1
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
3
|
Yang P, Shuai W, Wang X, Hu X, Zhao M, Wang A, Wu Y, Ouyang L, Wang G. Mitophagy in Neurodegenerative Diseases: Mechanisms of Action and the Advances of Drug Discovery. J Med Chem 2025; 68:3970-3994. [PMID: 39908485 DOI: 10.1021/acs.jmedchem.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Neurodegenerative diseases (NDDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), are devastating brain diseases and are incurable at the moment. Increasing evidence indicates that NDDs are associated with mitochondrial dysfunction. Mitophagy removes defective or redundant mitochondria to maintain cell homeostasis, whereas deficient mitophagy accelerates the accumulation of damaged mitochondria to mediate the pathologies of NDDs. Therefore, targeting mitophagy has become a valuable therapeutic pathway for the treatment of NDDs. Several mitophagy modulators have been shown to ameliorate neurodegeneration in PD and AD. However, it remains to be further investigated for other NDDs. Here, we describe the mechanism and key signaling pathway of mitophagy and summarize the roles of defective mitophagy on the pathogenesis of NDDs. Further, we underline the development advances of mitophagy modulators for PD and AD therapy, discuss the therapeutic challenges and limitations of the existing modulators, and provide guidelines for mitophagy mechanism exploration and drug design.
Collapse
Affiliation(s)
- Panpan Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
DeAngelo V, Hilliard JD, Chiang CH, Viventi J, McConnell GC. Cerebellar activity in PINK1 knockout rats during volitional gait. Brain Commun 2024; 6:fcae249. [PMID: 39464218 PMCID: PMC11503944 DOI: 10.1093/braincomms/fcae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/26/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Preclinical models of Parkinson's disease are imperative to gain insight into the neural circuits that contribute to gait dysfunction in advanced stages of the disease. A PTEN-induced putative kinase 1 knockout early-onset model of Parkinson's disease may be a useful rodent model to study the effects of neurotransmitter degeneration caused by a loss of PTEN-induced putative kinase 1 function on brain activity during volitional gait. The goal of this study was to measure changes in neural activity at the cerebellar vermis at 8 months of age. It was found that gait deficits, except run speed, were not significantly different from age-matched wild-type controls, as previously reported. PTEN-induced putative kinase 1 knockout (n = 4) and wild-type (n = 4) rats were implanted with a micro-electrocorticographic array placed over cerebellar vermis Lobules VI (a-c) and VII. Local field potential recordings were obtained during volitional gait across a runway. Power spectral analysis and coherence analysis were used to quantify network oscillatory activity in frequency bands of interest. Cerebellar vermis power was hypoactive in the beta (VIb, VIc and VII) and alpha (VII) bands at cerebellar vermis Lobules VIb, VIc and VII in PTEN-induced putative kinase 1 knockout rats compared with wild-type controls during gait (P < 0.05). These results suggest that gait improvement in PTEN-induced putative kinase 1 knockout rats at 8 months may be a compensatory mechanism attributed to movement corrections caused by a decreased inhibition of the alpha band of cerebellar vermis Lobule VII and beta band of Lobules VIb, VIc and VII. The PTEN-induced putative kinase 1 knockout model may be a valuable tool for understanding the circuit mechanisms underlying gait dysfunction in patients with early-onset Parkinson's disease with a functional loss of PTEN-induced putative kinase 1. Future studies investigating the cerebellar vermis as a potential biomarker and therapeutic target for the treatment of gait dysfunction in Parkinson's disease are warranted.
Collapse
Affiliation(s)
- Valerie DeAngelo
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Semcer Center for Healthcare Innovation, Hoboken, NJ 07030, USA
| | - Justin D Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke School of Medicine, Durham, NC 27710, USA
- Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, USA
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Semcer Center for Healthcare Innovation, Hoboken, NJ 07030, USA
| |
Collapse
|
5
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
6
|
Hertz N, Chin R, Rakhit R, Ditsworth D, Wang C, Bartholomeus J, Liu S, Mody A, Laihsu A, Eastes A, Tai C, Kim R, Li J, Khasnavis S, Rafalski V, Heerendeen D, Garda V, Phung J, de Roulet D, Ordureau A, Harper JW, Johnstone S, Stöhr J. Pharmacological PINK1 activation ameliorates Pathology in Parkinson's Disease models. RESEARCH SQUARE 2024:rs.3.rs-4356493. [PMID: 38765977 PMCID: PMC11100876 DOI: 10.21203/rs.3.rs-4356493/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction, and impairs mitophagy as evidenced by the accumulation of the PINK1 substrate pS65-Ubiquitin (pUb). We discovered MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes its active complex, resulting in increased rates of mitophagy. Treatment with MTK458 mediates clearance of accumulated pUb and α-synuclein pathology in α-synuclein pathology models in vitro and in vivo. Our findings from preclinical PD models suggest that pharmacological activation of PINK1 warrants further clinical evaluation as a therapeutic strategy for disease modification in PD.
