1
|
Salman A, Radwan AF, Shaker OG, A A, Sayed GA. A comparison of the expression patterns and diagnostic capability of the ncRNAs NEAT1 and miR-34a in non-obstructive azoospermia and severe oligospermia. Hum Genomics 2025; 19:35. [PMID: 40165339 PMCID: PMC11959825 DOI: 10.1186/s40246-025-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Infertility is a major global health problem, affecting 8-12% of couples worldwide, with male causes contributing to approximately 50% of cases. Notably, around 15% of infertile men are azoospermic. Consequently, there is a critical necessity to find noninvasive biomarkers to help in diagnosing and assessing the susceptibility of patients with various infertility disorders. This study is designed to determine the roles of NEAT1 and miR-34a as diagnostic and susceptibility biomarkers for non-obstructive azoospermia and severe oligospermia. The interactions between these non-coding RNA (ncRNAs) were explored, along with their correlations to hormonal profiles and clinical parameters like sperm count and motility. The potential of serum NEAT1 and miR-34a as diagnostic biomarkers for these conditions was explored. The study included 100 participants: 40 non-obstructive azoospermia patients, 40 severe oligospermia patients, and 20 healthy controls. Quantitative real-time PCR and transcriptomics-based bioinformatics tools were employed to explore the co-expression networks and molecular interactions of NEAT1, miR-34a, SIRT1, and their associated hormonal and genetic pathways. Results indicated that NEAT1 was significantly downregulated in severe oligospermia patients, while its levels in non-obstructive azoospermia patients did not differ significantly from healthy controls. Furthermore, serum miR-34a expression was considerably upregulated in both patient groups compared to controls. This study highlights the promise of serum NEAT1 and miR-34a as diagnostic markers for non-obstructive azoospermia and severe oligospermia. These findings provide valuable insights into male infertility and indicate potential avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
- Department of Pharmacy, Kut University College, Wasit, 52001, Iraq
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Kasr AlAiny Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Adel A
- Department of Andrology, Sexology, and STIs, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt.
| |
Collapse
|
2
|
Liu Y, Wang R, Zeng J, Zhao W, Xiao Y, Jiang H, Wang T. lncRNA six3os1 diagnoses acute stroke, predicts disease severity, and predicts post-stroke cognitive impairment. BMC Neurol 2024; 24:491. [PMID: 39722013 DOI: 10.1186/s12883-024-04003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Stroke is the main cause of death and disability. Post-stroke cognitive impairment (PSCI) is one of the most severe complications of stroke, which lacks effective biomarkers for its early detection. OBJECTIVE This study evaluated the significance of lncRNA SIX3OS1 in acute stroke and PSCI aiming to identify a novel biomarker. PATIENTS AND METHODS The study enrolled 138 patients with acute stroke and 80 healthy individuals. By comparing the serum SIX3OS1 in acute stroke and healthy individuals, the significance of SIX3OS1 in diagnosing acute stroke, assessing disease severity, and predicting the risk of PSCI was revealed. RESULTS Significant upregulation of SIX3OS1 in acute stroke was observed, which discriminated patients with acute stroke from healthy individuals and indicated severe disease conditions of patients. There were 72 acute stroke patients who had PSCI accounting for 52.17% that showed a higher serum SIX3OS1 level than post-stroke cognitive normal patients. The increasing serum SIX3OS1 level was also identified as a risk factor for PSCI and could distinguish PSCI patients. Additionally, SIX3OS1 showed a negative correlation with the MoCA score of PSCI patients. CONCLUSION Serum SIX3OS1 level can be considered a biomarker for screening acute stroke and a predictor for PSCI.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The Affiliated Changsha Central Hospital, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China
| | - Rui Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Junsheng Zeng
- Department of Neurology, The Affiliated Changsha Central Hospital, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China
| | - Wei Zhao
- Department of Neurology, The Affiliated Changsha Central Hospital, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China
| | - Yanqiao Xiao
- Department of Neurology, The Affiliated Changsha Central Hospital, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China
| | - Heng Jiang
- Department of Neurology, The Affiliated Changsha Central Hospital, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China
| | - Te Wang
- Department of Neurology, The Affiliated Changsha Central Hospital, University of South China, No. 161 Shaoshan South Road, Changsha, 410004, Hunan, China.
