1
|
Liu X, Zhang G, Ling J. New Dawn of Edible and Medicinal Fungi Unlocking Central Nervous System Diseases. J Food Sci 2025; 90:e70230. [PMID: 40285455 DOI: 10.1111/1750-3841.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Central nervous system (CNS) diseases present unique clinical challenges characterized by insidious symptom onset, complex pathophysiology with incomplete mechanistic understanding, and substantial difficulties in therapeutic evaluation, thereby these inherent complexities create substantial obstacles for developing effective CNS diseases management strategies. Certain edible and medicinal fungi contain bioactive components, including polysaccharides, triterpenoids, alkaloids, and so on, which have therapeutic promise for CNS diseases. This paper reviews the current research advancements regarding the use of edible and medicinal fungi in the context of CNS diseases, highlighting their advantages as prospective therapeutic options and potential roles in both prevention and treatment. Through a comprehensive analysis of existing studies, the mechanisms and applications of these fungi are elucidated, providing valuable insights for the development of novel pharmaceuticals or functional foods aimed at combating CNS diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmacy, Shandong Medical College, Linyi, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Erichsen PA, Henriksen EE, Nielsen JE, Ejlerskov P, Simonsen AH, Toft A. Immunological Fluid Biomarkers in Frontotemporal Dementia: A Systematic Review. Biomolecules 2025; 15:473. [PMID: 40305176 PMCID: PMC12025258 DOI: 10.3390/biom15040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Dysregulated immune activation plays a key role in the pathogenesis of neurodegenerative diseases, including frontotemporal dementia (FTD). This study reviews immunological biomarkers associated with FTD and its subtypes. A systematic search of PubMed and Web of Science was conducted for studies published before 1 January 2025, focusing on immunological biomarkers in CSF or blood from FTD patients with comparisons to healthy or neurological controls. A total of 124 studies were included, involving 6686 FTD patients and 202 immune biomarkers. Key findings include elevated levels of GFAP and MCP1/CCL2 in both CSF and blood and consistently increased CHIT1 and YKL-40 in CSF. Complement proteins from the classical activation pathway emerged as promising targets. Distinct immune markers were found to differentiate FTD from Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), with GFAP, SPARC, and SPP1 varying between FTD and AD and IL-15, HERV-K, NOD2, and CHIT1 differing between FTD and ALS. A few markers, such as Galectin-3 and PGRN, distinguished FTD subtypes. Enrichment analysis highlighted IL-10 signaling and immune cell chemotaxis as potential pathways for further exploration. This study provides an overview of immunological biomarkers in FTD, emphasizing those most relevant for future research on immune dysregulation in FTD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Anders Toft
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Rigshospitalet, 2100 Copenhagen, Denmark; (P.A.E.); (E.E.H.); (J.E.N.); (P.E.); (A.H.S.)
| |
Collapse
|
3
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
4
|
Curry-Koski T, Curtin LP, Esfandiarei M, Thomas TC. Cerebral microvascular density, blood-brain barrier permeability, and support for neuroinflammation indicate early aging in a Marfan syndrome mouse model. Front Physiol 2025; 15:1457034. [PMID: 39959812 PMCID: PMC11825817 DOI: 10.3389/fphys.2024.1457034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/23/2024] [Indexed: 02/18/2025] Open
Abstract
Introduction Marfan Syndrome (MFS) is a connective tissue disorder due to mutations in fibrillin-1 (Fbn1), where a Fbn1 missense mutation (Fbn1 C1039G/+ ) can result in systemic increases in the bioavailability and signaling of transforming growth factor-β (TGF-β). In a well-established mouse model of MFS (Fbn1 C1041G/+ ), pre-mature aging of the aortic wall and the progression of aortic root aneurysm are observed by 6-month-of-age. TGF-β signaling has been implicated in cerebrovascular dysfunction, loss of blood-brain barrier (BBB) integrity, and age-related neuroinflammation. We have reported that pre-mature vascular aging in MFS mice could extend to cerebrovasculature, where peak blood flow velocity in the posterior cerebral artery (PCA) of 6-month-old (6M) MFS mice was reduced, similarly to 12-month-old (12M) control mice. Case studies of MFS patients have documented neurovascular manifestations, including intracranial aneurysms, stroke, arterial tortuosity, as well as headaches and migraines, with reported incidences of pain and chronic fatigue. Despite these significant clinical observations, investigation into cerebrovascular dysfunction and neuropathology in MFS remains limited. Methods Using 6M-control (C57BL/6) and 6M-MFS (Fbn1 C1041G/+ ) and healthy 12M-control male and female mice, we test the hypothesis that abnormal Fbn1 protein expression is associated with altered cerebral microvascular density, BBB permeability, and neuroinflammation in the PCA-perfused hippocampus, all indicative of a pre-mature aging brain phenotype. Glut1 immunostaining was used to quantify microvascular density, IgG staining to assess BBB permeability, and microglial counts to evaluate neuroinflammation. Results Using Glut1 staining, 6M-MFS mice and 12M-CTRL similarly present decreased microvascular density in the dentate gyrus (DG), cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) regions of the hippocampus. 6M-MFS mice exhibit increased BBB permeability in the DG and CA3 as evident by Immunoglobulin G (IgG) staining. No differences were detected between 6M and 12M-CTRL mice. 6M-MFS mice show a higher number of microglia in the hippocampus compared to age-matched control mice, a pattern resembling that of 12M-CTRL mice. Discussion This study represents the first known investigation into neuropathology in a mouse model of MFS and indicates that the pathophysiology underlying MFS leads to a systemic pre-mature aging phenotype. This study is crucial for identifying and understanding MFS-associated neurovascular and neurological abnormalities, underscoring the need for research aimed at improving the quality of life and managing pre-mature aging symptoms in MFS and related connective tissue disorders.
