1
|
Pintori N, Mostallino R, Spano E, Orrù V, Piras MG, Castelli MP, De Luca MA. Immune and glial cell alterations in the rat brain after repeated exposure to the synthetic cannabinoid JWH-018. J Neuroimmunol 2024; 389:578325. [PMID: 38432046 DOI: 10.1016/j.jneuroim.2024.578325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The use of synthetic cannabinoid receptor agonists (SCRAs) poses major psychiatric risks. We previously showed that repeated exposure to the prototypical SCRA JWH-018 induces alterations in dopamine (DA) transmission, abnormalities in the emotional state, and glial cell activation in the mesocorticolimbic DA circuits of rats. Despite growing evidence suggesting the relationship between substance use disorders (SUD) and neuroinflammation, little is known about the impact of SCRAs on the neuroimmune system. Here, we investigated whether repeated JWH-018 exposure altered neuroimmune signaling, which could be linked with previously reported central effects. Adult male Sprague-Dawley (SD) rats were exposed to JWH-018 (0.25 mg/kg, i.p.) for fourteen consecutive days, and the expression of cytokines, chemokines, and growth factors was measured seven days after treatment discontinuation in the striatum, cortex, and hippocampus. Moreover, microglial (ionized calcium-binding adaptor molecule 1, IBA-1) and astrocyte (glial fibrillary acidic protein, GFAP) activation markers were evaluated in the caudate-putamen (CPu). Repeated JWH-018 exposure induces a perturbation of neuroimmune signaling specifically in the striatum, as shown by increased levels of cytokines [interleukins (IL) -2, -4, -12p70, -13, interferon (IFN) γ], chemokines [macrophage inflammatory protein (MIP) -1α, -3α], and growth factors [macrophage colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF)], together with increased IBA-1 and GFAP expression in the CPu. JWH-018 exposure induces persistant brain region-specific immune alterations up to seven days after drug discontinuation, which may contribute to the behavioral and neurochemical dysregulations in striatal areas that play a role in the reward-related processes that are frequently impaired in SUD.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Grazia Piras
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
2
|
Bravo J, Magalhães C, Andrade EB, Magalhães A, Summavielle T. The impact of psychostimulants on central and peripheral neuro-immune regulation: a scoping review of cytokine profiles and their implications for addiction. Front Cell Neurosci 2023; 17:1109611. [PMID: 37305435 PMCID: PMC10251407 DOI: 10.3389/fncel.2023.1109611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
It is now well-accepted that psychostimulants act on glial cells causing neuroinflammation and adding to the neurotoxic effects of such substances. Neuroinflammation can be described as an inflammatory response, within the CNS, mediated through several cytokines, reactive oxygen species, chemokines and other inflammatory markers. These inflammatory players, in particular cytokines, play important roles. Several studies have demonstrated that psychostimulants impact on cytokine production and release, both centrally and at the peripheral level. Nevertheless, the available data is often contradictory. Because understanding how cytokines are modulated by psychoactive substances seems crucial to perspective successful therapeutic interventions, here, we conducted a scoping review of the available literature. We have focused on how different psychostimulants impact on the cytokine profile. Publications were grouped according to the substance addressed (methamphetamine, cocaine, methylphenidate, MDMA or other amphetamines), the type of exposure and period of evaluation (acute, short- or long-term exposure, withdrawal, and reinstatement). Studies were further divided in those addressing central cytokines, circulating (peripheral) levels, or both. Our analysis showed that the classical pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were those more investigated. The majority of studies have reported increased levels of these cytokines in the central nervous system after acute or repeated drug. However, studies investigating cytokine levels during withdrawal or reinstatement have shown higher variability in their findings. Although we have identified fewer studies addressing circulating cytokines in humans, the available data suggest that the results may be more robust in animal models than in patients with problematic drug use. As a major conclusion, an extensive use of arrays for relevant cytokines should be considered to better determine which cytokines, upon the classical ones, may be involved in the progression from episodic use to the development of addiction. A concerted effort is still necessary to address the link between peripheral and central immune players, including from a longitudinal perspective. Until there, the identification of new biomarkers and therapeutic targets to envision personalized immune-based therapeutics will continue to be unlikely.