Collapse
|
7
|
Jiang X, Yang L, Chen G, Feng X, Liu Y, Gao Q, Mai M, Chen CYC, Ye S, Yang Z. Discovery of Kinetin in inhibiting colorectal cancer progression via enhancing PSMB1-mediated RAB34 degradation. Cancer Lett 2024; 584:216600. [PMID: 38159835 DOI: 10.1016/j.canlet.2023.216600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Understanding the underlying mechanism driving CRC progression and identifying potential therapeutic drug targets are of utmost urgency. We previously utilized LC-MS-based proteomic profiling to identify proteins associated with postoperative progression in stage II/III CRC. Here, we revealed that proteasome subunit beta type-1 (PSMB1) is an independent predictor for postoperative progression in stage II/III CRC. Mechanistically, PSMB1 binds directly to onco-protein RAB34 and promotes its proteasome-dependent degradation, potentially leading to the inactivation of the MEK/ERK signaling pathway and inhibition of CRC progression. To further identify potential anticancer drugs, we screened a library of 2509 FDA-approved drugs using computer-aided drug design (CADD) and identified Kinetin as a potentiating agent for PSMB1. Functional assays confirmed that Kinetin enhanced the interaction between PSMB1 and RAB34, hence facilitated the degradation of RAB34 protein and decreased the MEK/ERK phosphorylation. Kinetin suppresses CRC progression in patient-derived xenograft (PDX) and liver metastasis models. Conclusively, our study identifies PSMB1 as a potential biomarker and therapeutic target for CRC, and Kinetin as an anticancer drug by enhancing proteasome-dependent onco-protein degradation.
Collapse
Affiliation(s)
- Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lanlan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Mingru Mai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Calvin Yu-Chian Chen
- Department of AI for Science, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Shubiao Ye
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
8
|
Lamberty BG, Estrella LD, Mattingly JE, Emanuel K, Trease A, Totusek S, Sheldon L, George JW, Almikhlafi MA, Farmer T, Stauch KL. Parkinson's disease relevant pathological features are manifested in male Pink1/Parkin deficient rats. Brain Behav Immun Health 2023; 31:100656. [PMID: 37484197 PMCID: PMC10362548 DOI: 10.1016/j.bbih.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Animal disease models are important for neuroscience experimentation and in the study of neurodegenerative disorders. The major neurodegenerative disorder leading to motor impairments is Parkinson's disease (PD). The identification of hereditary forms of PD uncovered gene mutations and variants, such as loss-of-function mutations in PTEN-induced putative kinase 1 (Pink1) and the E3 ubiquitin ligase Parkin, two proteins involved in mitochondrial quality control, that could be harnessed to create animal models. However, to date, such models have not reproducibly recapitulated major aspects of the disease. Here, we describe the generation and phenotypic characterization of a combined Pink1/Parkin double knockout (dKO) rat, which reproducibly exhibits PD-relevant abnormalities, particularly in male animals. Motor dysfunction in Pink1/Parkin dKO rats was characterized by gait abnormalities and decreased rearing frequency, the latter of which was responsive to levodopa treatment. Pink1/Parkin dKO rats exhibited elevated plasma levels of neurofilament light chain and significant loss of tyrosine hydroxylase expression in the substantia nigra pars compacta (SNpc). Glial cell activation was also observed in the SNpc. Pink1/Parkin dKO rats showed elevated plasma and reduced cerebrospinal levels of alpha-synuclein as well as the presence of alpha-synuclein aggregates in the striatum. Further, the profile of circulating lymphocytes was altered, as elevated CD3+CD4+ T cells and reduced CD3+CD8+ T cells in Pink1/Parkin dKO rats were found. This coincided with mitochondrial dysfunction and infiltration of CD3+ T cells in the striatum. Altogether, the Pink1/Parkin dKO rats exhibited phenotypes similar to what is seen with PD patients, thus highlighting the suitability of this model for mechanistic studies of the role of Pink1 and Parkin in PD pathogenesis and as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kelly L. Stauch
- Corresponding author. Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
9
|
Abrishamdar M, Jalali MS, Farbood Y. Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:1499-1518. [PMID: 35951210 PMCID: PMC11412433 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
Affiliation(s)
- Maryam Abrishamdar
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Sadat Jalali
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Chin RM, Rakhit R, Ditsworth D, Wang C, Bartholomeus J, Liu S, Mody A, Laishu A, Eastes A, Tai C, Kim RY, Li J, Hansberry S, Khasnavis S, Rafalski V, Herendeen D, Garda V, Phung J, de Roulet D, Ordureau A, Harper JW, Johnstone S, Stöhr J, Hertz NT. Pharmacological PINK1 activation ameliorates Pathology in Parkinson's Disease models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528378. [PMID: 36824886 PMCID: PMC9949154 DOI: 10.1101/2023.02.14.528378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction and impairs mitophagy, driving accumulation of the PINK1 substrate pS65-Ubiquitin (pUb) in primary neurons and in vivo. We synthesized MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes an active heterocomplex, thereby increasing mitophagy. MTK458 mediates clearance of α-synuclein pathology in PFF seeding models in vitro and in vivo and reduces pUb. We developed an ultrasensitive assay to quantify pUb levels in plasma and observed an increase in pUb in PD subjects that correlates with disease progression, paralleling our observations in PD models. Our combined findings from preclinical PD models and patient biofluids suggest that pharmacological activation of PINK1 is worthy of further study as a therapeutic strategy for disease modification in PD. Highlights Discovery of a plasma Parkinson's Disease biomarker candidate, pS65-Ubiquitin (pUb)Plasma pUb levels correlate with disease status and progression in PD patients.Identification of a potent, brain penetrant PINK1 activator, MTK458MTK458 selectively activates PINK1 by stimulating dimerization and stabilization of the PINK1/TOM complexMTK458 drives clearance of α-synuclein pathology and normalizes pUb in in vivo Parkinson's models.
