1
|
Chen H, Chang X, Zhou J, Zhang G, Cheng J, Zhang Z, Xing J, Yan C, Liu Z. Anti-neuroinflammatory and Neuroprotective Effects of T-006 on Alzheimer's Disease Models by Modulating TLR4-Mediated MyD88/ NF-κB Signaling. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:382-396. [PMID: 39791155 DOI: 10.2174/0118715273337232241121113048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice. Therefore, we have further investigated the effects of T-006 on neuroinflammation in AD-like pathology. METHODS The anti-inflammatory effects of T-006 and its underlying mechanisms were evaluated in Lipopolysaccharide (LPS)-induced AD rats. The potential protective effects against LPS-activated microglia-mediated neurotoxicity were also measured. RESULTS T-006 significantly improved the cognitive impairment in LPS-induced AD rats by inhibiting the microglia/astrocyte activation. Further cellular assays found that T-006 significantly reserved the anomalous elevation of inflammatory cytokines in LPS-induced BV2 microglial cells in a concentration-dependent manner, while T-006 treatment alone showed no effects on the normal cultured cells. T-006 also reduced the levels of Toll-like Receptor 4 (TLR4)/Myeloid Differentiation protein-88 (MyD88)/NF-κB signaling-related proteins in BV2 cells exposed to LPS stimulation. TAK242, which selectively inhibits TLR4, slightly lessened the effects of T-006 in LPS-treatment BV2 cells without significance. Importantly, T-006 protected neurons against LPS-induced neuroinflammation by inhibiting the Reactive Oxygen Species (ROS) production and maintaining mitochondrial function. CONCLUSION T-006 inhibited TLR4-mediated MyD88/NF-κB signaling pathways to suppress neuroinflammation in the LPS-induced AD rat model.
Collapse
Affiliation(s)
- Haiyun Chen
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Chang
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiemei Zhou
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guiliang Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Jiehong Cheng
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Jieyu Xing
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chunyan Yan
- School of Pharmacy, Clinical Pharmacy (School of Integrative Pharmacy), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, 528000, China
| |
Collapse
|
2
|
Zhang G, Liang Z, Wang Y, Zhang Z, Hoi PM. Tetramethylpyrazine Analogue T-006 Protects Neuronal and Endothelial Cells Against Oxidative Stress via PI3K/AKT/mTOR and Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1272. [PMID: 39456524 PMCID: PMC11505549 DOI: 10.3390/antiox13101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND T-006, a novel neuroprotective derivative of tetramethylpyrazine (TMP), exhibits multifunctional neuroprotective properties. T-006 has been shown to improve neurological and behavioral functions in animal models of ischemic stroke and neurodegenerative diseases. The present study aims to further elucidate the mechanisms underlying the protective effects of T-006 against oxidative injuries induced by glutamate or hypoxia. METHODS Mouse hippocampal HT22 cells were used to evaluate the neuroprotective effects of T-006 against glutamate-induced injuries, while mouse brain endothelial bEnd.3 cells were used to evaluate the cerebrovascular protective effects of T-006 against oxygen-glucose deprivation followed by reperfusion (OGD/R)-induced injuries. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to measure cell viability and oxidative stress. Western blot and immunofluorescence analyses of protein expression were used to study cell signaling pathways. RESULTS T-006 exhibited significant protective effects in both oxidative injury models. In HT22 cells, T-006 reduced cell death and enhanced antioxidant capacity by upregulating mTOR and nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling. Similarly, in bEnd.3 cells, T-006 reduced oxidative injuries and preserved tight junction integrity through Nrf2/HO-1 upregulation. These effects were inhibited by LY294002, a Phosphoinositide 3-kinase (PI3K) inhibitor. CONCLUSIONS T-006 may exert its neuroprotective and cerebrovascular protective effects via the regulation of PI3K/AKT-mediated pathways, which facilitate downstream mTOR and Nrf2 signaling, leading to improved cell survival and antioxidant defenses.
