1
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Pinna N, Ianni F, Conte C, Codini M, di Vito R, Urbani S, Selvaggini R, Cossignani L, Blasi F. Carotenoids from Different Pumpkin Varieties Exert a Cytotoxic Effect on Human Neuroblastoma SH-SY5Y Cells. Nutrients 2024; 16:3043. [PMID: 39275357 PMCID: PMC11397300 DOI: 10.3390/nu16173043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Plants, including pumpkins (Cucurbita spp.), are an interesting source of nutrients and bioactives with various health benefits. In this research, carotenoid extracts obtained from the pulp of eight pumpkin varieties, belonging to the C. moschata and C. maxima species, were tested for cytotoxicity on SH-SY5Y neuroblastoma cells. The results showed that pumpkin bioactives exert a cytotoxic action against the tested cells, in particular Butternut extract at a 100 μM (53.69 μg/mL) concentration after 24 h of treatment and Mantovana extract at 50 μM (26.84 μg/mL) after 48 h. Moreover, the carotenoid extracts also showed interesting in vitro antioxidant activity, evaluated by ABTS and ORAC assays. To fully characterize the qualitative and quantitative profile of carotenoids in the tested extracts, a high-performance chromatographic technique was performed, revealing that pumpkin pulp carotenoids were mainly represented by β-carotene, mono- and di-esterified hydroxy- and epoxy-carotenoids. Moreover, the carotenoid dataset was also useful for discriminating samples from two different species. In conclusion, the results of the present study highlight the potential anti-cancer activity of pumpkin carotenoid extracts and the possibility of using them as chemotherapeutic adjuvants.
Collapse
Affiliation(s)
- Nicola Pinna
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Raffaella di Vito
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Stefania Urbani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
3
|
Zhang R, Huang X, Zhou C, Zhang Q, Jia D, Xie X, Zhang J. Network pharmacology-based mechanism analysis of dauricine on the alleviating Aβ-induced neurotoxicity in Caenorhabditis elegans. BMC Complement Med Ther 2024; 24:321. [PMID: 39215261 PMCID: PMC11363685 DOI: 10.1186/s12906-024-04589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, exhibits promising anti-Alzheimer's disease (AD) effects, but its underlying mechanisms remain inadequately investigated. This paper aims to identify potential targets and molecular mechanisms of DAU in AD treatment. METHODS Network pharmacology and molecular docking simulation method were used to screen and focus core targets. Various transgenic Caenorhabditis elegans models were chosen to validate the anti-AD efficacy and mechanism of DAU. RESULTS There are 66 potential DAU-AD target intersections identified from 100 DAU and 3036 AD-related targets. Subsequent protein-protein interaction (PPI) network analysis identified 16 core targets of DAU for anti-AD. PIK3CA, AKT1 and mTOR were predicted to be the central targets with the best connectivity through the analysis of "compound-target-biological process-pathway network". Molecular docking revealed strong binding affinities between DAU and PIK3CA, AKT1, and mTOR. In vivo experiments demonstrated that DAU effectively reduced paralysis in AD nematodes caused by Aβ aggregation toxicity, downregulated expression of PIK3CA, AKT1, and mTOR homologues (age-1, akt-1, let-363), and upregulated expression of autophagy genes and the marker protein LGG-1. Simultaneously, DAU increased lysosomal content and enhanced degradation of the autophagy-related substrate protein P62. Thioflavin T(Th-T)staining experiment revealed that DAU decreased Aβ accumulation in AD nematodes. Further experiments also confirmed DAU's protein scavenging activity in polyglutamine (polyQ) aggregation nematodes. CONCLUSION Collectively, the mechanism of DAU against AD may be related to the activation of the autophagy-lysosomal protein clearance pathway, which contributes to the decrease of Aβ aggregation and the restoration of protein homeostasis.