Collapse
|
11
|
Blagov AV, Goncharov AG, Babich OO, Larina VV, Orekhov AN, Melnichenko AA. Prospects for the Development of Pink1 and Parkin Activators for the Treatment of Parkinson's Disease. Pharmaceutics 2022; 14:pharmaceutics14112514. [PMID: 36432705 PMCID: PMC9696222 DOI: 10.3390/pharmaceutics14112514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Impaired mitophagy is one of the hallmarks of the pathogenesis of Parkinson's disease, which highlights the importance of the proper functioning of mitochondria, as well as the processes of mitochondrial dynamics for the functioning of dopaminergic neurons. At the same time, the main factors leading to disruption of mitophagy in Parkinson's disease are mutations in the Pink1 and Parkin enzymes. Based on the characterized mutant forms, the marked cellular localization, and the level of expression in neurons, these proteins can be considered promising targets for the development of drugs for Parkinson's therapy. This review will consider such class of drug compounds as mitophagy activators and these drugs in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.B.); (A.N.O.)
| | - Andrey G. Goncharov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 6 Gaidara Street, 236001 Kaliningrad, Russia
| | - Olga O. Babich
- Scientific and Educational Center for Industrial Biotechnology, Immanuel Kant Baltic Federal University, 2 Universitetskaya Street, 236040 Kaliningrad, Russia
| | - Viktoriya V. Larina
- Scientific and Educational Center for Industrial Biotechnology, Immanuel Kant Baltic Federal University, 2 Universitetskaya Street, 236040 Kaliningrad, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.B.); (A.N.O.)
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| |
Collapse
|
12
|
Abstract
Unknown processes promote the accumulation of mitochondrial DNA (mtDNA) mutations during aging. Accumulation of defective mitochondrial genomes is thought to promote the progression of heteroplasmic mitochondrial diseases and degenerative changes with natural aging. We used a heteroplasmic Drosophila model to test 1) whether purifying selection acts to limit the abundance of deleterious mutations during development and aging, 2) whether quality control pathways contribute to purifying selection, 3) whether activation of quality control can mitigate accumulation of deleterious mutations, and 4) whether improved quality control improves health span. We show that purifying selection operates during development and growth but is ineffective during aging. Genetic manipulations suggest that a quality control process known to enforce purifying selection during oogenesis also suppresses accumulation of a deleterious mutation during growth and development. Flies with nuclear genotypes that enhance purifying selection sustained higher genome quality, retained more vigorous climbing activity, and lost fewer dopaminergic neurons. A pharmacological agent thought to enhance quality control produced similar benefits. Importantly, similar pharmacological treatment of aged mice reversed age-associated accumulation of a deleterious mtDNA mutation. Our findings reveal dynamic maintenance of mitochondrial genome fitness and reduction in the effectiveness of purifying selection during life. Importantly, we describe interventions that mitigate and even reverse age-associated genome degeneration in flies and in mice. Furthermore, mitigation of genome degeneration improved well-being in a Drosophila model of heteroplasmic mitochondrial disease.
Collapse
|
13
|
Silvian LF. PINK1/Parkin Pathway Activation for Mitochondrial Quality Control - Which Is the Best Molecular Target for Therapy? Front Aging Neurosci 2022; 14:890823. [PMID: 35754955 PMCID: PMC9215347 DOI: 10.3389/fnagi.2022.890823] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 01/12/2023] Open
Abstract
There has been long-term interest in drugging the PINK1-Parkin pathway with therapeutics as a treatment for Parkinson’s disease (PD). Despite significant structural data on Parkin as well as the PINK1 kinase and the multiple conformational changes it undergoes, activation of these targets is non-trivial. This review highlights small molecule screening results that suggests that activation of Parkin biochemically does not necessarily translate to activation of Parkin within cells. There are also issues with activation of PINK1 with kinetin analogs, which do not appear to rescue rodent models of PD. The counter-measure of activating the mitophagy pathway with deubiquitinase (DUB) inhibitors such as USP30 inhibitors is progressing in the clinic for kidney disease and the proof of biology for this target will be tested in these trials. An alternative mechanism of activating Parkin in response to oxidative stress via Parkin phosphorylation by the AMPK-ULK1 pathway may be a simpler way to lower the energy barrier Parkin activation.
Collapse
|
14
|
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev 2022; 102:1721-1755. [PMID: 35466694 DOI: 10.1152/physrev.00041.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Armaan Fallahi
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Abstract
The brain is one of the most energetically demanding tissues in the human body, and mitochondrial pathology is strongly implicated in chronic neurodegenerative diseases. In contrast to acute brain injuries in which bioenergetics and cell death play dominant roles, studies modeling familial neurodegeneration implicate a more complex and nuanced relationship involving the entire mitochondrial life cycle. Recent literature on mitochondrial mechanisms in Parkinson's disease, Alzheimer's disease, frontotemporal dementia, Huntington's disease, and amyotrophic lateral sclerosis is reviewed with an emphasis on mitochondrial quality control, transport and synaptodendritic calcium homeostasis. Potential neuroprotective interventions include targeting the mitochondrial kinase PTEN-induced kinase 1 (PINK1), which plays a role in regulating not only multiple facets of mitochondrial biology, but also neuronal morphogenesis and dendritic arborization.