Collapse
Affiliation(s)
- Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
3
|
Feng F, Xu DQ, Yue SJ, Chen YY, Tang YP. Neuroprotection by tetramethylpyrazine and its synthesized analogues for central nervous system diseases: a review. Mol Biol Rep 2024; 51:159. [PMID: 38252346 DOI: 10.1007/s11033-023-09068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the global increase in aging populations and changes in modern lifestyles, the prevalence of neurodegenerative diseases, cerebrovascular disorders, neuropsychiatrcic conditions, and related ailments is rising, placing an increasing burden on the global public health system. MATERIALS AND METHODS All studies on tetramethylpyrazine (TMP) and its derivatives were obtained from reputable sources such as PubMed, Elsevier, Library Genesis, and Google Scholar. Comprehensive data on TMP and its derivatives was meticulously compiled. RESULTS This comprehensive analysis explains the neuroprotective effects demonstrated by TMP and its derivatives in diseases of the central nervous system. These compounds exert their influence on various targets and signaling pathways, playing crucial roles in the development of various central nervous system diseases. Their multifaceted mechanisms include inhibiting oxidative damage, inflammation, cell apoptosis, calcium overload, glutamate excitotoxicity, and acetylcholinesterase activity. CONCLUSION This review provides a brief summary of the most recent advancements in research on TMP and its derivatives in the context of central nervous system diseases. It involves synthesizing analogs of TMP and evaluating their effectiveness in models of central nervous system diseases. The ultimate goal is to facilitate the practical application of TMP and its derivatives in the future treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Fan Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| |
Collapse
|
4
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
5
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
6
|
Bukhari SNA, Yogesh R. An Overview of Tetramethylpyrazine (Ligustrazine) and its Derivatives as
Potent Anti-Alzheimer’s Disease Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220405232333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Tetramethylpyrazine (TMP), or ligustrazine, is an alkaloid isolated from the Chinese herb
Ligusticum wallichii. It is known for its broad-spectrum medicinal properties against several diseases, and
various studies have shown that it can modulate diverse biological targets and signaling pathways to produce
neuroprotective effects, especially against Alzheimer’s disease (AD). This has attracted significant
research attention evaluating TMP as a potent multitarget anti-AD agent. This review compiles the results
of studies assessing the neuroprotective mechanisms exerted by TMP as well as its derivatives prepared
using a multi-target-directed ligand strategy to explore its multitarget modulating properties. The present
review also highlights the work done on the design, synthesis, structure-activity relationships, and mechanisms
of some potent TMP derivatives that have shown promising anti-AD activities. These derivatives
were designed, synthesized, and evaluated to develop anti-AD molecules with enhanced biological and
pharmacokinetic activities compared to TMP. This review article paves the way for the exploration and
development of TMP and TMP derivatives as an effective treatment for AD.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
| | - Ruchika Yogesh
- 22 A3, DS Tower 1, Sukhumvit Soi 33, Khlong Tan Nuea, Wattana, Bangkok 10110, Thailand
| |
Collapse
|
7
|
Chen H, Zhong J, Li J, Zeng Z, Yu Q, Yan C. PTP70-2, a novel polysaccharide from Polygala tenuifolia, prevents neuroinflammation and protects neurons by suppressing the TLR4-mediated MyD88/NF-κB signaling pathway. Int J Biol Macromol 2022; 194:546-555. [PMID: 34801584 DOI: 10.1016/j.ijbiomac.2021.11.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 12/31/2022]
Abstract
PTP70-2, a novel polysaccharide isolated from Polygala tenuifolia in our previous publication, exhibits potential anti-inflammatory effects. Here, we investigate the mechanisms underlying these effects and the neuroprotective activity of PTP70-2 in lipopolysaccharide (LPS)-damaged BV2 microglial cells and neuroinflammation-injured primary cortical neurons. The results suggest that PTP70-2 dramatically reduces the LPS-stimulated inflammatory cytokines overexpression, as well as down-regulates the levels of TLR4-, MyD88-, and NF-κB-related proteins. The effect of PTP70-2 in down-regulation of proinflammatory cytokines and downstream proteins implicated in MyD88 and NF-κB signaling is related to the TLR4 pathway. Furthermore, this effect is enhanced by the co-incubation of BV2 cells with PTP70-2 and TAK242, a TLR4 inhibitor, before exposure to LPS. Importantly, PTP70-2 prevents neuroinflammation-induced neurotoxicity by mitigating ROS overproduction and MMP dissipation. Overall, the PTP70-2's anti-neuroinflammation and neuroprotection are involved to the modulation of the TLR4-mediated MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Zhong