Collapse
Affiliation(s)
- Ranran Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Xiaoyan Huang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Chunling Zhou
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Qian Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Dongsheng Jia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoliang Xie
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ju Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China.
| |
Collapse
|
4
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
5
|
Xu Q, Ji Y, Chen M, Shao X. 4-Hydroxyl-oxoisoaporphine, one small molecule as theranostic agent for simultaneous fluorescence imaging and photodynamic therapy as type II photosensitizer. Photochem Photobiol Sci 2021; 20:501-512. [PMID: 33743176 DOI: 10.1007/s43630-021-00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
Oxoisoaporphine (OA) is a plant phototoxin isolated from Menispermaceae, however, its weak fluorescence and low water solubility impede it for theranostics. We developed here 4-hydroxyl-oxoisoaporphine (OHOA), which has good singlet oxygen-generating ability (0.06), strong fluorescence (0.72) and improved water solubility. OHOA displays excellent fluorescence for cell imaging and exhibits light-induced cytotoxicity against cancer cell. In vitro model of human cervical carcinoma (HeLa) cell proved that singlet oxygen generated by OHOA triggered photosensitized oxidation reactions and exert toxic effect on tumor cells. The MTT assay using HeLa cells verified the low cytotoxicity of OHOA in the dark and high phototoxicity. Confocal experiment indicates that OHOA mainly distributes in mitochondria and western blotting demonstrated that OHOA induces cell apoptosis via the mitochondrial pathway in the presence of light. Our molecule provides an alternative choice as a theranostic agent against cancer cells which usually are in conflict with each other for most traditional theranostic agents.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunfan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Meijun Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. .,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Xie RR, Su CL, Li W, Zou XY, Chen YS, Tang H. Synthesis and biological evaluation of novel 8- substituted sampangine derivatives as potent inhibitor of Zn 2+-Aβ complex mediated toxicity, oxidative stress and inflammation. Bioorg Chem 2021; 109:104710. [PMID: 33611137 DOI: 10.1016/j.bioorg.2021.104710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/19/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
A series of 8-substituted sampangine derivatives have been designed, synthesized and tested for their ability to inhibit cholinesterase and penetrate the blood-brain barrier. Their chelating ability toward Zn2+ and other biologically relevant metal ions was also demonstrated by isothermal titration calorimetry. The new derivatives exhibited high acetylcholinesterase inhibitory activity, high blood-brain barrier penetration ability and high chelating selectivity for Zn2+. Moreover, compound 10 with the strongest binding affinity to Zn2+ was selected for further research. Western blotting analysis, transmission electron microscopy, DCFH-DA assay and paralysis experiment indicated that compound 10 suppressed the formation of Zn2+-Aβ complexes, alleviated the Zn2+ induced neurotoxicity and inhibited the production of ROS catalyzed by Zn2+ in Aβ42 transgenic C. elegans. Furthermore, compound 10 also inhibited the expressions of pro-inflammatory cytokines, such as NO, TNF-α, IL-6 and IL-1β, induced by Zn2+ + Aβ1-42 in BV2 microglial cells. In general, this work provided new insights into the design and development of potent metal-chelating agents for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Ren-Ren Xie
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Chun-Ling Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Wei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Xiao-Yan Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Yu-Si Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Huang Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China.
| |
Collapse
|
7
|
Zou XY, Xie RR, Li W, Su CL, Chen YS, Tang H. Novel sampangine derivatives as potent inhibitors of Cu 2+-mediated amyloid-β protein aggregation, oxidative stress and inflammation. Int J Biol Macromol 2021; 174:1-10. [PMID: 33476619 DOI: 10.1016/j.ijbiomac.2021.01.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/19/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
A series of 11-substituted sampangine derivatives have been designed, synthesized, and tested for their ability to inhibit cholinesterase. Their chelating ability and selectivity for Cu2+ over other biologically relevant metal ions were demonstrated by isothermal titration calorimetry. Their blood-brain barrier permeability was also tested by parallel artificial membrane permeation assay. Among the synthesized derivatives, compound 11 with the strong anti-acetylcholinesterase activity, high blood-brain barrier penetration ability and high binding affinity to Cu2+ was selected for further research. Western blotting analysis, transmission electron microscopy, DCFH-DA assay and paralysis experiment indicated that compound 11 suppressed the formation of Cu2+-Aβ complexes, alleviated the Cu2+ induced neurotoxicity and inhibited the production of ROS catalyzed by Cu2+ in Aβ42 transgenic C. elegans. Moreover, compound 11 also inhibited the expressions of proinflammatory cytokines, such as NO, TNF-α, IL-6 and IL-1β, induced by Cu2+ + Aβ1-42 in BV2 microglial cells. In general, this work provided new insights into the design and development of potent metal-chelating agents for AD treatment.
