1
|
Lu G, Huang R, Zeng S, Xing Y, Xie H, Du L. [ 1H- 13C]-NMR-Based Metabolic Kinetics Reveals Brain Neurochemical Alterations in Mice After Retinal Ischemia-Reperfusion Injury. Mol Neurobiol 2025; 62:5758-5773. [PMID: 39621232 DOI: 10.1007/s12035-024-04641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/22/2024] [Indexed: 03/29/2025]
Abstract
Retinal ischemia-reperfusion injury (RIRI) is a pathological process that occurs in various blinding eye diseases and is often accompanied by anxiety and depression. However, the underlying metabolic mechanism of mood disorders remains unclear. This study aimed to investigate the metabolic dynamics of the brain after RIRI. C57BL/6 J mice were used to establish the RIRI model and assessed after 1 and 7 days. Mood-related behaviors were examined using open-field, elevated plus-maze, and forced swimming tests. Retinal injury histology was assessed using retinal hematoxylin and eosin staining. Retinal apoptosis was measured via the TdT-mediated dUTP nick-end labeling staining. The 13C-labeled metabolite information for six brain regions of interest was obtained using the [1H-13C]-NMR technique. Retinal tissue damage and cell apoptosis in the retina were observed 1 and 7 days after RIRI. One day after RIRI, mice displayed anxiety- and depression-like behaviors, and multiple metabolites involved in the glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) and tricarboxylic acid (TCA) cycles exhibited reductions in all studied brain regions, with frontal cortex (FC) and temporal cortex (TC) being the most markedly altered. Metabolites and behavioral indicators nearly returned to normal after 7 days. Significant positive correlations between Gln/Glu-GABA and TCA cycle metabolites were observed in the RIRI brain. The results revealed that within a short period after RIRI, there was a reduction in brain metabolites and a disruption of the Gln/Glu-GABA and TCA cycles, which may contribute to mood disorders in mice.
Collapse
Affiliation(s)
- Guojing Lu
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Rong Huang
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Siyu Zeng
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Hang Xie
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Lei Du
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
2
|
Guo Y, Mao T, Fang Y, Wang H, Yu J, Zhu Y, Shen S, Zhou M, Li H, Hu Q. Comprehensive insights into potential roles of purinergic P2 receptors on diseases: Signaling pathways involved and potential therapeutics. J Adv Res 2025; 69:427-448. [PMID: 38565403 PMCID: PMC11954808 DOI: 10.1016/j.jare.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Purinergic P2 receptors, which can be divided into ionotropic P2X receptors and metabotropic P2Y receptors, mediate cellular signal transduction of purine or pyrimidine nucleoside triphosphates and diphosphate. Based on the wide expression of purinergic P2 receptors in tissues and organs, their significance in homeostatic maintenance, metabolism, nociceptive transmission, and other physiological processes is becoming increasingly evident, suggesting that targeting purinergic P2 receptors to regulate biological functions and signal transmission holds significant promise for disease treatment. AIM OF REVIEW This review highlights the detailed mechanisms by which purinergic P2 receptors engage in physiological and pathological progress, as well as providing prospective strategies for discovering clinical drug candidates. KEY SCIENTIFIC CONCEPTS OF REVIEW The purinergic P2 receptors regulate complex signaling and molecular mechanisms in nervous system, digestive system, immune system and as a result, controlling physical health states and disease progression. There has been a significant rise in research and development focused on purinergic P2 receptors, contributing to an increased number of drug candidates in clinical trials. A few influential pioneers have laid the foundation for advancements in the evaluation, development, and of novel purinergic P2 receptors modulators, including agonists, antagonists, pharmaceutical compositions and combination strategies, despite the different scaffolds of these drug candidates. These advancements hold great potential for improving therapeutic outcomes by specifically targeting purinergic P2 receptors.