| |
Collapse
|
3
|
Mehta SL, Arruri V, Vemuganti R. Role of transcription factors, noncoding RNAs, epitranscriptomics, and epigenetics in post-ischemic neuroinflammation. J Neurochem 2024; 168:3430-3448. [PMID: 38279529 PMCID: PMC11272908 DOI: 10.1111/jnc.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
4
|
Loggini A, Hornik J, Hornik A. The role of microRNAs as super-early biomarkers in acute ischemic stroke: A systematic review. Clin Neurol Neurosurg 2024; 244:108416. [PMID: 38959787 DOI: 10.1016/j.clineuro.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND To date, no biomarkers have been validated in acute ischemic stroke, and its diagnosis currently relies on clinical judgement and radiographic findings. The presence of circulating microRNAs in the setting AIS has grown significant attention in recent years. This study aims to summarize the evidence of microRNAs as super-early biomarkers (within 12 hours from last known well) and determine their temporal expression in AIS. METHODS This review was conducted in accordance with the PRISMA statement recommendations. Three databases were searched (Pubmed, Scopus, and Cochrane) for case-control studies comparing the expression of microRNAs in AIS patients and healthy controls. Risk of bias was computed using the QUADAS-2 Scale tool. The review protocol was registered in PROSPERO (CRD42023454012). RESULTS A total of 186 articles were screened and 6 full-text articles were included in this review, involving 441 AIS and 307 controls. Samples were obtained from blood in three studies, plasma in two studies, and serum in one study. All studies utilized RT-qPCR as quantification method. One study included only patients with large artery atherosclerosis. Eleven microRNAs were found to be overexpressed and seven underexpressed in AIS. No single microRNA was validated in two separate studies. The misexpressed microRNAs were associated with inflammation, platelet activation, angiogenesis, and apoptosis. Two studies followed the temporal expression of microRNAs. miR-125b-5p and miR-143-3p (inflammation, angiogenesis, and apoptosis) normalized at 90 days. miR-125a-5p (angiogenesis) remained elevated. The heterogeneity in temporal sampling and microRNAs detected did not allow to perform a quantitative analysis. Qualitative analysis of each study revealed an overall moderate risk of bias. CONCLUSIONS This review suggests the promising potential role of microRNAs as adjuvant tool in the early diagnosis of AIS. Further larger studies are needed to corroborate these findings and discover a reliable and reproducible biomarker.
Collapse
Affiliation(s)
- Andrea Loggini
- Brain and Spine Institute. Southern Illinois Healthcare, Carbondale, IL, 62901, United States; Southern Illinois University, Carbondale, IL, 62901, United States.
| | - Jonatan Hornik
- Brain and Spine Institute. Southern Illinois Healthcare, Carbondale, IL, 62901, United States; Southern Illinois University, Carbondale, IL, 62901, United States
| | - Alejandro Hornik
- Brain and Spine Institute. Southern Illinois Healthcare, Carbondale, IL, 62901, United States; Southern Illinois University, Carbondale, IL, 62901, United States
| |
Collapse
|
5
|
Lapikova-Bryhinska T, Ministrini S, Puspitasari YM, Kraler S, Mohamed SA, Costantino S, Paneni F, Khetsuriani M, Bengs S, Liberale L, Montecucco F, Krampla W, Riederer P, Hinterberger M, Fischer P, Lüscher TF, Grünblatt E, Akhmedov A, Camici GG. Long non-coding RNAs H19 and NKILA are associated with the risk of death and lacunar stroke in the elderly population. Eur J Intern Med 2024; 123:94-101. [PMID: 37981527 DOI: 10.1016/j.ejim.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Differential expression of long non-coding RNAs (lncRNAs) is a hallmark of cardiovascular aging, cerebrovascular diseases, and neurodegenerative disorders. This research article investigates the association between a panel of lncRNAs and the risk of death and ischemic stroke in a cohort of non-institutionalized elderly subjects. METHOD A total of 361 healthy individuals aged 75 years old, prospectively recruited in the Vienna Transdanube Aging (VITA) cohort, were included. Expression of lncRNAs at baseline was assessed using quantitative polymerase chain reaction PCR with pre-amplification reaction, using 18S for normalization. The primary endpoint was all-cause mortality; the secondary endpoint was the incidence of new ischemic brain lesions. Death was assessed over a 14-year follow-up, and ischemic brain lesions were evaluated by magnetic resonance imaging (MRI) over a 90-month follow-up. Ischemic brain lesions were divided into large brain infarcts (Ø≥ 1.5 cm) or lacunes (Ø< 1.5 cm) RESULTS: The primary endpoint occurred in 53.5 % of the study population. The incidence of the secondary endpoint was 16 %, with a 3.3 % being large brain infarcts, and a 12.7 % lacunes. After adjustment for potential confounders, the lncRNA H19 predicted the incidence of the primary endpoint (HR 1.194, 95 % C.I. 1.012-1.409, p = 0.036), whereas the lncRNA NKILA was associated with lacunar stroke (HR 0.571, 95 % C.I. 0.375-0.868, p = 0.006). CONCLUSION In a prospective cohort of non-institutionalized elderly subjects, high levels of lncRNA H19 are associated with a higher risk of death, while low levels of lncRNA NKILA predict an increased risk of lacunar stroke.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Kantonspital Baden, Baden, Switzerland
