesthetics/technique, and postoperative brain tumor outcomes.
Collapse
|
21
|
Zhang L, Wang J, Fu Z, Ai Y, Li Y, Wang Y, Wang Y. Sevoflurane suppresses migration and invasion of glioma cells by regulating miR-146b-5p and MMP16. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3306-3314. [PMID: 31385537 DOI: 10.1080/21691401.2019.1648282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Glioma is the most common brain tumor with poor prognosis all over the world. Anesthetics have been demonstrated to have important impacts on cell migration and invasion in different cancers. However, the underlying mechanism that allows anesthetics-mediated progression of glioma cells remains elusive. Methods: Sevoflurane (Sev), a class of common anesthetics, was used to expose to U87-MG and U251 cells. The expressions of microRNA-146b-5p (miR-146b-5p) and matrix metallopeptidase 16 (MMP16)were measured by quantitative real-time polymerase chain reaction or western blot. Transfection was performed in glioma cells with miR-146b-5p inhibitor, inhibitor negative control, MMP16 overexpression vector, empty vector, small interfering RNA against MMP16 or scramble. Cell migration and invasion were analyzed by the trans-well assay. The interaction between miR-146b-5p and MMP16 was explored by luciferase activity and RNA immunoprecipitation assays. Results: Sev treatment inhibited migration and invasion of glioma cells. The expression of miR-146b-5p was enhanced and MMP16 protein was decreased in glioma cells after exposure of Sev. Knockdown of miR-146b-5p or overexpression of MMP16 reversed Sev-induced inhibition of migration and invasion of glioma cells. Moreover, MMP16 was indicated as a target of miR-146b-5p and its silencing attenuated the regulatory role of miR-146b-5p abrogationin Sev-treated glioma cells. Conclusion: Sev impeded cell migration and invasion through regulating miR-146b-5p and MMP16 in glioma, indicating a novel theories foundation for the application of anesthetics like Sev in glioma.
Collapse
Affiliation(s)
- Le Zhang
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Jun Wang
- b Department of Operating Room, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Zhijie Fu
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - YanQiu Ai
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yanrong Li
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ying Wang
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yanping Wang
- a Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
22
|
Zhang C, Wang B, Wang X, Sheng X, Cui Y. Sevoflurane inhibits the progression of ovarian cancer through down-regulating stanniocalcin 1 (STC1). Cancer Cell Int 2019; 19:339. [PMID: 31889892 PMCID: PMC6916020 DOI: 10.1186/s12935-019-1062-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer is one of the leading causes of female death worldwide, with a poor prognosis of advanced patients. Sevoflurane, a volatile anesthetic commonly used in clinical operations, has been reported to have anti-cancer activity against some tumors. In the present study, we aimed to investigate the effects of sevoflurane on the progression of ovarian cancer and its potential mechanism. Methods The effects of sevoflurane on ovarian cancer cell viability, proliferation, migration, invasion, cell cycle, and apoptosis were determined by functional experiments in vitro. Gelatin zymography assay was performed to examine MMP9 activity. In vivo, sevoflurane was injected into mice of transplantation tumor with SKOV3 cells or with pcDNA-STC1 treated SKOV3 cells. Results We found that sevoflurane inhibited the viability of SKOV3 and OVCAR3 cells in a dose-dependent manner, and colony formation assay revealed that sevoflurane inhibited ovarian cancer cell colony-formation abilities. Additionally, sevoflurane could induce cell cycle arrest and promote cell apoptosis in SKOV3 and OVCAR3 cells. Moreover, sevoflurane reduced the migration and invasion abilities of SKOV3 and OVCAR3 cells, as well as the MMP-9 activity. Furthermore, sevoflurane down-regulated the expression of stanniocalcin 1 (STC1), and up-regulation of STC1 could reverse the inhibitory effects of sevoflurane on cell proliferation and invasion. In vivo, sevoflurane significantly inhibited the tumor growth, which was be reversed by STC1 overexpression. Conclusion These data reveal an anti-cancer activity of sevoflurane on the growth and invasion of ovarian cancer, which may be through down-regulating STC1. Sevoflurane may serve as a potential anti-cancer agent in ovarian cancer therapy.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- 1Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117 China.,2Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Baosheng Wang
- 2Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Xiuqin Wang
- 2Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Xiugui Sheng