Collapse
Affiliation(s)
- Charleen T Chu
- Departments of Pathology and Ophthalmology, Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases, Center for Neuroscience at the University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Therapeutic targeting of mitophagy in Parkinson's disease. Biochem Soc Trans 2022; 50:783-797. [PMID: 35311891 PMCID: PMC9162468 DOI: 10.1042/bst20211107] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterised by cardinal motor symptoms and a diverse range of non-motor disorders in patients. Parkinson's disease is the fastest growing neurodegenerative condition and was described for the first time over 200 years ago, yet there are still no reliable diagnostic markers and there are only treatments that temporarily alleviate symptoms in patients. Early-onset Parkinson's disease is often linked to defects in specific genes, including PINK1 and Parkin, that encode proteins involved in mitophagy, the process of selective autophagic elimination of damaged mitochondria. Impaired mitophagy has been associated with sporadic Parkinson's and agents that damage mitochondria are known to induce Parkinson's-like motor symptoms in humans and animal models. Thus, modulating mitophagy pathways may be an avenue to treat a subset of early-onset Parkinson's disease that may additionally provide therapeutic opportunities in sporadic disease. The PINK1/Parkin mitophagy pathway, as well as alternative mitophagy pathways controlled by BNIP3L/Nix and FUNDC1, are emerging targets to enhance mitophagy to treat Parkinson's disease. In this review, we report the current state of the art of mitophagy-targeted therapeutics and discuss the approaches being used to overcome existing limitations to develop innovative new therapies for Parkinson's disease. Key approaches include the use of engineered mouse models that harbour pathogenic mutations, which will aid in the preclinical development of agents that can modulate mitophagy. Furthermore, the recent development of chimeric molecules (AUTACs) that can bypass mitophagy pathways to eliminate damaged mitochondria thorough selective autophagy offer new opportunities.
Collapse
|
17
|
DeAngelo VM, Hilliard JD, McConnell GC. Dopaminergic but not cholinergic neurodegeneration is correlated with gait disturbances in PINK1 knockout rats. Behav Brain Res 2022; 417:113575. [PMID: 34534596 DOI: 10.1016/j.bbr.2021.113575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by gait dysfunction in later stages of the disease. PD hallmarks include a decrease in stride length, run speed, and swing time; an increase in stride time, stance time, and base of support; dopaminergic degeneration in the basal ganglia; and cholinergic degeneration in the pedunculopontine nucleus (PPN). A progressive animal model of PD is needed to identify treatments for gait dysfunction. The goal of this study was to quantify progressive gait degeneration in PTEN-induced putative kinase 1 knockout (P1KO) rats and investigate neurodegeneration as potential underlying mechanisms. Gait analysis was performed in male P1KO and wild-type rats at 5 and 8 months of age and immunohistochemical analysis at 8 months. Multiple parameters of volitional gait were measured using a runway system. P1KO rats exhibited significant gait deficits at 5 months, but not 8 months. Gait abnormalities improved over time suggesting compensation during behavioral testing. At 8 months a 15% loss of tyrosine hydroxylase (TH) in the striatum, a 27% loss of TH-positive cells in the substantia nigra pars compacta, and no significant loss of choline acetyltransferase-positive cells in the PPN was found. Dopaminergic cell loss may contribute to gait deficits in the P1KO model, but not cholinergic cell loss. The P1KO rat with the greatest dopamine loss exhibited the most pronounced PD-like gait deficits, highlighting variability within the model. Further analysis is required to determine the suitability of the P1KO rat as a progressive model of gait abnormalities in PD.
Collapse
Affiliation(s)
- V M DeAngelo
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - J D Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| | - G C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
18
|
Relevance of Autophagy and Mitophagy Dynamics and Markers in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020149. [PMID: 33557057 PMCID: PMC7913851 DOI: 10.3390/biomedicines9020149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
During the past few decades, considerable efforts have been made to discover and validate new molecular mechanisms and biomarkers of neurodegenerative diseases. Recent discoveries have demonstrated how autophagy and its specialized form mitophagy are extensively associated with the development, maintenance, and progression of several neurodegenerative diseases. These mechanisms play a pivotal role in the homeostasis of neural cells and are responsible for the clearance of intracellular aggregates and misfolded proteins and the turnover of organelles, in particular, mitochondria. In this review, we summarize recent advances describing the importance of autophagy and mitophagy in neurodegenerative diseases, with particular attention given to multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. We also review how elements involved in autophagy and mitophagy may represent potential biomarkers for these common neurodegenerative diseases. Finally, we examine the possibility that the modulation of autophagic and mitophagic mechanisms may be an innovative strategy for overcoming neurodegenerative conditions. A deeper knowledge of autophagic and mitophagic mechanisms could facilitate diagnosis and prognostication as well as accelerate the development of therapeutic strategies for neurodegenerative diseases.