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianxuan Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiwei Zeng
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Tan Z, Qiu J, Zhang Y, Yang Q, Yin X, Li J, Liu G, Li H, Yang G. Tetramethylpyrazine Alleviates Behavioral and Psychological Symptoms of Dementia Through Facilitating Hippocampal Synaptic Plasticity in Rats With Chronic Cerebral Hypoperfusion. Front Neurosci 2021; 15:646537. [PMID: 34025340 PMCID: PMC8134703 DOI: 10.3389/fnins.2021.646537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Behavioral and psychological symptoms of dementia (BPSD) ubiquitously disturb all patients with dementia at some point in the disease course. Although a plethora of non-pharmacological and pharmacological methods targeting the relief BPSD have been developed, the therapeutic effect is still far from ideal. Here, a rat BPSD model combining the physiological changes with mental insults was successfully established. Meanwhile, our results indicated that TMP attenuated anxious behavior using an elevated plus maze (EPM) test, ameliorated recognitive ability and sociability through a novel object recognition test (NORT) and social interaction test (SIT), and improved learning and memory impairments via a Barnes maze in rats with bilateral common carotid arteries occlusion (BCCAO) plus chronic restraint stress (CRS). Given that hippocampus chronic cerebral hypoperfusion (CCH) always causes damage to the hippocampus, and the majority of cognitive impairments, behaviors, and stress responses are associated with pathology in the hippocampus including anxiety and depression, we paid attention to investigate the role of the hippocampus in BPSD. Our results indicated that Tetramethylpyrazine (TMP) attenuated anxiety and ameliorated recognitive ability, sociability, learning, and memory impairments due to alleviating dendritic and spine deficits, and upregulating the expression of synapse-related proteins (including PSD95, SYN, GAP43, SYP) in the hippocampus. We also found that the underlying mechanism was that TMP could activate the TrkB/ERK/CREB signaling pathway to promote synaptic remodeling in vivo and in vitro. Mechanically, the present study enlarges the therapeutic scope of TMP in neurodegenerative disorders and provides basic knowledge and feasible candidates for treating BPSD, particularly for vascular dementia.
Collapse
Affiliation(s)
- Zihu Tan
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jing Qiu
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Yuting Zhang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiong Yang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xixi Yin
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Guangya Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Hengfei Li
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Department of Infectious Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Guang Yang
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
10
|
The Tetramethylpyrazine Analogue T-006 Alleviates Cognitive Deficits by Inhibition of Tau Expression and Phosphorylation in Transgenic Mice Modeling Alzheimer's Disease. J Mol Neurosci 2021; 71:1456-1466. [PMID: 33403592 DOI: 10.1007/s12031-020-01762-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
T-006, a small-molecule compound derived from tetramethylpyrazine (TMP), has potential for the treatment of neurological diseases. In order to investigate the effect of T-006 prophylactic treatment on an Alzheimer's disease (AD) model and identify the target of T-006, we intragastrically administered T-006 (3 mg/kg) to Alzheimer's disease (AD) transgenic mice (APP/PS1-2xTg and APP/PS1/Tau-3xTg) for 6 and 8 months, respectively. T-006 improved cognitive ability after long-term administration in two AD mouse models and targeted mitochondrial-related protein alpha-F1-ATP synthase (ATP5A). T-006 significantly reduced the expression of phosphorylated-tau, total tau, and APP while increasing the expression of synapse-associated proteins in 3xTg mice. In addition, T-006 modulated the JNK and mTOR-ULK1 pathways to reduce both p-tau and total tau levels. Our data suggested that T-006 mitigated cognitive decline primarily by reducing the p-tau and total tau levels in 3xTg mice, supporting further investigation into its development as a candidate drug for AD treatment.