Collapse
Affiliation(s)
- Xiao-Yan Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Ren-Ren Xie
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Wei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Chun-Ling Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Yu-Si Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China
| | - Huang Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin City, Guangxi, China.
| |
Collapse
|
8
|
Su C, Chen Y, Chen K, Li W, Tang H. Inhibitory potency of 4- substituted sampangine derivatives toward Cu2+ mediated aggregation of amyloid β-peptide, oxidative stress, and inflammation in Alzheimer's disease. Neurochem Int 2020; 139:104794. [DOI: 10.1016/j.neuint.2020.104794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
|
9
|
DanQing L, YuJie G, ChengPeng Z, HongZhi D, Yi H, BiSheng H, Yan C. N-butanol extract of Hedyotis diffusa protects transgenic Caenorhabditis elegans from Aβ-induced toxicity. Phytother Res 2020; 35:1048-1061. [PMID: 32924204 DOI: 10.1002/ptr.6871] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/09/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Hedyotis diffusa Willd (Rubiaceae) is a widely used and resourceful traditional Chinese medicine that exerts protection against aging and age-related diseases. However, the underlying mechanisms of the protective effects remain largely unclear. Alzheimer's disease (AD) is an age-related neurodegenerative disease, of which β-amyloid (Aβ)-induced toxicity has been suggested as a main cause. Herein, we use the transgenic Caenorhabditis elegans CL4176, CL2006, and CL2355 strains, which express human Aβ1-42 peptide, to investigate the effects and the possible mechanisms of n-butanol extract of H.diffusa (HDB)-mediated protection against Aβ toxicity in vivo. During the experiments, a method of quality control for HDB was established by HPLC. Additionally, we examined the effects of HBD on gene expression changes with qRT-PCR, aggregation of Aβ plagues with thioflavin-S staining, and protein detection with GFP labeling. HDB improved lifespan, locomotion, and stress resistance. Further study showed that HDB decreased paralysis, the accumulation of ROS, and AChE activity. Moreover, HDB suppressed neuronal Aβ-expression-induced defects in chemotaxis behavior and increased SOD activity. HDB also downregulated the Aβ mRNA level and decreased the number of Aβ deposits. Furthermore, HDB increased the expression levels of sod-3, daf-16, hsf-1, and hsp-16.2 gene and upregulated hsp-16.2::GFP and gst-4::GFP expression. Taken together, these results suggest that HDB may protect against Aβ-induced toxicity in C. elegans via the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway.
Collapse
Affiliation(s)
- Li DanQing
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Guo YuJie
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhang ChengPeng
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Du HongZhi
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Hong Yi
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Huang BiSheng
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| | - Cao Yan
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
10
|
de Almeida WAM, de Andrade JP, Chacon DS, Lucas CR, Mariana E, de Santis Ferreira L, Guaratini T, Barbosa EG, Zuanazzi JA, Hallwass F, de Souza Borges W, de Paula Oliveira R, Giordani RB. Isoquinoline alkaloids reduce beta-amyloid peptide toxicity in Caenorhabditis elegans. Nat Prod Res 2020; 35:4814-4818. [PMID: 32067490 DOI: 10.1080/14786419.2020.1727471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial health problem widespread over the world. Regarding the historical importance of the alkaloids in the central nervous system pharmacology they remain as promising drug candidates against AD. Seven alkaloids from Amaryllidaceae and Fabaceae were evaluated in vivo, in vitro and in silico targets related to the AD pathophysiology. Erythraline and erysodine showed the greatest potential compared to Memantine, a drug currently used in AD therapy, by delaying the Aβ1-42-induced paralysis in the transgenic strain CL2006 Caenorhabditis elegans, an alternative model to assess the impairment of beta-amyloid peptide deposition. The in vitro inhibition of the acetylcholinesterase was observed for the first time for Erythrina alkaloids; however Lycorine was the most active. Docking simulation contributed to comprehend this potential by showing a hydrophobic interaction between acetylcholinesterase and Lycorine in the amino acid residue TRP 84 as well as hydrogen bonds with TRY 121 and ASP 72.