Collapse
Affiliation(s)
- Joana Bravo
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| | - Catarina Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Elva B. Andrade
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
- Immunobiology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - Teresa Summavielle
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
3
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
4
|
Shin EJ, Nguyen BT, Jeong JH, Hoai Nguyen BC, Tran NKC, Sharma N, Kim DJ, Nah SY, Lichtstein D, Nabeshima T, Kim HC. Ouabain inhibitor rostafuroxin attenuates dextromethorphan-induced manic potential. Food Chem Toxicol 2021; 158:112657. [PMID: 34740715 DOI: 10.1016/j.fct.2021.112657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Dextromethorphan (DM) abuse produces mania-like symptoms in humans. ERK/Akt signaling activation involved in manic potential can be attenuated by the inhibition of ouabain-like cardiac steroids. In this study, increased phosphorylations of ERK/Akt and hyperlocomotion induced by DM (30 mg/kg, i.p./day × 7) were significantly protected by the ouabain inhibitor rostafuroxin (ROSTA), suggesting that DM induces the manic potential. ROSTA significantly attenuated DM-induced protein kinase C δ (PKCδ) phosphorylation, GluN2B (i.e., MDA receptor subunit) expression, and phospho-PKCδ/GluN2B interaction. DM instantly upregulated the nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent system. However, DM reduced Nrf2 nuclear translocation, Nrf2 DNA binding activity, γ-glutamylcysteine mRNA expression, and subsequent GSH/GSSG level and enhanced oxidative parameters following 1-h of administration. ROSTA, PKCδ inhibitor rottlerin, and GluN2B inhibitor traxoprodil significantly attenuated DM-induced alterations in Nrf2-related redox parameters and locomotor activity induced by DM in wild-type mice. Importantly, in PKCδ knockout mice, DM failed to alter the above parameters. Further, ROSTA and traxoprodil also failed to enhance PKCδ depletion effect, suggesting that PKCδ is a critical target for the anti-manic potential of ROSTA or GluN2B antagonism. Our results suggest that ROSTA inhibits DM-induced manic potential by attenuating ERK/Akt activation, GluN2B/PKCδ signalings, and Nrf2-dependent system.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Bao-Chau Hoai Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - David Lichtstein
- Walter and Greta Stiel Chair in Heart Studies, Dean, Faculty of Medicine 2013-2017, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Phan DH, Shin EJ, Sharma N, Hoang Yen TP, Dang DK, Lee YS, Lee YJ, Nah SY, Cheong JH, Jeong JH, Kim HC. 5-HT 2A receptor-mediated PKCδ phosphorylation is critical for serotonergic impairments induced by p-chloroamphetamine in mice. Food Chem Toxicol 2020; 141:111395. [PMID: 32437895 DOI: 10.1016/j.fct.2020.111395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
p-Chloroamphetamine (PCA), an amphetamine derivative, has been shown to induce serotonergic toxicity. However, the precise mechanism of serotonergic toxicity induced by PCA remains unclear. In this study, PCA treatment (20 mg/kg, i.p.) did not significantly change 5-HT1A receptor gene expression, but significantly increased 5-HT2A receptor gene expression. Furthermore, 5-HT2A receptor antagonist MDL11939, but not 5-HT1A receptor antagonist WAY100635, significantly attenuated PCA-induced serotonergic impairments. We investigated whether PCA activated a specific isoform of protein kinase C (PKC), since previous evidence indicated the involvement of PKC in neurotoxicity induced by amphetamines. We observed that PCA treatment significantly increased the expression levels of PKCδ among all PKC isoforms. MDL11939 treatment significantly attenuated PCA-induced phosphorylation of PKCδ. However, PCA-induced increase in 5-HT2A receptor gene expression was not altered by rottlerin (a pharmacological inhibitor of PKCδ) in mice, suggesting that 5-HT2A receptor is an upstream molecule for the activation of PKCδ. Rottlerin or PKCδ knockout significantly attenuated serotonergic behaviors. However, MDL11939 did not show any additional effects against the attenuation caused by PKCδ knockout in mice, suggesting that PKCδ gene is a molecular target for 5-HT2A receptor-mediated serotonergic effects. Our results suggest that 5-HT2A receptor mediates PCA-induced serotonergic impairments via activation of PKC.δ.