Collapse
|
19
|
Mani S, Swargiary G, Chadha R. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion 2021; 57:270-293. [PMID: 33476770 DOI: 10.1016/j.mito.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Neurons are specialized cells, requiring a lot of energy for its proper functioning. Mitochondria are the key cellular organelles and produce most of the energy in the form of ATP, required for all the crucial functions of neurons. Hence, the regulation of mitochondrial biogenesis and quality control is important for maintaining neuronal health. As a part of mitochondrial quality control, the aged and damaged mitochondria are removed through a selective mode of autophagy called mitophagy. However, in different pathological conditions, this process is impaired in neuronal cells and lead to a variety of neurodegenerative disease (NDD). Various studies indicate that specific protein aggregates, the characteristics of different NDDs, affect this process of mitophagy, adding to the severity and progression of diseases. Though, the detailed process of this association is yet to be explored. In light of the significant role of impaired mitophagy in NDDs, further studies have also investigated a large number of therapeutic strategies to target mitophagy in these diseases. Our current review summarizes the abnormalities in different mitophagy pathways and their association with different NDDs. We have also elaborated upon various novel therapeutic strategies and their limitations to enhance mitophagy in NDDs that may help in the management of symptoms and increasing the life expectancy of NDD patients. Thus, our study provides an overview of mitophagy in NDDs and emphasizes the need to elucidate the mechanism of impaired mitophagy prevalent across different NDDs in future research. This will help designing better treatment options with high efficacy and specificity.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, USA
| |
Collapse
|
20
|
Schmidt MF, Gan ZY, Komander D, Dewson G. Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. Cell Death Differ 2021; 28:570-590. [PMID: 33414510 PMCID: PMC7862249 DOI: 10.1038/s41418-020-00706-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterised by progressive damage to the nervous system including the selective loss of vulnerable populations of neurons leading to motor symptoms and cognitive decline. Despite millions of people being affected worldwide, there are still no drugs that block the neurodegenerative process to stop or slow disease progression. Neuronal death in these diseases is often linked to the misfolded proteins that aggregate within the brain (proteinopathies) as a result of disease-related gene mutations or abnormal protein homoeostasis. There are two major degradation pathways to rid a cell of unwanted or misfolded proteins to prevent their accumulation and to maintain the health of a cell: the ubiquitin–proteasome system and the autophagy–lysosomal pathway. Both of these degradative pathways depend on the modification of targets with ubiquitin. Aging is the primary risk factor of most neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. With aging there is a general reduction in proteasomal degradation and autophagy, and a consequent increase of potentially neurotoxic protein aggregates of β-amyloid, tau, α-synuclein, SOD1 and TDP-43. An often over-looked yet major component of these aggregates is ubiquitin, implicating these protein aggregates as either an adaptive response to toxic misfolded proteins or as evidence of dysregulated ubiquitin-mediated degradation driving toxic aggregation. In addition, non-degradative ubiquitin signalling is critical for homoeostatic mechanisms fundamental for neuronal function and survival, including mitochondrial homoeostasis, receptor trafficking and DNA damage responses, whilst also playing a role in inflammatory processes. This review will discuss the current understanding of the role of ubiquitin-dependent processes in the progressive loss of neurons and the emergence of ubiquitin signalling as a target for the development of much needed new drugs to treat neurodegenerative disease. ![]()
Collapse
Affiliation(s)
- Marlene F Schmidt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Zhong Yan Gan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - David Komander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
21
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
22
|
Trinh D, Israwi AR, Arathoon LR, Gleave JA, Nash JE. The multi-faceted role of mitochondria in the pathology of Parkinson's disease. J Neurochem 2020; 156:715-752. [PMID: 33616931 DOI: 10.1111/jnc.15154] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are essential for neuronal function. They produce ATP to meet energy demands, regulate homeostasis of ion levels such as calcium and regulate reactive oxygen species that cause oxidative cellular stress. Mitochondria have also been shown to regulate protein synthesis within themselves, as well as within the nucleus, and also influence synaptic plasticity. These roles are especially important for neurons, which have higher energy demands and greater susceptibility to stress. Dysfunction of mitochondria has been associated with several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, Glaucoma and Amyotrophic Lateral Sclerosis. The focus of this review is on how and why mitochondrial function is linked to the pathology of Parkinson's disease (PD). Many of the PD-linked genetic mutations which have been identified result in dysfunctional mitochondria, through a wide-spread number of mechanisms. In this review, we describe how susceptible neurons are predisposed to be vulnerable to the toxic events that occur during the neurodegenerative process of PD, and how mitochondria are central to these pathways. We also discuss ways in which proteins linked with familial PD control mitochondrial function, both physiologically and pathologically, along with their implications in genome-wide association studies and risk assessment. Finally, we review potential strategies for disease modification through mitochondrial enhancement. Ultimately, agents capable of both improving and/or restoring mitochondrial function, either alone, or in conjunction with other disease-modifying agents may halt or slow the progression of neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Lindsay R Arathoon
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Jacqueline A Gleave
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| | - Joanne E Nash
- Department of Biological Sciences, University of Toronto Scarborough, Centre for Neurobiology of Stress, Toronto, ON, Canada
| |
Collapse
|
23
|
Yamaguchi A, Ishikawa KI, Inoshita T, Shiba-Fukushima K, Saiki S, Hatano T, Mori A, Oji Y, Okuzumi A, Li Y, Funayama M, Imai Y, Hattori N, Akamatsu W. Identifying Therapeutic Agents for Amelioration of Mitochondrial Clearance Disorder in Neurons of Familial Parkinson Disease. Stem Cell Reports 2020; 14:1060-1075. [PMID: 32470327 PMCID: PMC7355139 DOI: 10.1016/j.stemcr.2020.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder caused by the progressive loss of midbrain dopaminergic neurons, and mitochondrial dysfunction is involved in its pathogenesis. This study aimed to establish an imaging-based, semi-automatic, high-throughput system for the quantitative detection of disease-specific phenotypes in dopaminergic neurons from induced pluripotent stem cells (iPSCs) derived from patients with familial PD having Parkin or PINK1 mutations, which exhibit abnormal mitochondrial homeostasis. The proposed system recapitulates the deficiency of mitochondrial clearance, ROS accumulation, and increasing apoptosis in these familial PD-derived neurons. We screened 320 compounds for their ability to ameliorate multiple phenotypes and identified four candidate drugs. Some of these drugs improved the locomotion defects and reduced ATP production caused by PINK1 inactivation in Drosophila and were effective for idiopathic PD-derived neurons with impaired mitochondrial clearance. Our findings suggest that the proposed high-throughput system has potential for identifying effective drugs for familial and idiopathic PD.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Kei-Ichi Ishikawa
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan.