Collapse
Affiliation(s)
- Yanshuo Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Jiayue Yu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Qinghua Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2025; 21:149-177. [PMID: 39046648 PMCID: PMC11958915 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Alves M, Gil B, Villegas-Salmerón J, Salari V, Martins-Ferreira R, Arribas Blázquez M, Menéndez Méndez A, Da Rosa Gerbatin R, Smith J, de Diego-Garcia L, Conte G, Sierra-Marquez J, Merino Serrais P, Mitra M, Fernandez Martin A, Wang Y, Kesavan J, Melia C, Parras A, Beamer E, Zimmer B, Heiland M, Cavanagh B, Parcianello Cipolat R, Morgan J, Teng X, Prehn JHM, Fabene PF, Bertini G, Artalejo AR, Ballestar E, Nicke A, Olivos-Oré LA, Connolly NMC, Henshall DC, Engel T. Opposing effects of the purinergic P2X7 receptor on seizures in neurons and microglia in male mice. Brain Behav Immun 2024; 120:121-140. [PMID: 38777288 DOI: 10.1016/j.bbi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood. METHODS Effects of P2X7R signaling on seizures and epilepsy were analyzed in induced seizure models using male mice including the kainic acid model of status epilepticus and pentylenetetrazole model and in male and female mice in a genetic model of Dravet syndrome. RNA sequencing was used to analyze P2X7R downstream signaling during seizures. To investigate the cell type-specific role of the P2X7R during seizures and epilepsy, we generated mice lacking exon 2 of the P2rx7 gene in either microglia (P2rx7:Cx3cr1-Cre) or neurons (P2rx7:Thy-1-Cre). To investigate the protective potential of overexpressing P2X7R in GABAergic interneurons, P2X7Rs were overexpressed using adeno-associated virus transduction under the mDlx promoter. RESULTS RNA sequencing of hippocampal tissue from wild-type and P2X7R knock-out mice identified both glial and neuronal genes, in particular genes involved in GABAergic signaling, under the control of the P2X7R following seizures. Mice with deleted P2rx7 in microglia displayed less severe acute seizures and developed a milder form of epilepsy, and microglia displayed an anti-inflammatory molecular profile. In contrast, mice lacking P2rx7 in neurons showed a more severe seizure phenotype when compared to epileptic wild-type mice. Analysis of single-cell expression data revealed that human P2RX7 expression is elevated in the hippocampus of patients with temporal lobe epilepsy in excitatory and inhibitory neurons. Functional studies determined that GABAergic interneurons display increased responses to P2X7R activation in experimental epilepsy. Finally, we show that viral transduction of P2X7R in GABAergic interneurons protects against evoked and spontaneous seizures in experimental temporal lobe epilepsy and in mice lacking Scn1a, a model of Dravet syndrome. CONCLUSIONS Our results suggest a dual and opposing action of P2X7R in epilepsy and suggest P2X7R overexpression in GABAergic interneurons as a novel therapeutic strategy for acquired and, possibly, genetic forms of epilepsy.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Beatriz Gil
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Javier Villegas-Salmerón
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; The SFI Centre for Research Training in Genomics Data Science, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Valentina Salari
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Immunogenetics Laboratory, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Autoimmunity and Neuroscience Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Marina Arribas Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Aida Menéndez Méndez
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odon, Spain
| | - Rogerio Da Rosa Gerbatin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Ocupharm Research Group, Faculty of Optics and Optometry, Complutense University of Madrid, Avda. Arcos de Jalon, 118 (28037), Madrid, Spain
| | - Giorgia Conte
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Juan Sierra-Marquez
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Paula Merino Serrais
- Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus Montegancedo S/N, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Meghma Mitra
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Ana Fernandez Martin
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Yitao Wang
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jaideep Kesavan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Ciara Melia
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; VivoArchitect, Route de la Corniche 5, 1066 Epalinges, Vaud, Switzerland
| | - Alberto Parras
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Béla Zimmer
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mona Heiland
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Rafael Parcianello Cipolat
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - James Morgan
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, UK
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy; Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, Faculty of Medicine, University of Verona, Verona, Italy; Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, Faculty of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Department of Neurosciences, Biomedicine and Movement Sciences, School of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
5
|
Thakku Sivakumar D, Jain K, Alfehaid N, Wang Y, Teng X, Fischer W, Engel T. The Purinergic P2X7 Receptor as a Target for Adjunctive Treatment for Drug-Refractory Epilepsy. Int J Mol Sci 2024; 25:6894. [PMID: 39000004 PMCID: PMC11241490 DOI: 10.3390/ijms25136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Epilepsy is one of the most common neurological diseases worldwide. Anti-seizure medications (ASMs) with anticonvulsants remain the mainstay of epilepsy treatment. Currently used ASMs are, however, ineffective to suppress seizures in about one third of all patients. Moreover, ASMs show no significant impact on the pathogenic mechanisms involved in epilepsy development or disease progression and may cause serious side-effects, highlighting the need for the identification of new drug targets for a more causal therapy. Compelling evidence has demonstrated a role for purinergic signalling, including the nucleotide adenosine 5'-triphosphate (ATP) during the generation of seizures and epilepsy. Consequently, drugs targeting specific ATP-gated purinergic receptors have been suggested as promising treatment options for epilepsy including the cationic P2X7 receptor (P27XR). P2X7R protein levels have been shown to be increased in the brain of experimental models of epilepsy and in the resected brain tissue of patients with epilepsy. Animal studies have provided evidence that P2X7R blocking can reduce the severity of acute seizures and the epileptic phenotype. The current review will provide a brief summary of recent key findings on P2X7R signalling during seizures and epilepsy focusing on the potential clinical use of treatments based on the P2X7R as an adjunctive therapeutic strategy for drug-refractory seizures and epilepsy.