Collapse
Affiliation(s)
- Tala Curry-Koski
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
- Translational Neurotrauma and Neurochemistry Laboratory, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Liam P. Curtin
- College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Mitra Esfandiarei
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
- College of Graduate Studies, Midwestern University, Glendale, AZ, United States
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Theresa Currier Thomas
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
- Translational Neurotrauma and Neurochemistry Laboratory, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- College of Graduate Studies, Midwestern University, Glendale, AZ, United States
- Phoenix VA Healthcare System, Phoenix, AZ, United States
| |
Collapse
|
5
|
Wang J, Liu M, Zhao J, Hu P, Gao L, Tian S, Zhang J, Liu H, Xu X, He Z. Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease. Biol Res 2025; 58:7. [PMID: 39871377 PMCID: PMC11770960 DOI: 10.1186/s40659-025-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation. LncRNAs and oxidative stress are correlated during neurodegenerative processes: oxidative stress affects the expression of multiple lncRNAs, while lncRNAs regulate many genes involved in oxidative stress responses. Oxidative stress and lncRNAs also affect other processes associated with neurodegeneration, including mitochondrial dysfunction and increased neuroinflammation that lead to neuronal death. Therefore, modulating the levels of specific lncRNAs may alleviate pathological oxidative damage and have neuroprotective effects. This review discusses the general mechanisms of oxidative stress, pathological mechanism underlying the role of oxidative stress in the pathogenesis of PD, and teases out the mechanisms through which lncRNAs regulate oxidative stress during PD pathogenesis, as well as identifies the possible neuroprotective mechanisms of lncRNAs. Reviewing published studies will help us further understand the mechanisms underlying the role of lncRNAs in the oxidative stress process in PD and to identify potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Meitong Liu
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Pan Hu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lianbo Gao
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Shen Tian
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jin Zhang
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Huayan Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaoxue Xu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Zhenwei He
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
6
|
Zhao X, Yang X, Du C, Hao H, Liu S, Liu G, Zhang G, Fan K, Ma J. Up-regulated succinylation modifications induce a senescence phenotype in microglia by altering mitochondrial energy metabolism. J Neuroinflammation 2024; 21:296. [PMID: 39543710 PMCID: PMC11566524 DOI: 10.1186/s12974-024-03284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
The aging of the central nervous system(CNS) is a primary contributor to neurodegenerative diseases in older individuals and significantly impacts their quality of life. Neuroinflammation, characterized by activation of microglia(MG) and release of cytokines, is closely associated with the onset of these neurodegenerative diseases. The activated status of MG is modulated by specifically programmed metabolic changes under various conditions. Succinylation, a novel post-translational modification(PTM) mainly involved in regulating mitochondrial energy metabolism pathways, remains unknown in its role in MG activation and aging. In the present study, we found that succinylation levels were significantly increased both during aging and upon lipopolysaccharide-induced(LPS-induced) MG activation undergoing metabolic reprogramming. Up-regulated succinylation induced by sirtuin 5 knockdown(Sirt5 KD) in microglial cell line BV2 resulted in significant up-regulation of aging-related genes, accompanied by impaired mitochondrial adaptability and a shift towards glycolysis as a major metabolic pathway. Furthermore, after LPS treatment, Sirt5 KD BV2 cells exhibited increased generation of reactive oxygen species(ROS), accumulation of lipid droplets, and elevated levels of lipid peroxidation. By employing immunoprecipitation, introducing point mutation to critical succinylation sites, and conducting enzyme activity assays for succinate dehydrogenase(SDH) and trifunctional enzyme subunit alpha(ECHA), we demonstrated that succinylation plays a regulatory role in modulating the activities of these mitochondrial enzymes. Finally, down-regulation the succinylation levels achieved through administration of succinyl phosphonate(SP) led to amelioration of MG senescence in vitro and neuroinflammation in vivo. To our knowledge, our data provide preliminary evidence indicating that up-regulated succinylation modifications elicit a senescence phenotype in MG through alterations in energy metabolism. Moreover, these findings suggest that manipulation of succinylation levels may offer valuable insights into the treatment of aging-related neuroinflammation.