Collapse
Affiliation(s)
- Dieu Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; School of Medicine and Pharmacy - Hoa Quy Ward, The University of Da Nang, Da Nang 550000, Viet Nam
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Tran Phi Hoang Yen
- Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, 710000, Viet Nam
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Tran HQ, Shin EJ, Saito K, Tran TV, Phan DH, Sharma N, Kim DW, Choi SY, Jeong JH, Jang CG, Cheong JH, Nabeshima T, Kim HC. Indoleamine-2,3-dioxygenase-1 is a molecular target for the protective activity of mood stabilizers against mania-like behavior induced by d-amphetamine. Food Chem Toxicol 2019; 136:110986. [PMID: 31760073 DOI: 10.1016/j.fct.2019.110986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023]
Abstract
It is recognized that d-amphetamine (AMPH)-induced hyperactivity is thought to be a valid animal model of mania. In the present study, we investigated whether a proinflammatory oxidative gene indoleamine-2,3-dioxygenase (IDO) is involved in AMPH-induced mitochondrial burden, and whether mood stabilizers (i.e., lithium and valproate) modulate IDO to protect against AMPH-induced mania-like behaviors. AMPH-induced IDO-1 expression was significantly greater than IDO-2 expression in the prefrontal cortex of wild type mice. IDO-1 expression was more pronounced in the mitochondria than in the cytosol. AMPH treatment activated intra-mitochondrial Ca2+ accumulation and mitochondrial oxidative burden, while inhibited mitochondrial membrane potential and activity of the mitochondrial complex (I > II), mitochondrial glutathione peroxidase, and superoxide dismutase, indicating that mitochondrial burden might be contributable to mania-like behaviors induced by AMPH. The behaviors were significantly attenuated by lithium, valproate, or IDO-1 knockout, but not in IDO-2 knockout mice. Lithium, valproate administration, or IDO-1 knockout significantly attenuated mitochondrial burden. Neither lithium nor valproate produced additive effects above the protective effects observed in IDO-1 KO in mice. Collectively, our results suggest that mood stabilizers attenuate AMPH-induced mania-like behaviors via attenuation of IDO-1-dependent mitochondrial stress, highlighting IDO-1 as a novel molecular target for the protective potential of mood stabilizers.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dieu-Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Dae-Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, 24252, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
8
|
PKC Mediates LPS-Induced IL-1β Expression and Participates in the Pro-inflammatory Effect of A 2AR Under High Glutamate Concentrations in Mouse Microglia. Neurochem Res 2019; 44:2755-2764. [PMID: 31650360 DOI: 10.1007/s11064-019-02895-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pathogens such as bacterial lipopolysaccharide (LPS) play an important role in promoting the production of the inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-α (TNF-α) in response to infection or damage in microglia. However, whether different signalling pathways regulate these two inflammatory factors remains unclear. The protein kinase C (PKC) family is involved in the regulation of inflammation, and our previous research showed that the activation of the PKC pathway played a key role in the LPS-induced transformation of the adenosine A2A receptor (A2AR) from anti-inflammatory activity to pro-inflammatory activity under high glutamate concentrations. Therefore, in the current study, we investigated the role of PKC in the LPS-induced production of these inflammatory cytokines in mouse primary microglia. GF109203X, a specific PKC inhibitor, inhibited the LPS-induced expression of IL-1β messenger ribonucleic acid and intracellular protein in a dose-dependent manner. Moreover, 5 µM GF109203X prevented LPS-induced IL-1β expression but did not significantly affect LPS-induced TNF-α expression. PKC promoted IL-1β expression by regulating the activity of NF-κB but did not significantly impact the activity of ERK1/2. A2AR activation by CGS21680, an A2AR agonist, facilitated LPS-induced IL-1β expression through the PKC pathway at high glutamate concentrations but did not significantly affect LPS-induced TNF-α expression. Taken together, these results suggest a new direction for specific intervention with LPS-induced inflammatory factors in response to specific signalling pathways and provide a mechanism for A2AR targeting, especially after brain injury, to influence inflammation by interfering with A2AR.