Collapse
Affiliation(s)
- Divyeshz Thakku Sivakumar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Krishi Jain
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Noura Alfehaid
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Yitao Wang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | - Xinchen Teng
- International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, China
| | | | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| |
Collapse
|
6
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
7
|
Zhang B, Zhang P, L T, Cao Y, Chen T, Chen C, Zhang Z, Zhong Q. P2X7 Receptor in microglia contributes to propofol-induced unconsciousness by regulating synaptic plasticity in mice. Neuroscience 2023:S0306-4522(23)00223-3. [PMID: 37211083 DOI: 10.1016/j.neuroscience.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/16/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Propofol infusion is processed through the wake-sleep cycle in neural connections, and the ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and synaptic plasticity through its regulation of electric activity in the brain. Here, we explored the potential roles of P2X7R of microglia in propofol-induced unconsciousness. Propofol induced loss of the righting reflex in male C57BL/6 wild-type mice and increased spectral power of the slow wave and delta wave of the medial prefrontal cortex (mPFC), all of which were reversed with P2X7R antagonist A-740003 and strengthened with P2X7R agonist Bz-ATP. Propofol increased the P2X7R expression level and P2X7R immunoreactivity with microglia in the mPFC, induced mild synaptic injury and increased GABA release in the mPFC, and these changes were less severe when treated with A-740003 and were more obvious when treated with Bz-ATP. Electrophysiological approaches showed that propofol induced a decreased frequency of sEPSCs and an increased frequency of sIPSCs, A-740003 decrease frequency of sEPSCs and sIPSCs and Bz-ATP increase frequency of sEPSCs and sIPSCs under propofol anesthesia. These findings indicated that P2X7R in microglia regulates synaptic plasticity and may contribute to propofol-mediated unconsciousness.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Panpan Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071; Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Tingting L
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| |
Collapse
|
8
|
Li T, Gao Y, He M, Gui Z, Zhao B, Cao Y, Chen T, Zhu J, Wang J, Zhong Q, Zhang Z. P2X7 receptor-activated microglia in cortex is critical for sleep disorder under neuropathic pain. Front Neurosci 2023; 17:1095718. [PMID: 36816134 PMCID: PMC9936193 DOI: 10.3389/fnins.2023.1095718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain (NP) is associated with sleep disturbances, which may substantially influence the quality of life. Clinical and animal studies demonstrated that neurotransmitter is one of the main contributors to cause sleep disturbances induced by NP. Recently, it was reported that P2X7 receptors (P2X7R) are widely expressed in microglia, which serves crucial role in neuronal activity in the pain and sleep-awake cycle. In this study, we adopted the chronic constriction injury (CCI) model to establish the progress of chronic pain and investigated whether P2X7R of microglia in cortex played a critical role in sleep disturbance induced by NP. At electroencephalogram (EEG) level, sleep disturbance was observed in mice treated with CCI as they exhibited mechanical and thermal hypersensitivity, and inhibition of P2X7R ameliorated these changes. We showed a dramatic high level of P2X7R and Iba-1 co-expression in the cortical region, and the inhibition of P2X7R also adversely affected it. Furthermore, the power of LFPs in ventral posterior nucleus (VP) and primary somatosensory cortex (S1) which changed in the CCI group was adverse after the inhibition of P2X7R. Furthermore, inhibition of P2X7R also decreased the VP-S1 coherence which increased in CCI group. Nuclear magnetic resonance demonstrated inhibition of P2X7R decreased glutamate (Glu) levels in thalamic and cortical regions which were significantly increased in the CCI mice. Our findings provide evidence that NP has a critical effect on neuronal activity linked to sleep and may built up a new target for the development of sleep disturbances under chronic pain conditions.