Collapse
Affiliation(s)
- Wamberto Alristenio Moreira de Almeida
- Grupo de Pesquisa em Produtos Naturais Bioativos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Jean Paulo de Andrade
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Daisy Sotero Chacon
- Grupo de Pesquisa em Produtos Naturais Bioativos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Cecília Rodrigues Lucas
- Grupo de Pesquisa em Produtos Naturais Bioativos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Estela Mariana
- Grupo de Pesquisa em Produtos Naturais Bioativos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Leandro de Santis Ferreira
- Grupo de Pesquisa em Produtos Naturais Bioativos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Thais Guaratini
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Euzebio Guimarães Barbosa
- Grupo de Pesquisa em Produtos Naturais Bioativos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - José Angelo Zuanazzi
- Laboratory of Pharmacognosy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Warley de Souza Borges
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Riva de Paula Oliveira
- Laboratório de Genética e Biologia, Departamento de Biologia e Genética, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Raquel Brandt Giordani
- Grupo de Pesquisa em Produtos Naturais Bioativos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
11
|
Wang L, Pu Z, Li M, Wang K, Deng L, Chen W. Antioxidative and antiapoptosis: Neuroprotective effects of dauricine in Alzheimer's disease models. Life Sci 2019; 243:117237. [PMID: 31887302 DOI: 10.1016/j.lfs.2019.117237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
AIMS Dauricine has been found that has significant neuroprotective effect on Alzheimer's disease (AD), but the mechanism is unclear, so we further investigated the possible mechanism of dauricine on AD. MAIN METHODS Cell counting kit-8 (CCK8) was applied to measure the cytotoxicity of dauricine on SH-SY5Y cells that overexpress the Swedish mutant form of human β-amyloid precursor protein (APPsw) and control cells (Neo). We used the Cu2+ to induce oxidative damage on APPsw cells, then tested the effect of dauricine on the damage and relative factors including reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and superoxide dismutase (SOD) activity. The secretion level of amyloid beta 1-42(Aβ1-42), protein expression of apoptosis-related factors and the components of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway were determined by western blotting. Aβ1-42-transgenic Caenorhabditis elegans GMC101, a model of AD, was applied to evaluate the neuroprotective effect of dauricine through the behavioral experiment and relative anti-oxidative tests. KEY FINDINGS In vitro, dauricine decreased the secretion level of Aβ1-42, significantly reduced the level of Cu2+-induced ROS, and restored MMP and SOD activity in APPsw cells. Meanwhile, dauricine could suppress the activation of caspase-3 and to upregulate the expression of Bcl-2. Dauricine also regulated the proteins levels of Nrf2, and Kelch-like ECH-associated protein 1 (Keap1) that is necessary for the activation of Nrf2 in APPsw cell. As oxidative stress induced by Aβ or paraquat (PQ), dauricine showed protective effects in the survival experiment of GMC101 worms. SIGNIFICANCE Those data revealed that dauricine has the pharmacological activity of anti-oxidative and anti-apoptosis, and shows the potential therapeutic value for AD.
Collapse
Affiliation(s)
- Lingfeng Wang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhijun Pu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Mingxin Li
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Kaixuan Wang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lijuan Deng
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wei Chen
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
12
|
Rodríguez-Arce E, Cancino P, Arias-Calderón M, Silva-Matus P, Saldías M. Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects. Molecules 2019; 25:E108. [PMID: 31892146 PMCID: PMC6983244 DOI: 10.3390/molecules25010108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| | - Patricio Cancino
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile;
| | - Manuel Arias-Calderón
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Paul Silva-Matus
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique 5951537, Chile;
| | - Marianela Saldías
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8370178, Chile;
| |
Collapse
|
13
|
Chen Y, Su C, Wang L, Qin J, Wei S, Tang H. Hybrids of oxoisoaporphine-tetrahydroisoquinoline: novel multi-target inhibitors of inflammation and amyloid-β aggregation in Alzheimer's disease. Mol Divers 2019; 23:709-722. [PMID: 30603938 DOI: 10.1007/s11030-018-9905-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/06/2018] [Indexed: 01/30/2023]
Abstract
A series of 8- and 11-substituted hybrids of oxoisoaporphine-tetrahydroisoquinoline have been designed and synthesized. The new derivatives strongly suppressed NO and iNOS production and modulated the production of cytokines by decreasing TNF-α and IL-1β formation in lipopolysaccharide-activated BV-2 microglia and RAW 264.7 macrophages. Meanwhile, incubation of these derivatives with SH-SY5Y cells that were transfected with human APP containing the Swedish mutations significantly decreased the secretion of Aβ42. Moreover, these hybrids could strongly inhibit the activity of acetylcholinesterase and butyrylcholinesterase. Further investigations in vivo indicated that the 8-substituted hybrid 3b significantly delayed paralysis caused by Aβ1-42 toxicity in GMC101. In sum, these new hybrids could target multiple pathogenetic factors in Alzheimer's disease and merit further investigation.