Collapse
|
9
|
Protein kinase Cδ mediates methamphetamine-induced dopaminergic neurotoxicity in mice via activation of microsomal epoxide hydrolase. Food Chem Toxicol 2019; 133:110761. [PMID: 31422080 DOI: 10.1016/j.fct.2019.110761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
We previously demonstrated that activation of protein kinase Cδ (PKCδ) is critical for methamphetamine (MA)-induced dopaminergic toxicity. It was recognized that microsomal epoxide hydrolase (mEH) also induces dopaminergic neurotoxicity. It was demonstrated that inhibition of PKC modulates the expression of mEH. We investigated whether MA-induced PKCδ activation requires mEH induction in mice. MA treatment (8 mg/kg, i.p., × 4; 2 h interval) significantly enhanced the level of phosphorylated PKCδ in the striatum of wild type (WT) mice. Subsequently, treatment with MA resulted in significant increases in the expression of cleaved PKCδ and mEH. Treatment with MA resulted in enhanced interaction between PKCδ and mEH. PKCδ knockout mice exhibited significant attenuation of the enhanced mEH expression induced by MA. MA-induced hyperthermia, oxidative stress, proapoptotic potentials, and dopaminergic impairments were attenuated by PKCδ knockout or mEH knockout in mice. However, treating mEH knockout in mice with PKCδ inhibitor, rottlerin did not show any additive beneficial effects, indicating that mEH is a critical mediator of neurotoxic potential of PKCδ. Our results suggest that MA-induced PKCδ activation requires mEH induction as a downstream signaling pathway and that the modulation of the PKCδ and mEH interaction is important for the pharmacological intervention against MA-induced dopaminergic neurotoxicity.
Collapse
|
10
|
Methiopropamine, a methamphetamine analogue, produces neurotoxicity via dopamine receptors. Chem Biol Interact 2019; 305:134-147. [PMID: 30922767 DOI: 10.1016/j.cbi.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/03/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Methiopropamine (MPA) is structurally categorized as a thiophene ring-based methamphetamine (MA) derivative. Although abusive potential of MPA was recognized, little is known about the neurotoxic potential of MPA up to now. We investigated whether MPA induces dopaminergic neurotoxicity, and whether MPA activates a specific dopamine receptor. Here, we observed that treatment with MPA resulted in dopaminergic neurotoxicity in a dose-dependent manner. MPA treatment potentiated oxidative parameters (i.e., increases in the level of reactive oxygen species, 4-hydroxynonenal, and protein carbonyl), M1 phenotype-related microglial activity, and pro-apoptotic property (i.e., increases in Bax- and cleaved caspase-3-expressions, while a decrease in Bcl-2-expression). Moreover, treatment with MPA resulted in significant impairments in dopaminergic parameters [i.e., changes in dopamine level, dopamine turnover rate, tyrosine hydroxylase (TH) levels, dopamine transporter (DAT) expression, and vesicular monoamine transporter-2 (VMAT-2) expression], and in behavioral deficits. Both dopamine D1 receptor antagonist SCH23390 and D2 receptor antagonist sulpiride protected from these neurotoxic consequences. Therefore, our results suggest that dopamine D1 and D2 receptors simultaneously mediate MPA-induced dopaminergic neurodegeneration in mice via oxidative burdens, microgliosis, and pro-apoptosis.
Collapse
|
11
|
Shin EJ, Dang DK, Hwang YG, Tran HQ, Sharma N, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochem Int 2019; 124:162-170. [PMID: 30654115 DOI: 10.1016/j.neuint.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The abuse of methamphetamine (MA), an amphetamine (AMPH)-type stimulant, has been demonstrated to be associated with various neuropsychotoxicity, including memory impairment, psychiatric morbidity, and dopaminergic toxicity. Compelling evidence from preclinical studies has indicated that protein kinase C (PKC), a large family of serine/threonine protein kinases, plays an important role in MA-induced neuropsychotoxicity. PKC-mediated N-terminal phosphorylation of dopamine transporter has been identified as one of the prerequisites for MA-induced synaptic dopamine release. Consistently, it has been shown that PKC is involved in MA (or AMPH)-induced memory impairment and mania-like behaviors as well as MA drug dependence. Direct or indirect regulation of factors related to neuronal plasticity seemed to be critical for these actions of PKC. In addition, PKC-mediated mitochondrial dysfunction, oxidative stress or impaired antioxidant defense system has been suggested to play a role in psychiatric and cognitive disturbance induced by MA (or AMPH). In MA-induced dopaminergic toxicity, particularly PKCδ has been shown to trigger oxidative stress, mitochondrial dysfunction, pro-apoptotic changes, and neuroinflammation. Importantly, PKCδ may be a key mediator in the positive feedback loop composed of these detrimental events to potentiate MA-induced dopaminergic toxicity. This review outlines the role of PKC and its individual isozymes in MA-induced neuropsychotoxicity. Better understanding on the molecular mechanism of PKCs might provide a great insight for the development of potential therapeutic or preventive candidates for MA (or AMPH)-associated neuropsychotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Young Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University Venture Business Laboratory, Kanazawa, Ishikawa 920-1192, Japan