Collapse
Affiliation(s)
- Xinnan Zhao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaohan Yang
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
- Department of Morphology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Cong Du
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Huimin Hao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Shuang Liu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Gang Liu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Guangyin Zhang
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Kai Fan
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
7
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Curry-Koski T, Curtin L, Esfandiarei M, Currier TT. Cerebral Microvascular Density, Permeability of the Blood-Brain Barrier, and Neuroinflammatory Responses Indicate Early Aging Characteristics in a Marfan Syndrome Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601409. [PMID: 39005441 PMCID: PMC11244932 DOI: 10.1101/2024.06.30.601409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Marfan Syndrome (MFS) is a connective tissue disorder due to mutations in fibrillin-1 ( Fbn1 ), where a Fbn1 missense mutation ( Fbn1 C1039G/+ ) can result in systemic increases in the bioavailability and signaling of transforming growth factor-β (TGF-β). In a well-established mouse model of MFS ( Fbn1 C1041G/+ ), pre-mature aging of the aortic wall and the progression of aortic root aneurysm are observed by 6-months-of-age. TGF-β signaling has been implicated in cerebrovascular dysfunction, loss of blood-brain barrier (BBB) integrity, and age-related neuroinflammation. We have reported that pre-mature vascular aging in MFS mice could extend to cerebrovasculature, where peak blood flow velocity in the posterior cerebral artery (PCA) of 6-month-old (6M) MFS mice was reduced, similarly to 12-month-old (12M) control mice. Case studies of MFS patients have documented neurovascular manifestations, including intracranial aneurysms, stroke, arterial tortuosity, as well as headaches and migraines, with reported incidence of pain and chronic fatigue. Despite these significant clinical observations, investigation into cerebrovascular dysfunction and neuropathology in MFS remains limited. Using 6M-control ( C57BL/6 ) and 6M-MFS ( Fbn1 C1041G/+ ) and healthy 12M-control male and female mice, we test the hypothesis that abnormal Fbn1 protein expression is associated with altered cerebral microvascular density, BBB permeability, and neuroinflammation in the PCA-perfused hippocampus, all indicative of a pre-mature aging brain phenotype. Using Glut1 staining, 6M-MFS mice and 12M-CTRL similarly present decreased microvascular density in the dentate gyrus (DG), cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) regions of the hippocampus. 6M-MFS mice exhibit increased BBB permeability in the DG, CA1, and CA3 as evident by Immunoglobulin G (IgG) staining, which was more comparable to 12M-CTRL mice. 6M-MFS mice show a higher number of microglia in the hippocampus compared to age-matched control mice, a pattern resembling that of 12M-CTRL mice. This study represents the first known investigation into neuropathology in a mouse model of MFS and indicates that the pathophysiology underlying MFS leads to a systemic pre-mature aging phenotype. This study is crucial for identifying and understanding MFS-associated neurovascular and neurological abnormalities, underscoring the need for research aimed at improving the quality of life and managing pre-mature aging symptoms in MFS and related connective tissue disorders.