Collapse
Affiliation(s)
- Yusi Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Chunlin Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Li Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Jingfang Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Shenqi Wei
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China
| | - Huang Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin City, Guangxi, China.
| |
Collapse
|
14
|
Pu Z, Ma S, Wang L, Li M, Shang L, Luo Y, Chen W. Amyloid-beta Degradation and Neuroprotection of Dauricine Mediated by Unfolded Protein Response in a Caenorhabditis elegans Model of Alzheimer’s disease. Neuroscience 2018; 392:25-37. [DOI: 10.1016/j.neuroscience.2018.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/04/2023]
|
15
|
Zeng L, Gao J, Deng Y, Shi J, Gong Q. CZ2HF mitigates β-amyloid 25-35 fragment-induced learning and memory impairment through inhibition of neuroinflammation and apoptosis in rats. Int J Mol Med 2018; 43:557-566. [PMID: 30365041 DOI: 10.3892/ijmm.2018.3952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/19/2018] [Indexed: 11/05/2022] Open
Abstract
Cu‑zhi‑2‑hao‑fang (CZ2HF), a traditional Chinese medicine, has been used clinically for the treatment of amnesia. However, whether CZ2HF is capable of alleviating learning and memory impairment in Alzheimer's disease (AD) remains to be elucidated. The present study was designed to explore the effect and mechanism of CZ2HF on β‑amyloid 25‑35 (Aβ25‑35)‑induced impairment in the learning and memory of rats. Morris water maze test was used to determine spatial learning and memory ability in Aβ25‑35‑induced AD rats and hippocampal neuronal damage and apoptosis were observed using hematoxylin and eosin staining, Nissl staining and terminal deoxynucleotidyltransferase‑mediated dUTP nick‑end labeling (TUNEL) assays, respectively. The levels of β‑amyloid 1‑42 (Aβ1‑42), pro‑inflammatory factors, such as cyclooxygenase‑2 (COX‑2), tumor necrosis factor‑α (TNF‑α) and interleukin‑1β (IL‑1β) and apoptosis‑associated genes including B cell leukemia/lymphoma 2 (Bcl‑2), Bcl-2‑associated X, apoptosis regulator (Bax), pro‑caspase‑3, inhibitor of κB (IκB‑α) degradation and phosphorylated‑nuclear factor‑κB p65 (p‑NF‑κB p65) activation were analyzed using western blotting. The findings of the present study revealed that CZ2HF treatment significantly attenuated Aβ25‑35‑induced cognitive impairments in rats. Subsequently, CZ2HF treatment markedly inhibited neuronal damage and deletions. Furthermore, CZ2HF reduced TNF‑α, IL‑1β, COX‑2 protein expression levels, Bax/Bcl‑2 ratio, and reduced Aβ1‑42 and active‑caspase‑3 levels. In addition, IκB‑α degradation and p‑NF‑κB p65 activation were reduced by CZ2HF. These findings suggested that CZ2HF treatment improved Aβ25‑35‑induced learning and memory impairment and hippocampal neuronal injury, and its underlying mechanism may be due to the inhibition of neuroinflammation and neuronal apoptosis. CZ2HF may be a potential agent for the treatment of AD.