- 2Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China.,National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116 China
| | - Yongchun Cui
- 2Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
23
|
Chen M, Zhou L, Liao Z, Ye X, Xuan X, Gu B, Lu F. Sevoflurane Inhibited Osteosarcoma Cell Proliferation And Invasion Via Targeting miR-203/WNT2B/Wnt/β-Catenin Axis. Cancer Manag Res 2019; 11:9505-9515. [PMID: 31814757 PMCID: PMC6858624 DOI: 10.2147/cmar.s225911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Background Osteosarcoma is one of the most common primary bone cancers with predominant occurrence in children and adolescents. This study aimed to determine the effects of sevoflurane treatment on the osteosarcoma progression and to explore the underlying molecular mechanisms. Materials and methods The mRNA and protein expression levels were determined by qPCR and Western blot, respectively. Osteosarcoma cell proliferation, apoptosis and invasion were determined by MTT, caspase-3 activity, colony formation and Transwell invasion assays, respectively. The interaction between miR-203 and WNT2B 3' untranslated region was confirmed by luciferase reporter assay. Results Sevoflurane treatment for 6 hrs concentration-dependently suppressed cell viability, increased caspase-3 activity and up-regulated miR-203 expression in both U2OS and MG63 cells. MiR-203 overexpression suppressed cell viability, increased caspase-3 activity and suppressed cell growth and invasion of osteosarcoma cells. In addition, miR-203 knockdown attenuated the tumor-suppressive effects of sevoflurane treatment on osteosarcoma cells. Mechanistic studies showed that miR-203 repressed the expression of WNT2B in U2OS cells, and inhibition of miR-203 attenuated the suppressive effects of sevoflurane on WNT2B expression. More importantly, WNT2B overexpression attenuated the effects of sevoflurane treatment on cell viability, caspase-3 activity, cell growth and invasion of U2OS cells. MiR-203 overexpression suppressed Wnt/β-catenin signalling. Similarly, sevoflurane suppressed the activity of Wnt/β-catenin signalling, which was partially reversed by miR-203 knockdown and WTN2B overexpression. Conclusion Our data showed the tumor-suppressive effects of sevoflurane on osteosarcoma cells, and mechanistic studies revealed that sevoflurane inhibited osteosarcoma cell proliferation and invasion partly via targeting the miR-203/WNT2B/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Meixian Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lisheng Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhaoxia Liao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xijiu Ye
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xujun Xuan
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Beibei Gu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Fuding Lu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Yang H, Chen Y, Yan H, Wu H. Effects of dexmedetomidine on glioma cells in the presence or absence of cisplatin. J Cell Biochem 2019; 121:723-734. [PMID: 31452248 DOI: 10.1002/jcb.29318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/15/2019] [Indexed: 11/08/2022]
Abstract
With the extensive use of dexmedetomidine (Dex) in the surgical resection of tumours for its potent sedative and analgesic properties, its effects on various properties of tumours have received increased attention. The study described herein aimed to investigate the effects of Dex on glioma cells in the presence or absence of cisplatin (DDP). Glioma U251 and U87MG cells were treated with different doses (1-50 nM) of Dex for 12 hours, then recultured in a Dex-free medium. In addition, Dex was added to U251 and U87MG cells 12 hours before or simultaneously with a 12-hour DDP treatment. Treatment with Dex increased the viability of both cell lines; this effect continued for at least 24 hours after Dex was removed. A cell invasion assay indicated that Dex inhibited cell invasion at 50 nM, but not at 10 nM. Western blot analysis showed that Dex increased the expression of phosphorylated extracellular-signal-regulated kinase 1/2, phosphoitide 3-kinase and p-AKT, but decreased ROCK protein levels at a dose of 50 nM. Intracellular Ca 2+ concentration was decreased by Dex in a dose-dependent manner. DDP toxicity was attenuated by 10 nM Dex added either before or with DDP treatment. However, pretreatment with 50 nM Dex instead enhanced the toxicity of DDP. Single-dose treatment with Dex did not significantly change glioma volume in nude mice, but changed the expression of Ki67 and matrix metalloproteinase-3 in the tumour. In conclusion, this study provides evidence of the regulatory effects of Dex on proliferation, invasion and chemosensitivity of glioma cells, and outlines potential mechanisms for these effects.