Collapse
|
10
|
Niu J, Jiao Q, Cui D, Dou R, Guo Y, Yu G, Zhang X, Sun F, Qiu J, Dong L, Cao W. Age-associated cortical similarity networks correlate with cell type-specific transcriptional signatures. Cereb Cortex 2024; 34:bhad454. [PMID: 38037843 DOI: 10.1093/cercor/bhad454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Human brain structure shows heterogeneous patterns of change across adults aging and is associated with cognition. However, the relationship between cortical structural changes during aging and gene transcription signatures remains unclear. Here, using structural magnetic resonance imaging data of two separate cohorts of healthy participants from the Cambridge Centre for Aging and Neuroscience (n = 454, 18-87 years) and Dallas Lifespan Brain Study (n = 304, 20-89 years) and a transcriptome dataset, we investigated the link between cortical morphometric similarity network and brain-wide gene transcription. In two cohorts, we found reproducible morphometric similarity network change patterns of decreased morphological similarity with age in cognitive related areas (mainly located in superior frontal and temporal cortices), and increased morphological similarity in sensorimotor related areas (postcentral and lateral occipital cortices). Changes in morphometric similarity network showed significant spatial correlation with the expression of age-related genes that enriched to synaptic-related biological processes, synaptic abnormalities likely accounting for cognitive decline. Transcription changes in astrocytes, microglia, and neuronal cells interpreted most of the age-related morphometric similarity network changes, which suggest potential intervention and therapeutic targets for cognitive decline. Taken together, by linking gene transcription signatures to cortical morphometric similarity network, our findings might provide molecular and cellular substrates for cortical structural changes related to cognitive decline across adults aging.
Collapse
Affiliation(s)
- Jinpeng Niu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dong Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Ruhai Dou
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yongxin Guo
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Guanghui Yu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xiaotong Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Fengzhu Sun
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weifang Cao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
11
|
Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM. Inflammation as common link to progressive neurological diseases. Arch Toxicol 2024; 98:95-119. [PMID: 37964100 PMCID: PMC10761431 DOI: 10.1007/s00204-023-03628-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
12
|
Huang YN, Greig NH, Huang PS, Chiang YH, Hoffer A, Yang CH, Tweedie D, Chen Y, Ou JC, Wang JY. Pomalidomide Improves Motor Behavioral Deficits and Protects Cerebral Cortex and Striatum Against Neurodegeneration Through a Reduction of Oxidative/Nitrosative Damages and Neuroinflammation After Traumatic Brain Injury. Cell Transplant 2024; 33:9636897241237049. [PMID: 38483119 PMCID: PMC10943757 DOI: 10.1177/09636897241237049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/18/2024] Open
Abstract
Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Pen-Sen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Alan Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hao Yang
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ying Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei
| | - Ju-Chi Ou
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| |
Collapse
|
13
|
Chen Y, Dong J, Gong L, Hong Y, Hu C, Bao Y, Chen H, Liu L, Huang L, Zhao Y, Zhang J, He S, Yan X, Wu X, Cui W. Fucoxanthin, a marine derived carotenoid, attenuates surgery-induced cognitive impairments via activating Akt and ERK pathways in aged mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155043. [PMID: 37639810 DOI: 10.1016/j.phymed.2023.155043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Fucoxanthin is the most abundant marine carotenoid derived from brown seaweeds, possesses antioxidant, anti-inflammatory, and neuroprotective properties, and might be benefit for the treatment of neurological disorders. Post-operative cognitive dysfunction (POCD) is a neurological symptom with learning and memory impairments, mainly affecting the elderly after surgery. However, there is no effective treatments for this symptom. PURPOSES In this study, we evaluated the neuroprotective effects of fucoxanthin against POCD in aged mice after surgery. STUDY DESIGN AND METHODS The animal model of POCD was established in 12 - 14 month aged mice with a laparotomy. Curcumin was used as a positive control. The beneficial effects of fucoxanthin on POCD was analyzed by behavioral tests. Pro-inflammatory cytokines were measured by Enzyme-linked Immunosorbent Assay (ELISA). And the expressions of key proteins in the Akt and ERK signaling pathways were analyzed by Western blotting analysis. The morphology of microglial cells and astrocytes was explored by immunohistochemical staining. The activity of antioxidant superoxide dismutase (SOD) and catalase (CAT) were measured by anti-oxidative enzyme activity assays. RESULTS Fucoxanthin at 100 - 200 mg/kg significantly attenuated cognitive dysfunction, with a similar potency as curcumin, in aged mice after surgery. In addition, fucoxanthin and curcumin significantly increased the expression of pAkt, prevented the activation of microglial cells and astrocytes, and inhibited the secretion of pro-inflammatory interleukin-1β (IL - 1β) and tumor necrosis factor-α (TNF-α). Furthermore, fucoxanthin and curcumin elevated the ERK pathway and potently increased the activity of antioxidant enzymes. Most importantly, U0126, an inhibitor of the ERK pathway, and wortmannin, an inhibitor of the Akt pathway, significantly abolished the cognitive-enhancing effects, as well as the inhibition of neuroinflammation and the reduction of oxidative stress, induced by fucoxanthin in aged mice after surgery. CONCLUSION Fucoxanthin might be developed as a functional food or drug for the treatment of POCD by inhibiting neuroinflammation and enhancing antioxidant capacity via the activation of the Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Yuan Chen
- The First Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jiahui Dong
- The First Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Luyun Gong
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yirui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Chenwei Hu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yongjie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Huiyue Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lin Liu
- Ningbo Women & Children Hospital, Ningbo 315012, China
| | - Ling Huang
- Ningbo Kangning Hospital, Ningbo 315201, China
| | | | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xiang Wu
- The First Hospital of Ningbo University, Ningbo 315010, China.