Collapse
Affiliation(s)
- Tingting Li
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunling Gao
- Xiangyang Central Hospital, Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Mengying He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Bingchu Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,School of Computer Science, Wuhan University, Wuhan, Hubei, China
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Jie Wang
- Xiangyang Central Hospital, Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Qi Zhong,
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Zongze Zhang,
| |
Collapse
|
9
|
Guerra Leal B, Barros-Barbosa A, Ferreirinha F, Chaves J, Rangel R, Santos A, Carvalho C, Martins-Ferreira R, Samões R, Freitas J, Lopes J, Ramalheira J, Lobo MG, Martins da Silva A, Costa PP, Correia-de-Sá P. Mesial Temporal Lobe Epilepsy (MTLE) Drug-Refractoriness Is Associated With P2X7 Receptors Overexpression in the Human Hippocampus and Temporal Neocortex and May Be Predicted by Low Circulating Levels of miR-22. Front Cell Neurosci 2022; 16:910662. [PMID: 35875355 PMCID: PMC9300956 DOI: 10.3389/fncel.2022.910662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: ATP-gated ionotropic P2X7 receptors (P2X7R) actively participate in epilepsy and other neurological disorders. Neocortical nerve terminals of patients with Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) express higher P2X7R amounts. Overexpression of P2X7R bolsters ATP signals during seizures resulting in glial cell activation, cytokines production, and GABAergic rundown with unrestrained glutamatergic excitation. In a mouse model of status epilepticus, increased expression of P2X7R has been associated with the down-modulation of the non-coding micro RNA, miR-22. MiR levels are stable in biological fluids and normally reflect remote tissue production making them ideal disease biomarkers. Here, we compared P2X7R and miR-22 expression in epileptic brains and in the serum of patients with MTLE-HS, respectively.Methods: Quantitative RT-PCR was used to evaluate the expression of P2X7R in the hippocampus and anterior temporal lobe of 23 patients with MTLE-HS and 10 cadaveric controls. Confocal microscopy and Western blot analysis were performed to assess P2X7R protein amounts. MiR-22 expression was evaluated in cell-free sera of 40 MTLE-HS patients and 48 healthy controls.Results: Nerve terminals of the hippocampus and neocortical temporal lobe of MTLE-HS patients overexpress (p < 0.05) an 85 kDa P2X7R protein whereas the normally occurring 67 kDa receptor protein dominates in the brain of the cadaveric controls. Contrariwise, miR-22 serum levels are diminished (p < 0.001) in MTLE-HS patients compared to age-matched control blood donors, a situation that is more evident in patients requiring multiple (>3) anti-epileptic drug (AED) regimens.Conclusion: Data show that there is an inverse relationship between miR-22 serum levels and P2X7R expression in the hippocampus and neocortex of MTLE-HS patients, which implies that measuring serum miR-22 may be a clinical surrogate of P2X7R brain expression in the MTLE-HS. Moreover, the high area under the ROC curve (0.777; 95% CI 0.629–0.925; p = 0.001) suggests that low miR-22 serum levels may be a sensitive predictor of poor response to AEDs among MTLE-HS patients. Results also anticipate that targeting the miR-22/P2X7R axis may be a good strategy to develop newer AEDs.
