1
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
2
|
Synaptosomes and Metamodulation of Receptors. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2417:99-111. [PMID: 35099794 DOI: 10.1007/978-1-0716-1916-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Synaptosomes are re-sealed pinched off nerve terminals that maintain all the main structural and functional features of the original structures and that are appropriate to study presynaptic events. Because of the discovery of new structural and molecular events that dictate the efficiency of transmitter release and of its receptor-mediated control in the central nervous system, the interest in this tissue preparation is continuously renewing. Most of these events have been already discussed in previous reviews, but few of them were not and deserve some comments since they could suggest new functional and possibly therapeutic considerations. Among them, the "metamodulation" of receptors represents an emerging aspect that dramatically increased the complexity of the presynaptic compartment, adding new insights to the role of presynaptic receptors as modulators of chemical synapses. Deciphering the mechanism of presynaptic metamodulation would permit indirect approaches to control the activity of presynaptic release-regulating receptors that are currently orphans of direct ligands/modulators, paving the road for the proposal of new therapeutic approaches for central neurological diseases.
Collapse
|
3
|
Olivero G, Vergassola M, Cisani F, Roggeri A, Pittaluga A. Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update. Curr Neuropharmacol 2021; 18:655-672. [PMID: 31775600 PMCID: PMC7457419 DOI: 10.2174/1570159x17666191127112339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
Wong HHW, Rannio S, Jones V, Thomazeau A, Sjöström PJ. NMDA receptors in axons: there's no coincidence. J Physiol 2020; 599:367-387. [PMID: 33141440 DOI: 10.1113/jp280059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
In the textbook view, N-methyl-d-aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short-term and long-term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse-type-specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - Sabine Rannio
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Victoria Jones
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Aurore Thomazeau
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - P Jesper Sjöström
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
5
|
Pittaluga A. Acute Functional Adaptations in Isolated Presynaptic Terminals Unveil Synaptosomal Learning and Memory. Int J Mol Sci 2019; 20:ijms20153641. [PMID: 31349638 PMCID: PMC6696074 DOI: 10.3390/ijms20153641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 01/19/2023] Open
Abstract
Synaptosomes are used to decipher the mechanisms involved in chemical transmission, since they permit highlighting the mechanisms of transmitter release and confirming whether the activation of presynaptic receptors/enzymes can modulate this event. In the last two decades, important progress in the field came from the observations that synaptosomes retain changes elicited by both “in vivo” and “in vitro” acute chemical stimulation. The novelty of these studies is the finding that these adaptations persist beyond the washout of the triggering drug, emerging subsequently as functional modifications of synaptosomal performances, including release efficiency. These findings support the conclusion that synaptosomes are plastic entities that respond dynamically to ambient stimulation, but also that they “learn and memorize” the functional adaptation triggered by acute exposure to chemical agents. This work aims at reviewing the results so far available concerning this form of synaptosomal learning, also highlighting the role of these acute chemical adaptations in pathological conditions.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DiFAR, Pharmacology and Toxicology Section, Viale Cembrano 4, 16148 and Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 University of Genoa, 16145 Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, 16145, Genova, Italy.
| |
Collapse
|