| | - Shafeeq Ahmed Mohamed
- Center for Translational and Experimental Cardiology, University Hospital of Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital of Zurich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital of Zurich, Zurich, Switzerland; University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Michael Khetsuriani
- Department of General and Molecular Pathophysiology, Bogomolets Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
| | - Susan Bengs
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa 16132, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa 16132, Italy
| | | | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany; Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - Margareta Hinterberger
- Department of Psychiatry, Medical Research Society Vienna D.C., Danube Hospital Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Medical Research Society Vienna D.C., Danube Hospital Vienna, Vienna, Austria
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH, Zurich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Ouyang L, Xia W, Al-Alwany AA, Gupta R, Sapaev I, Almalki SG, Almawash S, Ziyad RA, Alawadi AH, Alsalamy A. Ischemic Stroke and Autophagy: The Roles of Long Non-Coding RNAs. Curr Neuropharmacol 2024; 23:85-97. [PMID: 39021183 PMCID: PMC11519825 DOI: 10.2174/1570159x22666240704123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating autophagy in ischemic stroke may provide new insights into the pathogenesis of this disease and identify potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Longqiang Ouyang
- Department of Neurosurgery, The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenyan Xia
- Department of Endocrinology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Ibrokhim Sapaev
- New Uzbekistan University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39, Kari Niyaziy Str., 100000, Uzbekistan
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Rand Ali Ziyad
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al‐Sadiq University, Al‐Muthanna 66002, Iraq
| |
Collapse
|
7
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
8
|
Su ZY, Yu ZQ, Yao B, Zhao DX. Identification of immune and Toll-like receptor signaling pathway related feature lncRNAs to construct diagnostic nomograms for acute ischemic stroke. Sci Rep 2023; 13:6492. [PMID: 37081063 PMCID: PMC10119310 DOI: 10.1038/s41598-023-33059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
We aimed to identify the immune and Toll-like receptor (TLR) signaling pathway related feature lncRNAs to construct the diagnostic nomograms for acute ischemic stroke (AIS). Two AIS-associated expression profiles GSE16561 and GSE22255 were downloaded from NCBI Gene Expression Omnibus, the former was the training set and the latter was the validation set. The differential expression genes (DEGs) and lncRNAs (DElncRNAs) related to TLR signaling pathway were identified between AIS and control groups. The single sample gene set enrichment analysis (ssGSEA) was applied to evaluate the immune infiltration. The immune and TLR signaling pathway related DElncRNAs were determined. Three optimization algorithms were utilized to select the immune and TLR signaling pathway related feature lncRNAs to construct the diagnostic nomograms of AIS. Based on the lncRNA signature, a ceRNA network was constructed. 37 DEGs and 28 DElncRNAs related to TLR signaling pathway were identified in GSE16561. 16 immune cell types exhibited significant differences in distribution between AIS and control groups. 28 immune and TLR signaling pathway related DElncRNAs were determined. 8 immune and TLR signaling pathway related feature lncRNAs were selected. The diagnostic nomograms of AIS performed well in both datasets. A ceRNA network was constructed consisting of 7 immune and TLR signaling pathway related feature lncRNAs as well as 19 AIS related miRNAs and 21 TLR signaling pathway related genes. LINC00173, LINC01089, LINC02210, MIR600HG, SNHG14, TP73-AS1, LINC00680 and CASC2 may be the potential biomarkers of AIS diagnosis, and TLR signaling pathway may be a promising immune related therapeutic target for AIS.