Collapse
Affiliation(s)
- Bárbara Guerra Leal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, ICBAS-UP, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Aurora Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
| | - João Chaves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Serviço de Neurologia, Hospital de Santo António—Centro Hospitalar e Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Rui Rangel
- Serviço de Neurocirurgia, HSA-CHUP, Porto, Portugal
| | - Agostinho Santos
- Serviço de Patologia Forense, Instituto Nacional de Medicina Legal e Ciências Forenses—Delegação do Norte (INMLCF-DN), Porto, Portugal
| | - Cláudia Carvalho
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, ICBAS-UP, Porto, Portugal
| | - Ricardo Martins-Ferreira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, ICBAS-UP, Porto, Portugal
| | - Raquel Samões
- Serviço de Neurologia, Hospital de Santo António—Centro Hospitalar e Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Joel Freitas
- Serviço de Neurofisiologia, HSA-CHUP, Porto, Portugal
| | - João Lopes
- Serviço de Neurofisiologia, HSA-CHUP, Porto, Portugal
| | | | - Maria Graça Lobo
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
| | - António Martins da Silva
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Serviço de Neurofisiologia, HSA-CHUP, Porto, Portugal
| | - Paulo P. Costa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia—Center for Drug Discovery and Innovative Medicines (MedInUP), ICBAS-UP, Porto, Portugal
- *Correspondence: Paulo Correia-de-Sá orcid.org/0000-0002-6114-9189
| |
Collapse
|
10
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
11
|
Zhao YF, Tang Y, Illes P. Astrocytic and Oligodendrocytic P2X7 Receptors Determine Neuronal Functions in the CNS. Front Mol Neurosci 2021; 14:641570. [PMID: 33642994 PMCID: PMC7906075 DOI: 10.3389/fnmol.2021.641570] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
P2X7 receptors are members of the ATP-gated cationic channel family with a preferential localization at the microglial cells, the resident macrophages of the brain. However, these receptors are also present at neuroglia (astrocytes, oligodendrocytes) although at a considerably lower density. They mediate necrosis/apoptosis by the release of pro-inflammatory cytokines/chemokines, reactive oxygen species (ROS) as well as the excitotoxic (glio)transmitters glutamate and ATP. Besides mediating cell damage i.e., superimposed upon chronic neurodegenerative processes in Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, and amyotrophic lateral sclerosis, they may also participate in neuroglial signaling to neurons under conditions of high ATP concentrations during any other form of neuroinflammation/neurodegeneration. It is a pertinent open question whether P2X7Rs are localized on neurons, or whether only neuroglia/microglia possess this receptor-type causing indirect effects by releasing the above-mentioned signaling molecules. We suggest as based on molecular biology and functional evidence that neurons are devoid of P2X7Rs although the existence of neuronal P2X7Rs cannot be excluded with absolute certainty.
Collapse
Affiliation(s)
- Ya-Fei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Emerging Role of Microglia-Mediated Neuroinflammation in Epilepsy after Subarachnoid Hemorrhage. Mol Neurobiol 2021; 58:2780-2791. [PMID: 33501625 DOI: 10.1007/s12035-021-02288-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a common and serious complication of subarachnoid hemorrhage (SAH), giving rise to increased morbidity and mortality. It's difficult to identify patients at high risk of epilepsy and the application of anti-epileptic drugs (AEDs) following SAH is a controversial topic. Therefore, it's pressingly needed to gain a better understanding of the risk factors, underlying mechanisms and the optimization of therapeutic strategies for epilepsy after SAH. Neuroinflammation, characterized by microglial activation and the release of inflammatory cytokines, has drawn growing attention due to its influence on patients with epilepsy after SAH. In this review, we discuss the risk factors for epilepsy after SAH and emphasize the critical role of microglia. Then we discuss how various molecules arising from pathophysiological changes after SAH activate specific receptors such as TLR4, NLRP3, RAGE, P2X7R and initiate the downstream inflammatory pathways. Additionally, we focus on the significant responses implicated in epilepsy including neuronal excitotoxicity, the disruption of blood-brain barrier (BBB) and the change of immune responses. As the application of AEDs for seizure prophylaxis after SAH remains controversial, the regulation of neuroinflammation targeting the key pathological molecules could be a promising therapeutic method. While neuroinflammation appears to contribute to epilepsy after SAH, more comprehensive experiments on their relationships are needed.