Collapse
Affiliation(s)
- Lingrong Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yuanyuan Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
16
|
Huang J, Chen S, Hu L, Niu H, Sun Q, Li W, Tan G, Li J, Jin L, Lyu J, Zhou H. Mitoferrin-1 is Involved in the Progression of Alzheimer's Disease Through Targeting Mitochondrial Iron Metabolism in a Caenorhabditis elegans Model of Alzheimer's Disease. Neuroscience 2018; 385:90-101. [PMID: 29908215 DOI: 10.1016/j.neuroscience.2018.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
In mammals, mitoferrin-1 and mitoferrin-2, two homologous proteins of the mitochondrial solute carrier family are required for iron delivery into mitochondria. However, there is only one kind, called W02B12 (mitoferrin-1 or mfn-1), in Caenorhabditis elegans and its regulatory mechanism is unknown. In this study, we used C. elegans strains CL2006 and GMC101 as models to investigate what role mitoferrin-1 played in Alzheimer's disease (AD). We found that knockdown of mitoferrin-1 by feeding-RNAi treatment extended lifespans of both strains of C. elegans. In addition, it reduced the paralysis rate in the GMC101 strain. These results suggest that mitoferrin-1 may be involved in the progression of Alzheimer's disease. Knockdown of mitoferrin-1 was seen to disturb mitochondrial morphology in the CB5600 strain. We tested whether knockdown of mitoferrin-1 could influence mitochondrial metabolism. Analysis of mitochondrial iron metabolism and mitochondrial ROS showed that knockdown of mitoferrin-1 could reduce mitochondrial iron content and reduce the level of mitochondrial ROS in the CL2006 and GMC101 strains. These results confirm that knockdown of mitoferrin-1 can slow the progress of disease in Alzheimer model of C. elegans and suggest that mitoferrin-1 plays a major role in mediating mitochondrial iron metabolism in this process.
Collapse
Affiliation(s)
- Jiatao Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sixi Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Niu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianqian Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenna Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guoqian Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - LongJin Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
17
|
Zhang J, Chen L, Sun J. Oxoisoaporphine Alkaloids: Prospective Anti-Alzheimer's Disease, Anticancer, and Antidepressant Agents. ChemMedChem 2018; 13:1262-1274. [PMID: 29696800 DOI: 10.1002/cmdc.201800196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/22/2018] [Indexed: 12/30/2022]
Abstract
Oxoisoaporphine alkaloids are a family of oxoisoquinoline-derived alkaloids that were first isolated from the rhizome of Menispermum dauricum DC. (Menispermaceae). It has been demonstrated that oxoisoaporphine alkaloids possess various biological properties, such as cholinesterase and β-amyloid inhibition, acting as a topoisomerase intercalator, monoamine oxidase A inhibition, and are expected to become anti-Alzheimer's disease, anticancer, and antidepressant drugs. This review provides an overview of natural sources, synthetic routes, bioactivities, structure-function relationship, and modification investigations into oxoisoaporphine alkaloids, with the aim of providing references to the structure-activity relationships for the design and development of oxoisoaporphine derivatives with higher efficacy and therapeutic potential.
Collapse
Affiliation(s)
- Jiayao Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| | - Li Chen
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| | - Jianbo Sun
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, P.R. China
| |
Collapse
|
18
|
Rahman MA, Rhim H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep 2018; 50:345-354. [PMID: 28454606 PMCID: PMC5584741 DOI: 10.5483/bmbrep.2017.50.7.069] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a catabolic process necessary for the maintenance of intracellular homeostasis, has recently been the focus of numerous human diseases and conditions, such as aging, cancer, development, immunity, longevity, and neurodegeneration. However, the continued presence of autophagy is essential for cell survival and dysfunctional autophagy is thought to speed up the progression of neurodegeneration. The actual molecular mechanism behind the progression of dysfunctional autophagy is not yet fully understood. Emerging evidence suggests that basal autophagy is necessary for the removal of misfolded, aggregated proteins and damaged cellular organelles through lysosomal mediated degradation. Physiologically, neurodegenerative disorders are related to the accumulation of amyloid β peptide and α-synuclein protein aggregation, as seen in patients with Alzheimer’s disease and Parkinson’s disease, respectively. Even though autophagy could impact several facets of human biology and disease, it generally functions as a clearance for toxic proteins in the brain, which contributes novel insight into the pathophysiological understanding of neurodegenerative disorders. In particular, several studies demonstrate that natural compounds or small molecule autophagy enhancer stimuli are essential in the clearance of amyloid β and α-synuclein deposits. Therefore, this review briefly deliberates on the recent implications of autophagy in neurodegenerative disorder control, and emphasizes the opportunities and potential therapeutic application of applied autophagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792; Department of Neuroscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|