Collapse
Affiliation(s)
- Zhuo-Yi Su
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jing Yue National High-Tech Industrial Development Zone, Changchun, 130117, China
| | - Zi-Qiao Yu
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jing Yue National High-Tech Industrial Development Zone, Changchun, 130117, China
| | - Bo Yao
- School of Aeronautical Fundamentals, Aviation University of Air Force, Changchun, 130041, China
| | - De-Xi Zhao
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jing Yue National High-Tech Industrial Development Zone, Changchun, 130117, China.
| |
Collapse
|
9
|
Zhao H, Wang L, Zhang L, Zhao H. Phytochemicals targeting lncRNAs: A novel direction for neuroprotection in neurological disorders. Biomed Pharmacother 2023; 162:114692. [PMID: 37058817 DOI: 10.1016/j.biopha.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aβ-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lin Wang
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Hongyu Zhao
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
10
|
Xiaoqing S, Yinghua C, Xingxing Y. The autophagy in ischemic stroke: A regulatory role of non-coding-RNAs. Cell Signal 2023; 104:110586. [PMID: 36608737 DOI: 10.1016/j.cellsig.2022.110586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Ischemic stroke (IS) is a central nervous system neurological disorder ascribed to an acute focal trauma, with high mortality and disability, leading to a heavy burden on family and society. Autophagy is a self-digesting process by which damaged organelles and useless proteins are recycled to maintain cellular homeostasis, and plays a pivotal role in the process of IS. Non-coding RNAs (ncRNAs), mainly contains microRNA, long non-coding RNA and circular RNA, have been extensively investigated on regulation of autophagy in human diseases. Recent studies have implied that ncRNAs-regulating autophagy participates in pathophysiological process of IS, including cell apoptosis, inflammation, oxidative stress, blood-brain barrier damage and glial activation, which indicates that regulating autophagy by ncRNAs may be beneficial for IS treatment. This review summarizes the role of autophagy in IS, as well as focuses on the role of ncRNAs-mediated autophagy in IS, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Su Xiaoqing
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China
| | - Chen Yinghua
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China.
| | - Yuan Xingxing
- Heilongjiang University of traditional Chinese Medicine, Harbin, Heilongjiang 150040, PR China; Department of internal medicine, Heilongjiang Academy of traditional Chinese Medicine, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
11
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
12
|
Adam CA, Șalaru DL, Prisacariu C, Marcu DTM, Sascău RA, Stătescu C. Novel Biomarkers of Atherosclerotic Vascular Disease-Latest Insights in the Research Field. Int J Mol Sci 2022; 23:4998. [PMID: 35563387 PMCID: PMC9103799 DOI: 10.3390/ijms23094998] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The atherosclerotic vascular disease is a cardiovascular continuum in which the main role is attributed to atherosclerosis, from its appearance to its associated complications. The increasing prevalence of cardiovascular risk factors, population ageing, and burden on both the economy and the healthcare system have led to the development of new diagnostic and therapeutic strategies in the field. The better understanding or discovery of new pathophysiological mechanisms and molecules modulating various signaling pathways involved in atherosclerosis have led to the development of potential new biomarkers, with key role in early, subclinical diagnosis. The evolution of technological processes in medicine has shifted the attention of researchers from the profiling of classical risk factors to the identification of new biomarkers such as midregional pro-adrenomedullin, midkine, stromelysin-2, pentraxin 3, inflammasomes, or endothelial cell-derived extracellular vesicles. These molecules are seen as future therapeutic targets associated with decreased morbidity and mortality through early diagnosis of atherosclerotic lesions and future research directions.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
| | - Delia Lidia Șalaru
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Cristina Prisacariu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Dragoș Traian Marius Marcu
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Radu Andy Sascău
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Cristian Stătescu
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iași, Romania; (C.A.A.); (C.P.); (R.A.S.); (C.S.)
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| |
Collapse
|