Collapse
|
13
|
Meng F, Yao L. The role of inflammation in epileptogenesis. ACTA EPILEPTOLOGICA 2020; 2:15. [DOI: 10.1186/s42494-020-00024-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
AbstractEpilepsy is a chronic neurological disorder that has an extensive impact on a patient’s life. Accumulating evidence has suggested that inflammation participates in the progression of spontaneous and recurrent seizures. Pro-convulsant incidences can stimulate immune cells, augment the release of pro-inflammatory cytokines, elicit neuronal excitation as well as blood-brain barrier (BBB) dysfunction, and finally trigger the generation or recurrence of seizures. Understanding the pathogenic roles of inflammatory mediators, including inflammatory cytokines, cells, and BBB, in epileptogenesis will be beneficial for the treatment of epilepsy. In this systematic review, we performed a literature search on the PubMed database using the following keywords: “epilepsy” or “seizures” or “epileptogenesis”, and “immunity” or “inflammation” or “neuroinflammation” or “damage-associated molecular patterns” or “cytokines” or “chemokines” or “adhesion molecules” or “microglia” or “astrocyte” or “blood-brain barrier”. We summarized the classic inflammatory mediators and their pathogenic effects in the pathogenesis of epilepsy, based on the most recent findings from both human and animal model studies.
Collapse
|
14
|
Neiva R, Caulino-Rocha A, Ferreirinha F, Lobo MG, Correia-de-Sá P. Non-genomic Actions of Methylprednisolone Differentially Influence GABA and Glutamate Release From Isolated Nerve Terminals of the Rat Hippocampus. Front Mol Neurosci 2020; 13:146. [PMID: 32848604 PMCID: PMC7419606 DOI: 10.3389/fnmol.2020.00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Corticosteroids exert a dual role in eukaryotic cells through their action via (1) intracellular receptors (slow genomic responses), or (2) membrane-bound receptors (fast non-genomic responses). Highly vulnerable regions of the brain, like the hippocampus, express high amounts of corticosteroid receptors, yet their actions on ionic currents and neurotransmitters release are still undefined. Here, we investigated the effect of methylprednisolone (MP) on GABA and glutamate (Glu) release from isolated nerve terminals of the rat hippocampus. MP favored both spontaneous and depolarization-evoked [14C]Glu release from rat hippocampal nerve terminals, without affecting [3H]GABA outflow. Facilitation of [14C]Glu release by MP is mediated by a Na+-dependent Ca2+-independent non-genomic mechanism relying on the activation of membrane-bound glucocorticoid (GR) and mineralocorticoid (MR) receptors sensitive to their antagonists mifepristone and spironolactone, respectively. The involvement of Na+-dependent high-affinity EAAT transport reversal was inferred by blockage of MP-induced [14C]Glu release by DL-TBOA. Depolarization-evoked [3H]GABA release in the presence of MP was partially attenuated by the selective P2X7 receptor antagonist A-438079, but this compound did not affect the release of [14C]Glu. Data indicate that MP differentially affects GABA and glutamate release from rat hippocampal nerve terminals via fast non-genomic mechanisms putatively involving the activation of membrane-bound corticosteroid receptors. Facilitation of Glu release strengthen previous assumptions that MP may act as a cognitive enhancer in rats, while crosstalk with ATP-sensitive P2X7 receptors may promote a therapeutically desirable GABAergic inhibitory control during paroxysmal epileptic crisis that might be particularly relevant when extracellular Ca2+ levels decrease below the threshold required for transmitter release.