Collapse
|
11
|
Amburana cearensis: Pharmacological and Neuroprotective Effects of Its Compounds. Molecules 2020; 25:molecules25153394. [PMID: 32726999 PMCID: PMC7435960 DOI: 10.3390/molecules25153394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Amburana cearensis A.C. Smith is an endemic tree from Northeastern Brazil used in folk medicine as teas, decocts and syrups for the treatment of various respiratory and inflammatory diseases, since therapeutic properties have been attributed to compounds from its stem bark and seeds. Numerous pharmacological properties of semi-purified extracts and isolated compounds from A. cearensis have been described in several biological systems, ranging from antimicrobial to anti-inflammatory effects. Some of these activities are attributed to coumarins and phenolic compounds, the major compounds present in A. cearensis seed extracts. Multiple lines of research demonstrate these compounds reduce oxidative stress, inflammation and neuronal death induced by glutamate excitotoxicity, events central to most neuropathologies, including Alzheimer’s disease (AD) and Parkinson’s Disease (PD). This review focuses on the botanical aspects, folk medicine use, biological effects and pharmacological activities of A. cearensis compounds and their potential as novel non-toxic drugs for the treatment of neurodegenerative diseases.
Collapse
|
12
|
Chen H, Cao J, Zha L, Wang P, Liu Z, Guo B, Zhang G, Sun Y, Zhang Z, Wang Y. Neuroprotective and neurogenic effects of novel tetramethylpyrazine derivative T-006 in Parkinson's disease models through activating the MEF2-PGC1α and BDNF/CREB pathways. Aging (Albany NY) 2020; 12:14897-14917. [PMID: 32710729 PMCID: PMC7425444 DOI: 10.18632/aging.103551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
T-006, a new derivative of tetramethylpyrazine, has been recently found to protect against 6-hydroxydopamine (6-OHDA)-induced neuronal damage and clear α-synuclein (α-syn) by enhancing proteasome activity in an α-syn transgenic Parkinson’s disease (PD) model. The effect of T-006 on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model, however, has not been tested and T-006’s neuroprotective mechanisms have not been fully elucidated. In this study, we further investigated the neuroprotective and neurogenic effects of T-006 and explored its underlying mechanism of action in both cellular and animal PD models. T-006 was able to improve locomotor behavior, increase survival of nigra dopaminergic neurons and boost striatal dopamine levels in both MPTP- and 6-OHDA-induced animals. T-006 treatment restored the altered expressions of myocyte enhancer factor 2D (MEF2D), peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1α (PGC1α) and NF-E2-related factor 1/2 (Nrf1/2) via modulation of Akt/GSK3β signaling. T-006 stimulated MEF2, PGC1α and Nrf2 transcriptional activities, inducing Nrf2 nuclear localization. Interestingly, T-006 promoted endogenous adult neurogenesis toward a dopaminergic phenotype by activating brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in 6-OHDA rats. Our work demonstrated that T-006 is a potent neuroprotective and neuroregenerative agent that may have therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Haiyun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Cao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Ling Zha
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Peile Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Zheng Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China.,Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Baojian Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Yewei Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
13
|