| | - Wei Cui
- The First Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; Ningbo Kangning Hospital, Ningbo 315201, China.
| |
Collapse
|
14
|
Zhang F, Liu M, Tuo J, Zhang L, Zhang J, Yu C, Xu Z. Levodopa-induced dyskinesia: interplay between the N-methyl-D-aspartic acid receptor and neuroinflammation. Front Immunol 2023; 14:1253273. [PMID: 37860013 PMCID: PMC10582719 DOI: 10.3389/fimmu.2023.1253273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of middle-aged and elderly people, clinically characterized by resting tremor, myotonia, reduced movement, and impaired postural balance. Clinically, patients with PD are often administered levodopa (L-DOPA) to improve their symptoms. However, after years of L-DOPA treatment, most patients experience complications of varying severity, including the "on-off phenomenon", decreased efficacy, and levodopa-induced dyskinesia (LID). The development of LID can seriously affect the quality of life of patients, but its pathogenesis is unclear and effective treatments are lacking. Glutamic acid (Glu)-mediated changes in synaptic plasticity play a major role in LID. The N-methyl-D-aspartic acid receptor (NMDAR), an ionotropic glutamate receptor, is closely associated with synaptic plasticity, and neuroinflammation can modulate NMDAR activation or expression; in addition, neuroinflammation may be involved in the development of LID. However, it is not clear whether NMDA receptors are co-regulated with neuroinflammation during LID formation. Here we review how neuroinflammation mediates the development of LID through the regulation of NMDA receptors, and assess whether common anti-inflammatory drugs and NMDA receptor antagonists may be able to mitigate the development of LID through the regulation of central neuroinflammation, thereby providing a new theoretical basis for finding new therapeutic targets for LID.
Collapse
Affiliation(s)
- Fanshi Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
15
|
Gaspar-Silva F, Trigo D, Magalhaes J. Ageing in the brain: mechanisms and rejuvenating strategies. Cell Mol Life Sci 2023; 80:190. [PMID: 37354261 DOI: 10.1007/s00018-023-04832-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Ageing is characterized by the progressive loss of cellular homeostasis, leading to an overall decline of the organism's fitness. In the brain, ageing is highly associated with cognitive decline and neurodegenerative diseases. With the rise in life expectancy, characterizing the brain ageing process becomes fundamental for developing therapeutic interventions against the increased incidence of age-related neurodegenerative diseases and to aim for an increase in human life span and, more importantly, health span. In this review, we start by introducing the molecular/cellular hallmarks associated with brain ageing and their impact on brain cell populations. Subsequently, we assess emerging evidence on how systemic ageing translates into brain ageing. Finally, we revisit the mainstream and the novel rejuvenating strategies, discussing the most successful ones in delaying brain ageing and related diseases.