| | - Jean Lud Cadet
- NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
12
|
Sharma N, Shin EJ, Kim NH, Cho EH, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochem Int 2019; 122:144-148. [DOI: 10.1016/j.neuint.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
13
|
Tran HQ, Park SJ, Shin EJ, Tran TV, Sharma N, Lee YJ, Jeong JH, Jang CG, Kim DJ, Nabeshima T, Kim HC. Clozapine attenuates mitochondrial burdens and abnormal behaviors elicited by phencyclidine in mice via inhibition of p47 phox; Possible involvements of phosphoinositide 3-kinase/Akt signaling. J Psychopharmacol 2018; 32:1233-1251. [PMID: 30207504 DOI: 10.1177/0269881118795244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction have been implicated in the pathophysiology of schizophrenia. AIMS We investigated whether antipsychotic clozapine modulates nicotinamide adenine dinucleotide phosphate oxidase and mitochondrial burdens induced by phencyclidine in mice. METHODS We examined the effect of clozapine on nicotinamide adenine dinucleotide phosphate oxidase activation, mitochondrial burdens (i.e. oxidative stress and mitochondrial dysfunction), and activities of enzymatic antioxidant in the prefrontal cortex, and subsequent abnormal behaviors induced by repeated treatment with phencyclidine. p47 phox Knockout mice and LY294002, a phosphoinositide 3-kinase inhibitor, were employed to elucidate the pharmacological mechanism of clozapine. RESULTS Phencyclidine treatment resulted in an early increase nicotinamide adenine dinucleotide phosphate oxidase activity, membrane translocation of p47 phox, interaction between p-Akt and p47 phox, and mitochondrial burdens in wild-type mice. Although these increases returned to near control level four days post-phencyclidine, mitochondrial superoxide dismutase and glutathione peroxidase activities were decreased at that time. Clozapine, LY294002, or p47 phox knockout significantly ameliorated social withdrawal and recognition memory deficits produced by phencyclidine. Importantly, LY294002 did not significantly alter the effects of clozapine against abnormal behaviors and the interaction between p-Akt and p47 phox induced by phencyclidine. Furthermore, neither LY294002 nor clozapine exhibited any additive effects to the protection afforded by p47 phox knockout against phencyclidine insult. CONCLUSION Our results suggest that p47 phox gene mediates phencyclidine-induced mitochondrial burdens and abnormal behaviors, and that the interactive modulation between p47 phox and phosphoinositide 3-kinase/Akt is important for the understanding on the pharmacological mechanism of clozapine.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Se J Park
- 2 School of Natural Resources and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - The-Vinh Tran
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| | - Yu J Lee
- 3 Clinical Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji H Jeong
- 4 Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- 5 Department of Pharmacology, Sungkyunkwan University, Suwon, Korea
| | - Dae-Joong Kim
- 6 Department of Anatomy and Cell Biology, Kangwon National University, Chunchon, Korea
| | - Toshitaka Nabeshima
- 7 Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Toyoake, Japan.,9 Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- 1 Neuropsychopharmacology and Toxicology Program, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
14
|
Shin EJ, Hwang YG, Sharma N, Tran HQ, Dang DK, Jang CG, Jeong JH, Nah SY, Nabeshima T, Kim HC. Role of protein kinase Cδ in dopaminergic neurotoxic events. Food Chem Toxicol 2018; 121:254-261. [PMID: 30195712 DOI: 10.1016/j.fct.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