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Tokyo 113-8431, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Tokyo 113-8431, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Akio Mori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Yutaka Oji
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Yuanzhe Li
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan
| | - Manabu Funayama
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan; Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8431, Japan; Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Tokyo 113-8431, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan.
| |
Collapse
|
24
|
A Cell-Based High-Throughput Screening Identified Two Compounds that Enhance PINK1-Parkin Signaling. iScience 2020; 23:101048. [PMID: 32335362 PMCID: PMC7183160 DOI: 10.1016/j.isci.2020.101048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 12/21/2022] Open
Abstract
Early-onset Parkinson's disease-associated PINK1-Parkin signaling maintains mitochondrial health. Therapeutic approaches for enhancing PINK1-Parkin signaling present a potential strategy for treating various diseases caused by mitochondrial dysfunction. We report two chemical enhancers of PINK1-Parkin signaling, identified using a robust cell-based high-throughput screening system. These small molecules, T0466 and T0467, activate Parkin mitochondrial translocation in dopaminergic neurons and myoblasts at low doses that do not induce mitochondrial accumulation of PINK1. Moreover, both compounds reduce unfolded mitochondrial protein levels, presumably through enhanced PINK1-Parkin signaling. These molecules also mitigate the locomotion defect, reduced ATP production, and disturbed mitochondrial Ca2+ response in the muscles along with the mitochondrial aggregation in dopaminergic neurons through reduced PINK1 activity in Drosophila. Our results suggested that T0466 and T0467 may hold promise as therapeutic reagents in Parkinson's disease and related disorders.
Collapse
|
25
|
Wang L, Qi H, Tang Y, Shen HM. Post-translational Modifications of Key Machinery in the Control of Mitophagy. Trends Biochem Sci 2020; 45:58-75. [DOI: 10.1016/j.tibs.2019.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
|
26
|
Kadlecová A, Maková B, Artal-Sanz M, Strnad M, Voller J. The plant hormone kinetin in disease therapy and healthy aging. Ageing Res Rev 2019; 55:100958. [PMID: 31479763 DOI: 10.1016/j.arr.2019.100958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
It has been more than 60 years since the discovery of kinetin, the first known member of a group of plant hormones called cytokinins. In this review we summarize the health-promoting activity of kinetin in animal systems, ranging from cells cultured in vitro through invertebrates to mammals. Kinetin has been shown to modulate aging, to delay age-related physiological decline and to protect against some neurodegenerative diseases. We also review studies on its mechanism of action, as well as point out gaps in our current knowledge.
Collapse
Affiliation(s)
- Alena Kadlecová
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Barbara Maková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology, CISIC-JA-University Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
27
|
de Haas R, Heltzel LCMW, Tax D, van den Broek P, Steenbreker H, Verheij MMM, Russel FGM, Orr AL, Nakamura K, Smeitink JAM. To be or not to be pink(1): contradictory findings in an animal model for Parkinson's disease. Brain Commun 2019; 1:fcz016. [PMID: 31667474 PMCID: PMC6798789 DOI: 10.1093/braincomms/fcz016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
The PTEN-induced putative kinase 1 knockout rat (Pink1-/-) is marketed as an established model for Parkinson's disease, characterized by development of motor deficits and progressive degeneration of half the dopaminergic neurons in the substantia nigra pars compacta by 8 months of age. In this study, we address our concerns about the reproducibility of the Pink1-/- rat model. We evaluated behavioural function, number of substantia nigra dopaminergic neurons and extracellular striatal dopamine concentrations by in vivo microdialysis. Strikingly, we and others failed to observe any loss of dopaminergic neurons in 8-month-old male Pink1-/- rats. To understand this variability, we compared key experimental parameters from the different studies and provide explanations for contradictory findings. Although Pink1-/- rats developed behavioural deficits, these could not be attributed to nigrostriatal degeneration as there was no loss of dopaminergic neurons in the substantia nigra and no changes in neurotransmitter levels in the striatum. To maximize the benefit of Parkinson's disease research and limit the unnecessary use of laboratory animals, it is essential that the research community is aware of the limits of this animal model. Additional research is needed to identify reasons for inconsistency between Pink1-/- rat colonies and why degeneration in the substantia nigra is not consistent.