Collapse
Affiliation(s)
- Filipa Gaspar-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Diogo Trigo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Magalhaes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
16
|
Martin M, Pusceddu MM, Teichenné J, Negra T, Connolly A, Escoté X, Torrell Galceran H, Cereto Massagué A, Samarra Mestre I, Del Pino Rius A, Romero-Gimenez J, Egea C, Alcaide-Hidalgo JM, Del Bas JM. Preventive Treatment with Astaxanthin Microencapsulated with Spirulina Powder, Administered in a Dose Range Equivalent to Human Consumption, Prevents LPS-Induced Cognitive Impairment in Rats. Nutrients 2023; 15:2854. [PMID: 37447181 DOI: 10.3390/nu15132854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cognitive alterations are a common feature associated with many neurodegenerative diseases and are considered a major health concern worldwide. Cognitive alterations are triggered by microglia activation and oxidative/inflammatory processes in specific areas of the central nervous system. Consumption of bioactive compounds with antioxidative and anti-inflammatory effects, such as astaxanthin and spirulina, can help in preventing the development of these pathologies. In this study, we have investigated the potential beneficial neuroprotective effects of a low dose of astaxanthin (ASX) microencapsulated within spirulina (ASXSP) in female rats to prevent the cognitive deficits associated with the administration of LPS. Alterations in memory processing were evaluated in the Y-Maze and Morris Water Maze (MWM) paradigms. Changes in microglia activation and in gut microbiota content were also investigated. Our results demonstrate that LPS modified long-term memory in the MWM and increased microglia activation in the hippocampus and prefrontal cortex. Preventive treatment with ASXSP ameliorated LPS-cognitive alterations and microglia activation in both brain regions. Moreover, ASXSP was able to partially revert LPS-induced gut dysbiosis. Our results demonstrate the neuroprotective benefits of ASX when microencapsulated with spirulina acting through different mechanisms, including antioxidant, anti-inflammatory and, probably, prebiotic actions.
Collapse
Affiliation(s)
- Miquel Martin
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Matteo M Pusceddu
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Joan Teichenné
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | | | | | - Xavier Escoté
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Helena Torrell Galceran
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Adrià Cereto Massagué
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Iris Samarra Mestre
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Antoni Del Pino Rius
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Jordi Romero-Gimenez
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Cristina Egea
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | | | - Josep Maria Del Bas
- Eurecat-Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
17
|
Su P, Zhang J, Wu J, Chen H, Luo W, Hu M. TREM2 expression on the microglia resolved lead exposure-induced neuroinflammation by promoting anti-inflammatory activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115058. [PMID: 37245276 DOI: 10.1016/j.ecoenv.2023.115058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Neurotoxicity caused by environmental lead (Pb) pollution is a worldwide public health concern, and developing a therapeutic strategy against Pb-induced neurotoxicity is an important area in the current research. Our prior research has demonstrated the significant involvement of microglia-mediated inflammatory responses in the manifestation of Pb-induced neurotoxicity. Additionally, the suppression of proinflammatory mediator activity significantly mitigated the toxic effects associated with Pb exposure. Recent studies have highlighted the critical role of the triggering receptor expressed on myeloid cells 2 (TREM2) in the pathogenesis of neurodegenerative disorders. TREM2 exerted protective effects on inflammation, but whether TREM2 is involved in Pb-induced neuroinflammation is poorly understood. In the present study, cell culture experiments and animal models were designed to investigate the role of TREM2 in Pb's neuroinflammation. We examined the impact of pro- and anti-inflammatory cytokines involved in Pb-induced neuroinflammation. Flow cytometry and microscopy techniques were applied to detect microglia phagocytosis and migration ability. Our results showed that Pb treatment significantly downregulated TREM2 expression and altered the localization of TREM2 expression in microglia. The protein expression of TREM2 was restored, and the inflammatory responses provoked by Pb exposure were ameliorated upon the overexpression of TREM2. Furthermore, the phagocytosis and migratory capabilities of microglia, which were impaired due to Pb exposure, were alleviated by TREM2 overexpression. Our in vitro findings were corroborated in vivo, demonstrating that TREM2 regulates the anti-inflammatory functions of microglia, thereby mitigating Pb-induced neuroinflammation. Our results provide insights into the detailed mechanism by which TREM2 alleviates Pb-induced neuroinflammation and suggest that activating the anti-inflammatory functions of TREM2 may represent a potential therapeutic strategy against environmental Pb-induced neurotoxicity.
Collapse
Affiliation(s)
- Peng Su
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, No.169, Changle West Road, Xi'an 710032, China.