Collapse
Affiliation(s)
- Hui Yang
- Department of Anesthesiology, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| | - Yudan Chen
- Department of Hemodialysis, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| | - Hui Yan
- Department of Neurosurgery, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| | - Hao Wu
- Department of Neurosurgery, The 3rd Xiangya Hospital of Central South University, Chang Sha, China
| |
Collapse
|
25
|
Gao K, Su Z, Liu H, Liu Y. RETRACTED: Anti-proliferation and anti-metastatic effects of sevoflurane on human osteosarcoma U2OS and Saos-2 cells. Exp Mol Pathol 2019; 108:121-130. [PMID: 30974101 DOI: 10.1016/j.yexmp.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/17/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief and the authors. The journal was initially contacted by the corresponding author to request the retraction of the article as the results were reportedly not reproducible post-publication. Further investigation by the journal revealed also that the author name Hailin Liu was added to the authorship without editorial approval, after the article was accepted by the handling Editor. Other authorship issues as well as data realiability issues with the article were further revealed by the institutional investigation: http://med.china.com.cn/content/pid/291148/tid/1013/iswap/1. Given the concerns raised regarding panels from Figure 3A and also the comments of Dr Elisabeth Bik regarding this article “This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Ke Gao
- Department of Cardiovascular, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhen Su
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hailin Liu
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yan Liu
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.
| |
Collapse
|
26
|
Fan L, Wu Y, Wang J, He J, Han X. Sevoflurane inhibits the migration and invasion of colorectal cancer cells through regulating ERK/MMP-9 pathway by up-regulating miR-203. Eur J Pharmacol 2019; 850:43-52. [PMID: 30685432 DOI: 10.1016/j.ejphar.2019.01.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023]
Abstract
Surgery resection is the primary treatment for colorectal cancer (CRC) patients with the risk of cancer dissemination and metastasis. Sevoflurane is one inhalational anesthesia which regulates migration and invasion in varying cancers. However, the effect of sevoflurane on CRC cells and its mechanism remain poorly understood. In this study, SW620 and HCT116 cells were treated with different concentrations of sevoflurane for 6 h in vitro. We measured the effect of sevoflurane on cell survival, migration and invasion by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide or trans-well assays. Moreover, we explored the interaction between sevoflurane and miR-203 and Roundabout1 (Robo1) as well as the extracellular signal-regulated kinase (ERK) and matrix metalloproteinase-9 (MMP-9) pathway. Results showed that sevoflurane inhibited cell migration and invasion in SW620 and HCT116 cells in a concentration dependent manner. Moreover, different concentrations of sevoflurane suppressed the phosphorylation of ERK. miR-203 expression was impaired while sevoflurane reversed the expression of miR-203 in CRC cells. In addition, inhibition of miR-203 attenuated the inhibitory effect of sevoflurane on cell migration, invasion and phosphorylated ERK level. Notably, MMP-9, as a downstream of ERK, was involved in sevoflurane-mediated processes in CRC cells. Besides, Robo1 was indicated as a target of miR-203 and inhibited by sevoflurane treatment. These results indicated that sevoflurane suppressed cell migration and invasion through regulating ERK/MMP-9 pathway via miR-203/Robo1 in CRC cells, indicating important clinical implications for anesthetic agents to prevent metastasis in CRC.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China.