Collapse
Affiliation(s)
- Rafael Neiva
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Ana Caulino-Rocha
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Maria Graça Lobo
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| |
Collapse
|
15
|
Doǧan E, Aygün H, Arslan G, Rzayev E, Avcı B, Ayyıldız M, Ağar E. The Role of NMDA Receptors in the Effect of Purinergic P2X7 Receptor on Spontaneous Seizure Activity in WAG/Rij Rats With Genetic Absence Epilepsy. Front Neurosci 2020; 14:414. [PMID: 32435183 PMCID: PMC7218146 DOI: 10.3389/fnins.2020.00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are ATP sensitive cation channels and have been shown to be effective in various epilepsy models. Absence epilepsy is a type of idiopathic, generalized, non-convulsive epilepsy. Limited data exist on the role of P2X7Rs and no data has been reported regarding the interaction between P2X7Rs and glutamate receptor NMDA in absence epilepsy. Thus, this study was designed to investigate the role of P2X7 and NMDA receptors and their possible interaction in WAG/Rij rats with absence epilepsy. Permanent cannula and electrodes were placed on the skulls of the animals. After the healing period of the electrode and cannula implantation, ECoG recordings were obtained during 180 min before and after drug injections. P2X7R agonist BzATP, at doses of 50 μg and 100 μg (intracerebroventricular; i.c.v.) and antagonist A-438079, at doses of 20 μg and 40 μg (i.c.v.) were administered alone or prior to memantine (5 mg/kg, intraperitoneal; i.p.) injection. The total number (in every 20 min), the mean duration, and the amplitude of spike-wave discharges (SWDs) were calculated and compared. Rats were decapitated and the right and left hemisphere, cerebellum, and brainstem were separated for the measurements of the advanced oxidation protein product (AOPP), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxide (GPx), and glutathione reductase (GR). BzATP and A-438079 did not alter measured SWDs parameters, whereas memantine reduced them, which is considered anticonvulsant. BzATP did not alter the anticonvulsant effect of memantine, while A-438079 decreased the effect of memantine. Administration of BzATP increased the levels of SOD and GR in cerebrum hemispheres. A-438079 did not alter any of the biochemical parameters. Memantine reduced the levels of MDA, GSH, and GR while increased the level of CAT in the cerebrum. Administration of BzATP before memantine abolished the effect of memantine on MDA levels. The evidence from this study suggests that P2X7Rs does not directly play a role in the formation of absence seizures. P2X7Rs agonist, reduced the antioxidant activity of memantine whereas agonist of P2X7Rs reduced the anticonvulsant action of memantine, suggesting a partial interaction between P2X7 and NMDA receptors in absence epilepsy model.
Collapse
Affiliation(s)
- Elif Doǧan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Hatice Aygün
- Department of Physiology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emil Rzayev
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
16
|
Silva-Ramos M, Silva I, Faria M, Ferreirinha F, Correia-de-Sá P. Activation of Prejunctional P2x2/3 Heterotrimers by ATP Enhances the Cholinergic Tone in Obstructed Human Urinary Bladders. J Pharmacol Exp Ther 2020; 372:63-72. [PMID: 31636173 DOI: 10.1124/jpet.119.261610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate the role of ATP in cholinergic neurotransmission in the urinary bladder of control men and of patients obstructed as a result of benign prostatic hyperplasia (BPH). Human detrusor samples were collected from 41 patients who submitted to transvesical prostatectomy resulting from BPH and 26 male organ donors. The release of [3H]acetylcholine ([3H]ACh) was evoked by electrical field stimulation (10 Hz, 200 pulses) in urothelium-denuded detrusor strips. Myographic recordings were performed to test detrusor strip sensitivity to ACh and ATP. Nerve-evoked [3H]ACh release was 1.5-fold higher in detrusor strips from BPH patients compared with controls. This difference was abolished after desensitization of ionotropic P2X1-3 receptors with an ATP analog, α,β-methylene ATP (30 μM, applied for 15 minutes). TNP-ATP (10 nM, a preferential P2X2/3 antagonist) and A317491 (100 nM, a selective P2X3 antagonist) were about equipotent in decreasing nerve-evoked [3H]ACh release in control detrusor strips, but the selective P2X1 receptor antagonist NF023 (3 μM) was devoid of effect. The inhibitory effect of TNP-ATP (10 nM) increased from 27% ± 9% to 43% ± 6% in detrusor strips of BPH patients, but the effect of A317491 (100 nM) [3H]ACh release unaltered (20% ± 2% vs. 24% ± 4%). The amplitude of ACh (0.1-100 μM)-induced myographic recordings decreased, whereas sensitivity to ATP (0.01-3 mM) increased in detrusor strips from BPH patients. Besides the well characterized P2X1 receptor-mediated contractile activity of ATP in pathologic human bladders, we show here for the first time that cholinergic hyperactivity in the detrusor of BPH patients is facilitated by activation of ATP-sensitive P2X2/3 heterotrimers. SIGNIFICANCE STATEMENT: Bladder outlet obstruction often leads to detrusor overactivity and reduced bladder compliance in parallel to atropine-resistant increased purinergic tone. Our data show that P2X1 purinoceptors are overexpressed in the detrusor of patients with benign prostatic hyperplasia. Besides the P2X1 receptor-mediated detrusor contractions, ATP favors nerve-evoked acetylcholine release via the activation of prejunctional P2X2/3 excitatory receptors in these patients Thus, our hypothesis is that manipulation of the purinergic tone may be therapeutically useful to counteract cholinergic overstimulation in obstructed patients.