Collapse
Affiliation(s)
- Ria de Haas
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Correspondence to: Dr. Ria de Haas Department of Pediatrics Radboud University Medical Center PO Box 9101, 6500 HB Nijmegen The Netherlands E-mail:
| | - Lisa C M W Heltzel
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Denise Tax
- Central Animal Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra van den Broek
- Department of Pharmacology and Toxicology, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilbert Steenbreker
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adam L Orr
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Khondrion BV, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Correddu D, Leung IK. Targeting mRNA translation in Parkinson’s disease. Drug Discov Today 2019; 24:1295-1303. [DOI: 10.1016/j.drudis.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
|
29
|
Webb M, Sideris DP, Biddle M. Modulation of mitochondrial dysfunction for treatment of disease. Bioorg Med Chem Lett 2019; 29:1270-1277. [DOI: 10.1016/j.bmcl.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
30
|
Miller S, Muqit MMK. Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson's disease. Neurosci Lett 2019; 705:7-13. [PMID: 30995519 DOI: 10.1016/j.neulet.2019.04.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
Abstract
The discovery of rare familial monogenic forms of early-onset Parkinson's disease has led to the identification of a mitochondrial quality control process as a key player in this disease. Loss-of-function mutations in the genes encoding PINK1 or Parkin result in insufficient removal of dysfunctional mitochondria through autophagy, a process termed mitophagy. Understanding the mechanism of this process and the function of its two key players, PINK1 and Parkin, has led to the discovery of new therapeutic approaches. Small molecule activators of mitophagy, either activating PINK1 or Parkin directly or inhibiting Parkin's counterplayer, the ubiquitin-specific protease USP30, are in preclinical development. To enable clinical success of future small molecule mitophagy enhancers, biomarkers for mitochondrial integrity and mitophagy are being developed. Only a few years after the discovery of mitophagy deficits in Parkinson's disease, research of the underlying mechanisms, drug discovery of modulators for this mechanism and identification of biomarkers provide new avenues towards the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Silke Miller
- Neuroscience Department, Amgen Research, 360 Binney St., Cambridge, MA, 02142, USA.
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow St, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
31
|
Lambourne OA, Mehellou Y. Chemical Strategies for Activating PINK1, a Protein Kinase Mutated in Parkinson's Disease. Chembiochem 2018; 19:2433-2437. [PMID: 30248222 DOI: 10.1002/cbic.201800497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 12/20/2022]
Abstract
PINK1 is a ubiquitously expressed mitochondrial serine/threonine protein kinase that has emerged as a key player in mitochondrial quality control. This protein kinase came to prominence in the mid-2000s, when PINK1 mutations were found to cause early onset Parkinson's disease (PD). As most of the PD-related mutations occurred in the kinase domain and impaired PINK1's catalytic activity, it was suggested that small molecules that activated PINK1 would maintain mitochondrial quality control and, as a result, have neuroprotective effects. Working on this hypothesis, a few small-molecule PINK1 activators that offer critical insights and distinct approaches for activating PINK1 have been discovered. Herein, we briefly highlight the discovery of these small molecules and offer insight into the future development of small-molecule PINK1 activators as potential treatments for PD.
Collapse
Affiliation(s)
- Olivia A Lambourne
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, CF10 3NB, UK
| | - Youcef Mehellou
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, CF10 3NB, UK
| |
Collapse
|
32
|
Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochem Soc Trans 2018; 46:891-909. [PMID: 30026371 DOI: 10.1042/bst20170501] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes.
Collapse
|
33
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
34
|
Ammal Kaidery N, Thomas B. Current perspective of mitochondrial biology in Parkinson's disease. Neurochem Int 2018; 117:91-113. [PMID: 29550604 DOI: 10.1016/j.neuint.2018.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorder characterized by preferential loss of dopaminergic neurons of the substantia nigra pars compacta and the presence of Lewy bodies containing α-synuclein. Although the cause of PD remains elusive, remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. An explosion of discoveries during the past two decades has led to the identification of several autosomal dominant and recessive genes that cause familial forms of PD. The investigations of these familial PD gene products have shed considerable insights into the molecular pathogenesis of the more common sporadic PD. A growing body of evidence suggests that the etiology of PD is multifactorial and involves a complex interplay between genetic and environmental factors. Substantial evidence from human tissues, genetic and toxin-induced animal and cellular models indicates that mitochondrial dysfunction plays a central role in the pathophysiology of PD. Deficits in mitochondrial functions due to bioenergetics defects, alterations in the mitochondrial DNA, generation of reactive oxygen species, aberrant calcium homeostasis, and anomalies in mitochondrial dynamics and quality control are implicated in the underlying mechanisms of neuronal cell death in PD. In this review, we discuss how familial PD-linked genes and environmental factors interface the pathways regulating mitochondrial functions and thereby potentially converge both familial and sporadic PD at the level of mitochondrial integrity. We also provide an overview of the status of therapeutic strategies targeting mitochondrial dysfunction in PD. Unraveling potential pathways that influence mitochondrial homeostasis in PD may hold the key to therapeutic intervention for this debilitating neurodegenerative movement disorder.