Liu Z, Qiu X, Mak S, Guo B, Hu S, Wang J, Luo F, Xu D, Sun Y, Zhang G, Cui G, Wang Y, Zhang Z, Han Y. Multifunctional memantine nitrate significantly protects against glutamate-induced excitotoxicity via inhibiting calcium influx and attenuating PI3K/Akt/GSK3beta pathway. Chem Biol Interact 2020; 325:109020. [PMID: 32092300 DOI: 10.1016/j.cbi.2020.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/09/2019] [Accepted: 02/18/2020] [Indexed: 01/30/2023]
Abstract
Overactivation of N-methyl-D-aspartate (NMDA) receptors has been associated with neurodegenerative disorders such as Alzheimer's disease (AD), cerebral vascular disorders and amyotrophic lateral sclerosis (ALS). We have previously designed and synthesized a series of memantine nitrate and some of them have shown vessel dilatory effects and neuroprotective effects; however, the detailed mechanisms have not been elucidated. In this study, we further demonstrated that memantine nitrate-06 (MN-06), one of the novel compounds derived from memantine, possessed significant neuroprotective effects against glutamate-induced excitotoxicity in rat primary cerebellar granule neurons (CGNs). Pretreatment of MN-06 reversed the activation of GSK3b and the suppression of phosphorylated Akt induced by glutamate. In addition, the neuroprotective effects of MN-06 could be abolished by LY294002, the specific phosphatidylinositol 3-kinase (PI3-K) inhibitor. Ca2+ imaging shown that pretreatment of MN-06 prevented Ca2+ influx induced by glutamate. Moreover, MN-06 might inhibit the NMDA-mediated current by antagonizing NDMA receptors, which was further confirmed by molecular docking simulation. Taken together, MN-06 protected against glutamate-induced excitotoxicity by blocking calcium influx and attenuating PI3-K/Akt/GSK-3b pathway, indicating that MN-06 might be a potential drug for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiaoling Qiu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shengquan Hu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jiajun Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Daping Xu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Guozhen Cui
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
14
|
Tetramethylpyrazine Analogue T-006 Exerts Neuroprotective Effects against 6-Hydroxydopamine-Induced Parkinson's Disease In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8169125. [PMID: 31827703 PMCID: PMC6885178 DOI: 10.1155/2019/8169125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 07/18/2019] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and there is no cure for it at present. We have previously reported that the tetramethylpyrazine (TMP) derivative T-006 exhibited beneficial effects in Alzheimer's disease (AD) models. However, its effect on PD remains unclear. In the present study, we investigated the neuroprotective effects and underlying mechanisms of T-006 against 6-hydroxydopamine- (6-OHDA-) induced lesions in in vivo and in vitro PD models. Our results demonstrated that T-006 alleviated mitochondrial membrane potential loss and restored the energy metabolism and mitochondrial biogenesis that were induced by 6-OHDA in PC12 cells. In addition, animal experiments showed that administration of T-006 significantly attenuated the 6-OHDA-induced loss of tyrosine hydroxylase- (TH-) positive neurons in the SNpc, as well as dopaminergic nerve fibers in the striatum, and also increased the concentration of dopamine and its metabolites (DOPAC, HVA) in the striatum. Functional deficits were restored following T-006 treatment in 6-OHDA-lesioned mice, as demonstrated by improved motor coordination and rotational behavior. In addition, we found that the neuroprotective effects of T-006 were mediated, at least in part, by the activation of both the PKA/Akt/GSK-3β and CREB/PGC-1α/NRF-1/TFAM pathways. In summary, our findings demonstrate that T-006 could be developed as a novel neuroprotective agent for PD, and the two pathways might be promising therapeutic targets for PD.