Collapse
Affiliation(s)
- M Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - M Faria
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| |
Collapse
|
17
|
P2X7 Receptor Signaling in Stress and Depression. Int J Mol Sci 2019; 20:ijms20112778. [PMID: 31174279 PMCID: PMC6600521 DOI: 10.3390/ijms20112778] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.
Collapse
|
18
|
Naviaux RK. Incomplete Healing as a Cause of Aging: The Role of Mitochondria and the Cell Danger Response. BIOLOGY 2019; 8:biology8020027. [PMID: 31083530 PMCID: PMC6627909 DOI: 10.3390/biology8020027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
The rate of biological aging varies cyclically and episodically in response to changing environmental conditions and the developmentally-controlled biological systems that sense and respond to those changes. Mitochondria and metabolism are fundamental regulators, and the cell is the fundamental unit of aging. However, aging occurs at all anatomical levels. At levels above the cell, aging in different tissues is qualitatively, quantitatively, and chronologically distinct. For example, the heart can age faster and differently than the kidney and vice versa. Two multicellular features of aging that are universal are: (1) a decrease in physiologic reserve capacity, and (2) a decline in the functional communication between cells and organ systems, leading to death. Decreases in reserve capacity and communication impose kinetic limits on the rate of healing after new injuries, resulting in dyssynchronous and incomplete healing. Exercise mitigates against these losses, but recovery times continue to increase with age. Reinjury before complete healing results in the stacking of incomplete cycles of healing. Developmentally delayed and arrested cells accumulate in the three stages of the cell danger response (CDR1, 2, and 3) that make up the healing cycle. Cells stuck in the CDR create physical and metabolic separation—buffer zones of reduced communication—between previously adjoining, synergistic, and metabolically interdependent cells. Mis-repairs and senescent cells accumulate, and repeated iterations of incomplete cycles of healing lead to progressively dysfunctional cellular mosaics in aging tissues. Metabolic cross-talk between mitochondria and the nucleus, and between neighboring and distant cells via signaling molecules called metabokines regulates the completeness of healing. Purinergic signaling and sphingolipids play key roles in this process. When viewed against the backdrop of the molecular features of the healing cycle, the incomplete healing model provides a new framework for understanding the hallmarks of aging and generates a number of testable hypotheses for new treatments.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, Pathology, University of California, San Diego School of Medicine, San Diego, CA 92103, USA.
| |
Collapse
|
19
|
Cholecystokinin Switches the Plasticity of GABA Synapses in the Dorsomedial Hypothalamus via Astrocytic ATP Release. J Neurosci 2018; 38:8515-8525. [PMID: 30108130 DOI: 10.1523/jneurosci.0569-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Whether synapses in appetite-regulatory brain regions undergo long-term changes in strength in response to satiety peptides is poorly understood. Here we show that following bursts of afferent activity, the neuromodulator and satiety peptide cholecystokinin (CCK) shifts the plasticity of GABA synapses in the dorsomedial nucleus of the hypothalamus of male Sprague Dawley rats from long-term depression to long-term potentiation (LTP). This LTP requires the activation of both type 2 CCK receptors and group 5 metabotropic glutamate receptors, resulting in a rise in astrocytic intracellular calcium and subsequent ATP release. ATP then acts on presynaptic P2X receptors to trigger a prolonged increase in GABA release. Our observations demonstrate a novel form of CCK-mediated plasticity that requires astrocytic ATP release, and could serve as a mechanism for appetite regulation.SIGNIFICANCE STATEMENT Satiety peptides, like cholecystokinin, play an important role in the central regulation of appetite, but their effect on synaptic plasticity is not well understood. The current data provide novel evidence that cholecystokinin shifts the plasticity from long-term depression to long-term potentiation at GABA synapses in the rat dorsomedial nucleus of the hypothalamus. We also demonstrate that this plasticity requires the concerted action of cholecystokinin and glutamate on astrocytes, triggering the release of the gliotransmitter ATP, which subsequently increases GABA release from neighboring inhibitory terminals. This research reveals a novel neuropeptide-induced switch in the direction of synaptic plasticity that requires astrocytes, and could represent a new mechanism by which cholecystokinin regulates appetite.
Collapse
|