Collapse
Affiliation(s)
| | - Bobby Thomas
- Departments of Pharmacology and Toxicology, Augusta, GA 30912, United States; Neurology Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
35
|
Chandra G, Shenoi RA, Anand R, Rajamma U, Mohanakumar KP. Reinforcing mitochondrial functions in aging brain: An insight into Parkinson's disease therapeutics. J Chem Neuroanat 2017; 95:29-42. [PMID: 29269015 DOI: 10.1016/j.jchemneu.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria, the powerhouse of the neural cells in the brain, are also the seat of certain essential gene signaling pathways that control neuronal functions. Deterioration of mitochondrial functions has been widely reported in normal aging as well as in a spectrum of age-associated neurological diseases, including Parkinson's disease (PD). Evidences accumulated in the recent past provide not only advanced information on the causes of mitochondrial bioenergetics defects and redox imbalance in PD brains, but also much insight into mitochondrial biogenesis, quality control of mitochondrial proteins, and genes, which regulate intra- and extra-mitochondrial signaling that control the general health of neural cells. The mitochondrial quality control machinery is affected in aging and especially in PD, thus affecting intraneuronal protein transport and degradation, which are primarily responsible for accumulation of misfolded proteins and mitochondrial damage in sporadic as well as familial PD. Essentially we considered in the first half of this review, mitochondria-based targets such as mitochondrial oxidative stress and mitochondrial quality control pathways in PD, relevance of mitochondrial DNA mutations, mitophagy, mitochondrial proteases, mitochondrial flux, and finally mitochondria-based therapies possible for PD. Therapeutic aspects are considered in the later half and mitochondria-targeted antioxidant therapy, mitophagy enhancers, mitochondrial biogenesis boasters, mitochondrial dynamics modulators, and gene-based therapeutic approaches are discussed. The present review is a critical assessment of this information to distinguish some exemplary mitochondrial therapeutic targets, and provides a utilitarian perception of some avenues for therapeutic designs on identified mitochondrial targets for PD, a very incapacitating disorder of the geriatric population, world over.
Collapse
Affiliation(s)
- G Chandra
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India.
| | - R A Shenoi
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - R Anand
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - U Rajamma
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| | - K P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O., Kottayam, Kerala - 686009, India
| |
Collapse
|
36
|
Misgeld T, Schwarz TL. Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture. Neuron 2017; 96:651-666. [PMID: 29096078 DOI: 10.1016/j.neuron.2017.09.055] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023]
Abstract
Neurons have more extended and complex shapes than other cells and consequently face a greater challenge in distributing and maintaining mitochondria throughout their arbors. Neurons can last a lifetime, but proteins turn over rapidly. Mitochondria, therefore, need constant rejuvenation no matter how far they are from the soma. Axonal transport of mitochondria and mitochondrial fission and fusion contribute to this rejuvenation, but local protein synthesis is also likely. Maintenance of a healthy mitochondrial population also requires the clearance of damaged proteins and organelles. This involves degradation of individual proteins, sequestration in mitochondria-derived vesicles, organelle degradation by mitophagy and macroautophagy, and in some cases transfer to glial cells. Both long-range transport and local processing are thus at work in achieving neuronal mitostasis-the maintenance of an appropriately distributed pool of healthy mitochondria for the duration of a neuron's life. Accordingly, defects in the processes that support mitostasis are significant contributors to neurodegenerative disorders.
Collapse
Affiliation(s)
- Thomas Misgeld
- Technical University of Munich, Institute of Neuronal Cell Biology, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany; Center of Integrated Protein Science, Munich, Germany.
| | - Thomas L Schwarz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Polster BM, Carrì MT, Beart PM. Mitochondria in the nervous system: From health to disease, Part I. Neurochem Int 2017; 109:1-4. [PMID: 28917714 DOI: 10.1016/j.neuint.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Part I of this Special Issue on "Mitochondria in the Nervous System: From Health to Disease", the editors bring together contributions from experts in brain mitochondrial research to provide an up-to-date overview of mitochondrial functioning in physiology and pathology. The issue provides cutting edge reviews on classical areas of mitochondrial biology that include energy substrate utilization, calcium handling, mitochondria-endoplasmic reticulum communication, and cell death regulation. Additional reviews and original research articles touch upon key mitochondrial defects seen across multiple neurodegenerative conditions, including fragmentation, loss of respiratory capacity, calcium overload, elevated reactive oxygen species generation, perturbed NAD+ metabolism, altered protein acetylation, and compromised mitophagy. Emerging links between the genetics of neurodegenerative disorders and disruption in mitochondrial function are discussed, and a new mouse model of Complex I deficiency is described. Finally, novel ways to rescue mitochondrial structure and function in acute and chronic brain injury are explored.
Collapse
Affiliation(s)
- Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Maria Teresa Carrì
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; Fondazione Santa Lucia IRCCS, Via Ardeatina 306, Rome, Italy
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|