Collapse
|
15
|
Zhou H, Shao M, Guo B, Li C, Lu Y, Yang X, ShengnanLi, Li H, Zhu Q, Zhong H, Wang Y, Zhang Z, Lu J, Lee SMY. Tetramethylpyrazine Analogue T-006 Promotes the Clearance of Alpha-synuclein by Enhancing Proteasome Activity in Parkinson's Disease Models. Neurotherapeutics 2019; 16:1225-1236. [PMID: 31313223 PMCID: PMC6985330 DOI: 10.1007/s13311-019-00759-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide and is characterized in part by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The main pathological hallmark of PD is the intraneuronal accumulation of misfolded α-synuclein (α-syn) aggregates. Mutations in the SNCA gene (encoding α-syn) and variations in its copy number are associated with some forms of familial PD. In the present study, T-006, a new tetramethylpyrazine (TMP) derivative with recently reported anti-Alzheimer activity, is shown to significantly promote α-syn degradation in a cellular PD model. Moreover, we illustrate that T-006 inhibits the accumulation of both Triton-soluble and -insoluble forms of α-syn and protects against α-syn-induced neurotoxicity in A53T-α-syn transgenic mice. The mechanism of action of T-006 was verified by evaluation of a potential protein degradation pathway. We found that T-006 promotes α-syn degradation in a proteasome-dependent and autophagy-independent manner. We further confirmed that T-006 enhances proteasome activity by upregulating 20S proteasome subunit β5i (LMP7) protein expression. A functional study revealed that T-006 activates the PKA/Akt/mTOR/p70S6K pathway to trigger LMP7 expression and enhance chymotrypsin-like proteasomal activity. These findings indicate that T-006 is a potent proteasome activator and a potential therapeutic agent for the prevention and treatment of PD and related diseases.
Collapse
Affiliation(s)
- Hefeng Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Shao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Baojian Guo
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuwen Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yucong Lu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xuanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Department of Biology, South University of Science and Technology, Shenzhen, China
| | - ShengnanLi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hanbing Zhong
- Department of Biology, South University of Science and Technology, Shenzhen, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
16
|
Novel neuroprotective tetramethylpyrazine analog T-006 promotes neurogenesis and neurological restoration in a rat model of stroke. Neuroreport 2019; 30:658-663. [DOI: 10.1097/wnr.0000000000001256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Jakaria M, Park SY, Haque ME, Karthivashan G, Kim IS, Ganesan P, Choi DK. Neurotoxic Agent-Induced Injury in Neurodegenerative Disease Model: Focus on Involvement of Glutamate Receptors. Front Mol Neurosci 2018; 11:307. [PMID: 30210294 PMCID: PMC6123546 DOI: 10.3389/fnmol.2018.00307] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Glutamate receptors play a crucial role in the central nervous system and are implicated in different brain disorders. They play a significant role in the pathogenesis of neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although many studies on NDDs have been conducted, their exact pathophysiological characteristics are still not fully understood. In in vivo and in vitro models of neurotoxic-induced NDDs, neurotoxic agents are used to induce several neuronal injuries for the purpose of correlating them with the pathological characteristics of NDDs. Moreover, therapeutic drugs might be discovered based on the studies employing these models. In NDD models, different neurotoxic agents, namely, kainic acid, domoic acid, glutamate, β-N-Methylamino-L-alanine, amyloid beta, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, rotenone, 3-Nitropropionic acid and methamphetamine can potently impair both ionotropic and metabotropic glutamate receptors, leading to the progression of toxicity. Many other neurotoxic agents mainly affect the functions of ionotropic glutamate receptors. We discuss particular neurotoxic agents that can act upon glutamate receptors so as to effectively mimic NDDs. The correlation of neurotoxic agent-induced disease characteristics with glutamate receptors would aid the discovery and development of therapeutic drugs for NDDs.