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, No.169, Changle West Road, Xi'an 710032, China
| | - Jinxia Wu
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, No.169, Changle West Road, Xi'an 710032, China
| | - Honggang Chen
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, No.169, Changle West Road, Xi'an 710032, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, No.169, Changle West Road, Xi'an 710032, China
| | - Min Hu
- College of Urban and Environmental Sciences, Northwest University, No. 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Xi'an 710075, China.
| |
Collapse
|
18
|
Pantiya P, Thonusin C, Ongnok B, Chunchai T, Kongkaew A, Nawara W, Arunsak B, Chattipakorn N, Chattipakorn SC. Chronic D-Galactose Administration Induces Natural Aging Characteristics, in Rat's Brain and Heart. Toxicology 2023; 492:153553. [PMID: 37225035 DOI: 10.1016/j.tox.2023.153553] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
We aimed to investigate the effect of chronic D-galactose exposure on the mimicking of natural aging processes based upon the hallmarks of aging. Seven-week-old male Wistar rats (n = 12) were randomly assigned to receive either normal saline solution as a vehicle (n = 6) or 150mg/kg/day of D-galactose subcutaneously for 28 weeks. Seventeen-month-old rats (n = 6) were also included as the chronologically aged controls. At the end of week 28 of the experiment (when the rats reach 35 weeks old and 24 months old), all rats were sacrificed for brain and heart collection. Our results showed that chronic D-galactose exposure mimicked natural aging characteristics of the brain and the heart in terms of deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, and functional impairment. All of which highlight the potential of D-galactose as a substance for inducing brain and cardiac aging in animal experiments. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
19
|
Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 2023; 290:1326-1339. [PMID: 34873840 PMCID: PMC9167891 DOI: 10.1111/febs.16315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.
Collapse
Affiliation(s)
- Pei Y Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Taylor L McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
N-acetyl-aspartate and Myo-inositol as Markers of White Matter Microstructural Organization in Mild Cognitive Impairment: Evidence from a DTI- 1H-MRS Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13040654. [PMID: 36832141 PMCID: PMC9955118 DOI: 10.3390/diagnostics13040654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
We implemented a multimodal approach to examine associations between structural and neurochemical changes that could signify neurodegenerative processes related to mild cognitive impairment (MCI). Fifty-nine older adults (60-85 years; 22 MCI) underwent whole-brain structural 3T MRI (T1W, T2W, DTI) and proton magnetic resonance spectroscopy (1H-MRS). The regions of interest (ROIs) for 1H-MRS measurements were the dorsal posterior cingulate cortex, left hippocampal cortex, left medial temporal cortex, left primary sensorimotor cortex, and right dorsolateral prefrontal cortex. The findings revealed that subjects in the MCI group showed moderate to strong positive associations between the total N-acetylaspartate to total creatine and the total N-acetylaspartate to myo-inositol ratios in the hippocampus and dorsal posterior cingulate cortex and fractional anisotropy (FA) of WM tracts crossing these regions-specifically, the left temporal tapetum, right corona radiata, and right posterior cingulate gyri. In addition, negative associations between the myo-inositol to total creatine ratio and FA of the left temporal tapetum and right posterior cingulate gyri were observed. These observations suggest that the biochemical integrity of the hippocampus and cingulate cortex is associated with a microstructural organization of ipsilateral WM tracts originating in the hippocampus. Specifically, elevated myo-inositol might be an underlying mechanism for decreased connectivity between the hippocampus and the prefrontal/cingulate cortex in MCI.
Collapse
|
21
|
Li N, Deng M, Hu G, Li N, Yuan H, Zhou Y. New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer's Disease. Biomolecules 2022; 12:1722. [PMID: 36421736 PMCID: PMC9687453 DOI: 10.3390/biom12111722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive and irreversible neurodegeneration characterized by the impairment of memory and cognition. Despite years of studies, no effective treatment and prevention strategies are available yet. Identifying new AD therapeutic targets is crucial for better elucidating the pathogenesis and establishing a valid treatment of AD. Growing evidence suggests that microglia play a critical role in AD. Microglia are resident macrophages in the central nervous system (CNS), and their core properties supporting main biological functions include surveillance, phagocytosis, and the release of soluble factors. Activated microglia not only directly mediate the central immune response, but also participate in the pathological changes of AD, including amyloid-beta (Aβ) aggregation, tau protein phosphorylation, synaptic dissection, neuron loss, memory function decline, etc. Based on these recent findings, we provide a new framework to summarize the role of microglia in AD memory impairment. This evidence suggests that microglia have the potential to become new targets for AD therapy.