| | - Yini Wu
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China
| | - Jianping Wang
- Department of Anorectal Surgery, Wenzhou Medical University, The Fifth Affiliated Hospital, Lishui, Zhejiang 323000, China.
| | - Jiaqun He
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China
| | - Xin Han
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China
| |
Collapse
|
27
|
Role of MEK-ERK signaling mediated adhesion of glioma cells to extra-cellular matrix: Possible implication on migration and proliferation. Ann Neurosci 2019; 26:52-56. [PMID: 31975773 PMCID: PMC6894623 DOI: 10.5214/ans.0972.7531.260203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 01/06/2023] Open
Abstract
Background Glioblastoma represents the most common primary brain tumor with a worst
prognosis despite developments in neurosurgery and chemoradiotherapy.
Detachment of the cells from the primary tumor tissue is a prerequisite for
their dispersion and spreading. Initial and incessant dispersal of tumor
cells from the primary tumor tissue renders GBM refractory to comprehensive
surgical removal and increases the chance of recurrence and poorer
prognosis. Purposes The current study was designed to investigate the effect of inhibition of
MEK-ERK1/2 signaling by PD98059 and U0126 on the growth and migration of
glioma cells as well as their adhesion to extracellular matrix. Methods MEK-ERK1/2 signaling in U87-MG cells was inhibited by PD98059 and U0126.
Migration, proliferation and adhesion were analyzed by scratch-wound assay,
MTT assay, cell adhesion assay respectively. Results PD98059 and U0126 significantly not only reduced the proliferation of glioma
cells and attenuated their migration but also increased their adhesion to
gelatin of extracellular matrix. Conclusion This study provides the evidence that inhibition of MEK-ERK1/2 signaling
enhances the adhesion of glioma cells to gelatin/collagen component of ECM,
and decreases the proliferation and migration of the glioma cells. We
propose the possible rationale of association between ERK signaling and
cell-cell adhesion molecules in glioma microenvironment which regulates the
glioma initiation, growth and progression.
Collapse
|
28
|
Liu J, Yang L, Guo X, Jin G, Wang Q, Lv D, Liu J, Chen Q, Song Q, Li B. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells. Mol Med Rep 2018; 18:455-460. [PMID: 29750301 DOI: 10.3892/mmr.2018.8949] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/20/2018] [Indexed: 11/05/2022] Open
Abstract
Rapid proliferation is one of the critical characteristics of breast cancer. However, the underlying regulatory mechanism of breast cancer cell proliferation is largely unclear. The present study indicated that sevoflurane, one of inhalational anesthetics, could significantly suppress breast cancer cell proliferation by arresting cell cycle at G1 phase. Notably, the rescue experiment indicated that miR-203 was upregulated by sevoflurane and mediated the function of sevoflurane on suppressing the breast cancer cell proliferation. The present study indicated the function of the sevoflurane/miR-203 signaling pathway on regulating breast cancer cell proliferation. These results provide mechanistic insight into how the sevoflurane/miR-203 signaling pathway supresses proliferation of breast cancer cells, suggesting the sevoflurane/miR-203 pathway may be a potential target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Anesthesiology, The Second Clinical College of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Huangshi, Hubei 435000, P.R. China
| | - Xia Guo
- Department of Ophthalmology, Third People's Hospital of Jinan, Jinan, Shandong 250100, P.R. China
| | - Guangli Jin
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Qimin Wang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Dongdong Lv
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Junli Liu
- Department of Anesthesiology, The Second Clinical College of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Qiu Chen
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Qiong Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Baolin Li
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
29
|
Long noncoding RNA DANCR mediates cisplatin resistance in glioma cells via activating AXL/PI3K/Akt/NF-κB signaling pathway. Neurochem Int 2018; 118:233-241. [PMID: 29572052 DOI: 10.1016/j.neuint.2018.03.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/29/2022]
Abstract