Collapse
Affiliation(s)
- Md. Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Shin-Young Park
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Md. Ezazul Haque
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | - Govindarajan Karthivashan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - Palanivel Ganesan
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
- Nanotechnology Research Center, Konkuk University, Chungju, South Korea
| |
Collapse
|
18
|
Lee B, Shim I, Lee H, Hahm DH. Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:525-538. [PMID: 30181699 PMCID: PMC6115350 DOI: 10.4196/kjpp.2018.22.5.525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea.,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
19
|
Chen H, Cao J, Zhu Z, Zhang G, Shan L, Yu P, Wang Y, Sun Y, Zhang Z. A Novel Tetramethylpyrazine Derivative Protects Against Glutamate-Induced Cytotoxicity Through PGC1α/Nrf2 and PI3K/Akt Signaling Pathways. Front Neurosci 2018; 12:567. [PMID: 30158850 PMCID: PMC6104130 DOI: 10.3389/fnins.2018.00567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/27/2018] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity is one of the main causes of neuronal cell death in stroke. Compound 22a has been previously reported as a promising neuroprotective compound derived from tetramethylpyrazine, which is a widely used active ingredient of traditional Chinese medicine Chuanxiong (Ligusticum wallichii Franchat). Compound 22a can protect neurons from oxidative stress-induced PC12 cell death and alleviates the infarct areas and brain edema in a rat permanent middle cerebral artery occlusion model. In the current work, we further investigated the neuroprotective effects and underlying mechanisms of compound 22a against glutamate-induced excitotoxicity in primary culture of rat cerebellar granule neurons (CGNs). We found that pretreatment with compound 22a prevented glutamate-induced neuronal damage by maintaining mitochondrial membrane potential and attenuating cellular apoptosis. Compound 22a could also enhance peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) transcriptional activity and induce nuclear accumulation of Nrf2 in PC12 cells. Accordingly, pretreatment with compound 22a reversed the glutamate-induced down-regulation of expression of the proteins PGC1α, transcriptional factor NF-E2-related factor 2 (Nrf2), and hemooxygenase 1 (HO-1). In addition, compound 22a increased the phosphorylation of phosphoinositide 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase 3β (p-GSK3β). Meanwhile, the small interfering RNA-mediated silencing of PGC1α expression and selective inhibitors targeting PI3K/Akt (LY294002 and Akt-iv) could significantly attenuate the neuroprotective effect of compound 22a. Taken together, compound 22a protected against glutamate-induced CGN injury possibly in part through regulation of PGC1α/Nrf2 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Haiyun Chen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Jie Cao
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zeyu Zhu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
20
|
Wang M, Qin HL, Leng J, Ameeduzzafar, Amjad MW, Raja MAG, Hussain MA, Bukhari SNA. Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents. Chem Biol Drug Des 2018; 92:1859-1866. [PMID: 29923315 DOI: 10.1111/cbdd.13355] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/02/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022]
Abstract
In the current study, a series of new ligustrazine-based chalcones was synthesized. For insertion of tetramethylpyrazine (TMP, also designated as ligustrazine) in chemical backbone of chalcone, a new ligustrazine-based aldehyde was prepared. New ketones were synthesized for inclusion of quinazolin-4-yl amino and pyrazin-2-yl amino moieties. The newly synthesized compounds were screened for acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases (MAO) inhibitory activities and also for in vitro cytotoxicity on PC12 cells. The effect of these compounds against amyloid β-induced cytotoxicity and aggregation was also investigated. The synthesized compounds effectively inhibited the related enzymes and also exhibited neuroprotective effects. Most of the compounds displayed better inhibitory potencies against Aβ aggregation than reference compounds. Some compounds such as 11e and 16b showed very potent effects on multiple targets exhibiting behavior as multifunctional anti-Alzheimer agents.
Collapse
Affiliation(s)
- Meng Wang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Jing Leng
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Ameeduzzafar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, Saudi Arabia
| | | | | | | | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, Saudi Arabia
| |
Collapse
|
21
|
Dos Santos Souza C, Grangeiro MS, Lima Pereira EP, Dos Santos CC, da Silva AB, Sampaio GP, Ribeiro Figueiredo DD, David JM, David JP, da Silva VDA, Butt AM, Lima Costa S. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology 2018; 65:85-97. [PMID: 29425760 DOI: 10.1016/j.neuro.2018.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 01/01/2023]
Abstract
Flavonoids are bioactive compounds that are known to be neuroprotective against glutamate-mediated excitotoxicity, one of the major causes of neurodegeneration. The mechanisms underlying these effects are unresolved, but recent evidence indicates flavonoids may modulate estrogen signaling, which can delay the onset and ameliorate the severity of neurodegenerative disorders. Furthermore, the roles played by glial cells in the neuroprotective effects of flavonoids are poorly understood. The aim of this study was to investigate the effects of the flavonoid agathisflavone (FAB) in primary neuron-glial co-cultures from postnatal rat cerebral cortex. Compared to controls, treatment with FAB significantly increased the number of neuronal progenitors and mature neurons, without increasing astrocytes or microglia. These pro-neuronal effects of FAB were suppressed by antagonists of estrogen receptors (ERα and ERβ). In addition, treatment with FAB significantly reduced cell death induced by glutamate and this was associated with reduced expression levels of pro-inflammatory (M1) microglial cytokines, including TNFα, IL1β and IL6, which are associated with neurotoxicity, and increased expression of IL10 and Arginase 1, which are associated with anti-inflammatory (M2) neuroprotective microglia. We also observed that FAB increased neuroprotective trophic factors, such as BDNF, NGF, NT4 and GDNF. The neuroprotective effects of FAB were also associated with increased expression of glutamate regulatory proteins in astrocytes, namely glutamine synthetase (GS) and Excitatory Amino Acid Transporter 1 (EAAT1). These findings indicate that FAB acting via estrogen signaling stimulates production of neurons in vitro and enhances the neuroprotective properties of microglia and astrocytes to significantly ameliorate glutamate-mediated neurotoxicity.