The pro-apoptotic role of Protein kinase Cδ (PKCδ), a member of the novel PKC subfamily, has been well-documented in various pathological conditions. In the central nervous system, the possible role of PKCδ has been studied, mainly in the condition of dopaminergic loss. It has been suggested that the phosphorylation of PKCδ at tyrosine 311 residue (Tyr311) by redox-sensitive Src family kinases (SFKs) is critical for the caspase-3-mediated proteolytic cleavage, which produces the constitutively active cleaved form of PKCδ. Mitochondrial translocation of cleaved PKCδ has been suggested to facilitate mitochondria-derived apoptosis and oxidative burdens. Moreover, it has been suggested that PKCδ contribute to neuroinflammation through the transformation of microglia into the pro-inflammatory M1 phenotype and the assembly of membrane NADPH oxidase in dopaminergic impairments. Interestingly, mitochondrial respiratory chain inhibitors or neuroinflammogens have shown to induce PKCδ activation in dopaminergic systems. Thus, PKCδ activation may be one of the pivotal causes of neuropathologic events, and could amplify these processes further in a positive feedback manner. Furthermore, PKCδ may play an intermediary role in connecting each neuropathologic event. This review affords insight into the role of PKCδ in various dopaminergic neurotoxic models, which could provide a potential target for mitigating dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Young Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
15
|
Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, He J, Liao L, Xiong K, Yi CX, Yan J. The Main Molecular Mechanisms Underlying Methamphetamine- Induced Neurotoxicity and Implications for Pharmacological Treatment. Front Mol Neurosci 2018; 11:186. [PMID: 29915529 PMCID: PMC5994595 DOI: 10.3389/fnmol.2018.00186] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is a popular new-type psychostimulant drug with complicated neurotoxicity. In spite of mounting evidence on METH-induced damage of neural cell, the accurate mechanism of toxic effect of the drug on central nervous system (CNS) has not yet been completely deciphered. Besides, effective treatment strategies toward METH neurotoxicity remain scarce and more efficacious drugs are to be developed. In this review, we summarize cellular and molecular bases that might contribute to METH-elicited neurotoxicity, which mainly include oxidative stress, excitotoxicity, and neuroinflammation. We also discuss some drugs that protect neural cells suffering from METH-induced neurotoxic consequences. We hope more in-depth investigations of exact details that how METH produces toxicity in CNS could be carried out in future and the development of new drugs as natural compounds and immunotherapies, including clinic trials, are expected.
Collapse
Affiliation(s)
- Xue Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qiyan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yaxian Zhong
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liangpei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yajun Du
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jing He
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chun-xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
16
|
Exposure to Far Infrared Ray Protects Methamphetamine-Induced Behavioral Sensitization in Glutathione Peroxidase-1 Knockout Mice via Attenuating Mitochondrial Burdens and Dopamine D1 Receptor Activation. Neurochem Res 2018; 43:1118-1135. [DOI: 10.1007/s11064-018-2528-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/09/2023]
|
17
|
IL-6 knockout mice are protected from cocaine-induced kindling behaviors; possible involvement of JAK2/STAT3 and PACAP signalings. Food Chem Toxicol 2018; 116:249-263. [PMID: 29673861 DOI: 10.1016/j.fct.2018.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023]
Abstract
IL-6 has been recognized as an anticonvulsant against certain neuroexcitotoxicities. We aimed to investigate on the interactive role between IL-6 and PACAP in cocaine-induced kindling behaviors. Although we found that cocaine (45 mg/kg, i.p./day x 5) significantly increased IL-6 and TNF-α expression, it resulted in a decrease in IFN-γ expression. We observed that the cocaine-induced increase in IL-6 expression was more pronounced than that in TNF-α expression. Genetic depletion of IL-6 significantly activated cocaine kindling behaviors. This phenomenon was also consistently observed in WT mice that received a neutralizing IL-6 receptor antibody. Cocaine-treated IL-6 knockout mice exhibited significantly decreased PACAP and PACAP receptor (PAC1R) mRNA levels and significantly increased TNF-α gene expression. TNF-α knockout mice were protected from cocaine kindling via an up-regulation of IL-6, phospho-JAK2/STAT3, PACAP, and PAC1R levels, which produced anti-apoptotic effects. Recombinant IL-6 protein (rIL-6, 2 μg, i.v./mouse/day x 5) also up-regulated phospho-JAK2/STAT3, PACAP, and PAC1R mRNA levels, leading to anti-apoptotic effects in IL-6 knockout mice. Consistently, AG490, a JAK2/STAT3 inhibitor, and PACAP 6-38, a PAC1 receptor antagonist, counteracted rIL-6-mediated protection. Combined, our results suggest that IL-6 gene requires up-regulation of phospho-JAK2/STAT3, PACAP, and PAC1R and down-regulation of the TNF-α gene to modulate its anticonvulsive/neuroprotective potential.