Malignant glioma is an aggressive type of brain tumor with poor prognosis and mostly incurable. Although cisplatin is used for adjuvant chemotherapy against glioma, intrinsic and acquired resistance restricts the application of cisplatin. Long noncoding RNA (lncRNA) DANCR is reported to regulate the differentiation and progression of several cancers. However, whether DANCR participates in cisplatin resistance of glioma is still unknown. In this study, we found that DANCR expression was negatively correlated with cisplatin sensitivity in glioma cells. Gain-of and loss-of function assays revealed that DNACR attenuated cisplatin-induced cell proliferation inhibition in vitro and xenograft growth suppression in vivo. Furthermore, DNACR also attenuated cisplatin-induced cell apoptosis in vitro and in vivo. Mechanistically, we found that DANCR upregulated AXL via competitively binding miR-33a-5p, miR-33b-5p, miR-1-3p, miR-206, and miR-613. Through upregulating AXL, DANCR activated PI3K/Akt/NF-κB signaling pathway in glioma cells. Inhibiting AXL/PI3K/Akt/NF-κB signaling pathway reversed the effects of DANCR on cisplatin resistance. In conclusion, we identified a cisplatin-resistance associated lncRNA DANCR. DANCR promotes cisplatin resistance via activating AXL/PI3K/Akt/NF-κB signaling pathway in glioma. Our data suggested that DANCR would be a potential biomarker for predicting cisplatin sensitivity and a therapeutic target for enhancing cisplatin efficacy in glioma.
Collapse
|
30
|
Gao YF, Mao XY, Zhu T, Mao CX, Liu ZX, Wang ZB, Li L, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. COL3A1 and SNAP91: novel glioblastoma markers with diagnostic and prognostic value. Oncotarget 2018; 7:70494-70503. [PMID: 27655637 PMCID: PMC5342568 DOI: 10.18632/oncotarget.12038] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023] Open
Abstract
Although patients with glioblastoma (GBM) have grave prognosis, significant variability in patient outcome is observed. This study aims to identify novel targets for GBM diagnosis and therapy. Microarray data (GSE4290, GSE7696, and GSE4412) obtained from the Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) by significant analysis of microarray (SAM). Intersection of the identified DEGs for each profile revealed 46 DEGs in GBM. A subset of common DEGs were validated by real-time reverse transcription quantitative PCR (qPCR). The prognostic value of some of the markers was also studied. We determined that RRM2 and COL3A1 were increased and directly correlated with glioma grade, while SH3GL2 and SNAP91 were decreased in GBM and inversely correlated with glioma grade. Kaplan-Meir analysis of GSE7696 revealed that COL3A1 and SNAP91 correlated with survival, suggesting that COL3A1 and SNAP91 may be suitable biomarkers for diagnostic or therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Xiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
31
|
Du Q, Liu J, Zhang X, Zhang X, Zhu H, Wei M, Wang S. Propofol inhibits proliferation, migration, and invasion but promotes apoptosis by regulation of Sox4 in endometrial cancer cells. ACTA ACUST UNITED AC 2018; 51:e6803. [PMID: 29490000 PMCID: PMC5856446 DOI: 10.1590/1414-431x20176803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/14/2017] [Indexed: 01/27/2023]
Abstract
Propofol is an intravenous sedative hypnotic agent of which the growth-inhibitory effect has been reported on various cancers. However, the roles of propofol in endometrial cancer (EC) remain unclear. This study aimed to explore the effects of propofol on EC in vitro and in vivo. Different concentrations of propofol were used to treat Ishikawa cells. Colony number, cell viability, cell cycle, apoptosis, migration, and invasion were analyzed by colony formation, MTT, flow cytometry, and Transwell assays. In addition, the pcDNA3.1-Sox4 and Sox4 siRNA plasmids were transfected into Ishikawa cells to explore the relationship between propofol and Sox4 in EC cell proliferation. Tumor weight in vivo was measured by xenograft tumor model assay. Protein levels of cell cycle-related factors, apoptosis-related factors, matrix metalloproteinases 9 (MMP9), matrix metalloproteinases 2 (MMP2) and Wnt/β-catenin pathway were examined by western blot. Results showed that propofol significantly decreased colony numbers, inhibited cell viability, migration, and invasion but promoted apoptosis in a dose-dependent manner in Ishikawa cells. Moreover, propofol reduced the expression of Sox4 in a dose-dependent manner. Additionally, propofol significantly suppressed the proportions of Ki67+ cells, but Sox4 overexpression reversed the results. Furthermore, in vivo assay results showed that propofol inhibited tumor growth; however, the inhibitory effect was abolished by Sox4 overexpression. Moreover, propofol inhibited Sox4 expression via inactivation of Wnt/β-catenin signal pathway. Our study demonstrated that propofol inhibited cell proliferation, migration, and invasion but promoted apoptosis by regulation of Sox4 in EC cells. These findings might indicate a novel treatment strategy for EC.