Collapse
Affiliation(s)
- Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Universidade Federal da Bahia, Brazil
| | - Maria Socorro Grangeiro
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Universidade Federal da Bahia, Brazil
| | - Erica Patricia Lima Pereira
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Universidade Federal da Bahia, Brazil
| | - Cleonice Creusa Dos Santos
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Universidade Federal da Bahia, Brazil
| | - Alessandra Bispo da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Universidade Federal da Bahia, Brazil
| | - Geraldo Pedral Sampaio
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Universidade Federal da Bahia, Brazil
| | | | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Universidade Federal da Bahia, Brazil
| | - Juceni Pereira David
- Departament of Medication, Faculty of Pharmacy, Universidade Federal da Bahia, Brazil
| | | | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, United Kingdom
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Universidade Federal da Bahia, Brazil.
| |
Collapse
|
22
|
Medelin M, Giacco V, Aldinucci A, Castronovo G, Bonechi E, Sibilla A, Tanturli M, Torcia M, Ballerini L, Cozzolino F, Ballerini C. Bridging pro-inflammatory signals, synaptic transmission and protection in spinal explants in vitro. Mol Brain 2018; 11:3. [PMID: 29334986 PMCID: PMC5769440 DOI: 10.1186/s13041-018-0347-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 01/30/2023] Open
Abstract
Multiple sclerosis is characterized by tissue atrophy involving the brain and the spinal cord, where reactive inflammation contributes to the neurodegenerative processes. Recently, the presence of synapse alterations induced by the inflammatory responses was suggested by experimental and clinical observations, in experimental autoimmune encephalomyelitis mouse model and in patients, respectively. Further knowledge on the interplay between pro-inflammatory agents, neuroglia and synaptic dysfunction is crucial to the design of unconventional protective molecules. Here we report the effects, on spinal cord circuits, of a cytokine cocktail that partly mimics the signature of T lymphocytes sub population Th1. In embryonic mouse spinal organ-cultures, containing neuronal cells and neuroglia, cytokines induced inflammatory responses accompanied by a significant increase in spontaneous synaptic activity. We suggest that cytokines specifically altered signal integration in spinal networks by speeding the decay of GABAA responses. This hypothesis is supported by the finding that synapse protection by a non-peptidic NGF mimetic molecule prevented both the changes in the time course of GABA events and in network activity that were left unchanged by the cytokine production from astrocytes and microglia present in the cultured tissue. In conclusion, we developed an important tool for the study of synaptic alterations induced by inflammation, that takes into account the role of neuronal and not neuronal resident cells.
Collapse
Affiliation(s)
- M Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.,International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - V Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - A Aldinucci
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - G Castronovo
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - E Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - A Sibilla
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - M Tanturli
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - M Torcia
- Department of DMSC, University of Florence, 50134, Florence, Italy
| | - L Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| | - F Cozzolino
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - C Ballerini
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy.
| |
Collapse
|