Collapse
|
18
|
Mai HN, Sharma N, Shin EJ, Nguyen BT, Nguyen PT, Jeong JH, Cho EH, Lee YJ, Kim NH, Jang CG, Nabeshima T, Kim HC. Exposure to far-infrared ray attenuates methamphetamine-induced impairment in recognition memory through inhibition of protein kinase C δ in male mice: Comparison with the antipsychotic clozapine. J Neurosci Res 2018; 96:1294-1310. [PMID: 29476655 DOI: 10.1002/jnr.24228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that repeated treatment with methamphetamine (MA) results in a recognition memory impairment via upregulation of protein kinase C (PKC) δ and downregulation of the glutathione peroxidase-1 (GPx-1)-dependent antioxidant system. We also demonstrated that far-infrared ray (FIR) attenuates acute restraint stress via induction of the GPx-1 gene. Herein, we investigated whether exposure to FIR modulates MA-induced recognition memory impairment in male mice, and whether cognitive potentials mediated by FIR require modulation of the PKCδ gene, extracellular signal-regulated kinase (ERK) 1/2, and glutathione-dependent system. Repeated treatment with MA significantly increased PKCδ expression and its phosphorylation out of PKC isoenzymes (i.e., PKCα, PKCβI, PKCβII, PKCζ, and PKCδ expression) in the prefrontal cortex of mice. Exposure to FIR significantly attenuated MA-induced increase in phospho-PKCδ and decrease in phospho-ERK 1/2. In addition, FIR further facilitated the nuclear factor E2-related factor 2 (Nrf2)-dependent glutathione synthetic system. Moreover, L-buthionine-(S, R)-sulfoximine, an inhibitor of glutathione synthesis, counteracted the FIR-mediated phospho-ERK 1/2 induction and memory-enhancing activity against MA insult. More important, positive effects of FIR are comparable to those of genetic depletion of PKCδ or the antipsychotic clozapine. Our results indicate that FIR protects against MA-induced memory impairment via activations of the Nrf2-dependent glutathione synthetic system, and ERK 1/2 signaling by inhibition of the PKCδ gene.
Collapse
Affiliation(s)
- Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Phuong Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacology, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon, Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, Japan.,Aino University, Ibaragi, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| |
Collapse
|
19
|
Role of dopamine D1 receptor in 3-fluoromethamphetamine-induced neurotoxicity in mice. Neurochem Int 2018; 113:69-84. [DOI: 10.1016/j.neuint.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
|
20
|
Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice. Food Chem Toxicol 2017; 110:300-315. [PMID: 29037473 DOI: 10.1016/j.fct.2017.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022]
Abstract
We investigated whether ginsenoside Re (Re) modulates phencyclidine (PCP)-induced sociability deficits and recognition memory impairments to extend our recent finding. We examined the role of GPx-1 gene in the pharmacological activity of Re against mitochondrial dysfunction induced by PCP in the dorsolateral cortex of mice. Since mitochondrial oxidative stress activates NADPH oxidase (PHOX), we applied PHOX inhibitor apocynin for evaluating interactive modulation between GPx-1 and PHOX against PCP neurotoxicity. Sociability deficits and recognition memory impairments induced by PCP were more pronounced in GPx-1 knockout (KO) than in wild type (WT) mice. PCP-induced mitochondrial oxidative stress, mitochondrial dysfunction, and membrane translocation of p47phox were more evident in GPx-1 KO than in WT. Re treatment significantly attenuated PCP-induced neurotoxic changes. Re also significantly attenuated PCP-induced sociability deficits and recognition memory impairments. The attenuation by Re was comparable to that by apocynin. The attenuation was more obvious in GPx-1 KO than in WT. Importantly, apocynin did not show any additional positive effects on the neuroprotective activity of Re, indicating that PHOX is a molecular target for therapeutic activity of Re. Our results suggest that Re requires interactive modulation between GPx activity and PHOX (p47phox) to exhibit neuroprotective potentials against PCP insult.
Collapse
|