Collapse
Affiliation(s)
- Qing Du
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Xuezhi Zhang
- Department of Emergency, Qingdao University, Qingdao, China
| | - Xin Zhang
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - He Zhu
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Ming Wei
- Department of Anesthesiology, Qingdao University, Qingdao, China
| | - Shilei Wang
- Department of Anesthesiology, Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Yang Y, Hu R, Yan J, Chen Z, Lu Y, Jiang J, Jiang H. Sevoflurane inhibits the malignant potential of head and neck squamous cell carcinoma via activating the hypoxia‑inducible factor-1α signaling pathway in vitro. Int J Mol Med 2017; 41:995-1002. [PMID: 29207062 DOI: 10.3892/ijmm.2017.3306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
Sevoflurane, an inhalational anesthetic, is extensively used during oral cancer surgery. However, the effect of sevoflurane on head and neck squamous cell carcinoma (HNSCC) remains unclear. The objective of the present study was to investigate the effects of sevoflurane on the proliferation, apoptosis and invasion in HNSCC cell lines and the underlying molecular mechanism. The Cell Counting Kit-8 assay was used to evaluate cell proliferation. Apoptosis was analyzed by flow cytometry. Cell invasion was evaluated using the Transwell invasion assay. The expression levels of Akt, p-Akt (Ser473), hypoxia‑inducible factor-1α (HIF-1α), Fas and Bcl-2 were measured by western blotting. Significant inhibition of cell proliferation and induction of apoptosis were observed in FaDu and CAL-27 cells following sevoflurane treatment. The expression of Akt, p-Akt (Ser473) and Bcl-2 was supressed, while that of Fas was significantly increased, which was partly associated with the activation of the HIF-1α pathway. In addition, the results revealed a statistically significant inhibition of cell invasion in the FaDu cell line following exposure to 2 and 4% sevoflurane for 2, 4, 6 and 8 h. Therefore, the present study demonstrated that sevoflurane decreased the malignant behavior of HNSCC cell lines in vitro, which was associated with activation of the HIF-1α pathway.
Collapse
Affiliation(s)
- Yaqiong Yang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Zhifeng Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Yi Lu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Jue Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| |
Collapse
|
33
|
Yang W, Cai J, Zabkiewicz C, Zhang H, Ruge F, Jiang WG. The Effects of Anesthetics on Recurrence and Metastasis of Cancer, and Clinical Implications. World J Oncol 2017; 8:63-70. [PMID: 29147437 PMCID: PMC5649999 DOI: 10.14740/wjon1031e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
Surgical resection of the primary tumor may enhance the metastasis and recurrence of cancer. The reaction of patients to surgery includes changes of the immune system, the inflammatory system and the neuroendocrine system. In the perioperative period, anesthetics are used both for anesthesia and analgesia. There are several studies showing that the progression of cancer can be influenced by many kinds of anesthetics, although most of these studies are preclinical and thus have not yet influenced clinical recommendations. This review summarizes recent studies regarding the effects of anesthetics on metastasis and recurrence of cancer.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Anesthesiology, Beijing Tong Ren Hospital, Capital Medical University, Dong-Cheng, Beijing 100065, China.,Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jun Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Huiming Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|