Collapse
Affiliation(s)
- Na Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Medicine, Qingdao Binhai University, Qingdao 266555, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| |
Collapse
|
22
|
Yan Y, Su J, Zhang Z. The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cell Mol Neurobiol 2022; 42:2147-2156. [PMID: 34117967 PMCID: PMC11421623 DOI: 10.1007/s10571-021-01115-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
There has been an increase in the incidence of chronic neurodegenerative disorders of the central nervous system, including Alzheimer's and Parkinson's diseases, over the recent years mostly due to the rise in the number of elderly individuals. In addition, various neurodegenerative disorders are related to imbalances in the CXCL12/CXCR4/ACKR3 response axis. Notably, the CXC Chemokine Ligand 12 (CXCL12) is essential for the development of the central nervous system. Moreover, the expression and distribution of CXCL12 and its receptors are associated with the aggravation or alleviation of symptoms of neurodegenerative disorders. Therefore, the current review sought to highlight the specific functions of CXCL12 and its receptors in various neurodegenerative disorders, in order to provide new insights for future research.
Collapse
Affiliation(s)
- Yudie Yan
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China
| | - Jingtong Su
- Jinzhou Medical University, Liaoning Province, Jinzhou City, People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China.
| |
Collapse
|
23
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
24
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
25
|
Leite ADOF, Bento Torres Neto J, dos Reis RR, Sobral LL, de Souza ACP, Trévia N, de Oliveira RB, Lins NADA, Diniz DG, Diniz JAP, Vasconcelos PFDC, Anthony DC, Brites D, Picanço Diniz CW. Unwanted Exacerbation of the Immune Response in Neurodegenerative Disease: A Time to Review the Impact. Front Cell Neurosci 2021; 15:749595. [PMID: 34744633 PMCID: PMC8570167 DOI: 10.3389/fncel.2021.749595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic imposed a series of behavioral changes that resulted in increased social isolation and a more sedentary life for many across all age groups, but, above all, for the elderly population who are the most vulnerable to infections and chronic neurodegenerative diseases. Systemic inflammatory responses are known to accelerate neurodegenerative disease progression, which leads to permanent damage, loss of brain function, and the loss of autonomy for many aged people. During the COVID-19 pandemic, a spectrum of inflammatory responses was generated in affected individuals, and it is expected that the elderly patients with chronic neurodegenerative diseases who survived SARSCoV-2 infection, it will be found, sooner or later, that there is a worsening of their neurodegenerative conditions. Using mouse prion disease as a model for chronic neurodegeneration, we review the effects of social isolation, sedentary living, and viral infection on the disease progression with a focus on sickness behavior and on the responses of microglia and astrocytes. Focusing on aging, we discuss the cellular and molecular mechanisms related to immunosenescence in chronic neurodegenerative diseases and how infections may accelerate their progression.
Collapse
Affiliation(s)
- Amanda de Oliveira Ferreira Leite
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luciane Lobato Sobral
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Aline Cristine Passos de Souza
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nonata Trévia
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Roseane Borner de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nara Alves de Almeida Lins
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | | | | | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
26
|
Dual Roles of Microglia in the Basal Ganglia in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22083907. [PMID: 33918947 PMCID: PMC8070536 DOI: 10.3390/ijms22083907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing age of the population, the incidence of Parkinson’s disease (PD) has increased exponentially. The development of novel therapeutic interventions requires an understanding of the involvement of senescent brain cells in the pathogenesis of PD. In this review, we highlight the roles played by microglia in the basal ganglia in the pathophysiological processes of PD. In PD, dopaminergic (DAergic) neuronal degeneration in the substantia nigra pars compacta (SNc) activates the microglia, which then promote DAergic neuronal degeneration by releasing potentially neurotoxic factors, including nitric oxide, cytokines, and reactive oxygen species. On the other hand, microglia are also activated in the basal ganglia outputs (the substantia nigra pars reticulata and the globus pallidus) in response to excess glutamate released from hyperactive subthalamic nuclei-derived synapses. The activated microglia then eliminate the hyperactive glutamatergic synapses. Synapse elimination may be the mechanism underlying the compensation that masks the appearance of PD symptoms despite substantial DAergic neuronal loss. Microglial senescence may correlate with their enhanced neurotoxicity in the SNc and the reduced compensatory actions in the basal ganglia outputs. The dual roles of microglia in different basal ganglia regions make it difficult to develop interventions targeting microglia for PD treatment.
Collapse
|