1
|
Ghaffari AR, Mirzaei Z, Shahsavani MB, Somee LR, Stroylova YY, Barinova KV, Amanlou M, Muronetz VI, Habibi-Rezaei M, Saboury AA, Moosavi-Movahedi AA, Yousefi R. The p.K90N mutation in human HSPB5 highlights the critical role of lysine 90 in chaperone function and structural integrity. Arch Biochem Biophys 2025; 769:110424. [PMID: 40250722 DOI: 10.1016/j.abb.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
HSPB5 (αB-crystallin), a small heat shock protein, stabilizes proteins and prevents misfolded protein aggregation through dynamic oligomer formation. Mutations in HSPB5 can result in diseases such as myopathy and cataracts. This study focuses on the myopathy-associated p.K90N mutation in the α-crystallin domain and its impact on the structure and function of human HSPB5. The recombinant mutated protein was expressed and purified for analysis using spectroscopy, microscopy, and molecular dynamics simulations. Our results reveal that the p.K90N mutation induces significant structural alterations, including an increase in β-sheet content and a reduction in α-helical structure compared to the wild-type protein. Molecular dynamics simulations showed an increased angle between dimers and decreased accessible surface area in the mutant protein. Additionally, the mutant exhibited a higher propensity for forming larger oligomers and amyloid fibrils, and enhanced thermal stability. These structural changes lead to reduced chaperone activity and impaired protein aggregation prevention, likely contributing to cell death and myopathy. Overall, the p.K90N mutation significantly alters the structural and functional properties of HSPB5, highlighting its pathogenic role and providing insights into disease mechanisms.
Collapse
Affiliation(s)
- Ahmad Reza Ghaffari
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Mirzaei
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Yulia Y Stroylova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 11999, Moscow, Russia
| | - Ksenia V Barinova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 11999, Moscow, Russia
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 11999, Moscow, Russia
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Sharma A, Mannan A, Singh TG. Rethinking Parkinson's: The role of proteostasis networks and autophagy in disease progression. Mol Cell Neurosci 2025:104023. [PMID: 40490236 DOI: 10.1016/j.mcn.2025.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/19/2025] [Accepted: 06/03/2025] [Indexed: 06/11/2025] Open
Abstract
Protein dyshomeostasis is identified as the hallmark of many age-related NDDs including Parkinson's disease (PD). PD is a progressive neurodegenerative disorder (NDD) characterized by the accumulation of misfolded proteins, particularly α-synuclein (α-syn) leading to formation of Lewy bodies and cause degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Disruption of the cell's normal protein balance, which occurs when cells experience stress, plays a key role in causing the formation of harmful protein clumps. Functional proteostasis relies on coordinated mechanisms involving posttranslational modifications (PTMs), molecular chaperones, the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and the autophagy-lysosome pathway (ALP). These networks maintain proper synthesis, folding, confirmation and degradation of protein such as α-syn protein in PD. These approaches include enhancing lysosomal function, promoting autophagy and modulating the unfolded protein response. Understanding the complex interactions between these pathways is essential for developing effective treatments. This review synthesizes current knowledge of various genes and molecular mechanisms underlying proteostasis disruption in PD and evaluates emerging therapeutic strategies that target multiple genes and pathways simultaneously. The finding highlights the potential of integrated approaches to restore protein homeostasis and prevent neurodegeneration, offering new directions for PD treatment development.
Collapse
Affiliation(s)
- Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | |
Collapse
|
3
|
Cheng H, Wang J, Zhao Y, Hou X, Ling F, Wang Y, Cao Y. Deciphering the role of heat shock protein HSPA1L: biomarker discovery and prognostic insights in Parkinson's disease and glioma. SLAS Technol 2024; 29:100212. [PMID: 39454876 DOI: 10.1016/j.slast.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Heat shock proteins (HSPs) play a critical role in cellular stress responses and have been implicated in numerous diseases, including Parkinson's disease (PD) and various cancers. Understanding the differential expression and functional implications of HSPs in these conditions is crucial for identifying potential therapeutic targets and biomarkers for diagnosis and prognosis. METHODS We utilized combined datasets (GSE6613 and GSE72267) to identify and analyze the heat shock-related genes differentially expressed in PD. Gene Set Variation Analysis (GSVA) was performed to explore functional profiles, while LASSO regression was employed to screen potential PD biomarkers. In glioma, prognostic value, immune infiltration, and pathway enrichment associated with HSPA1L gene expression were assessed via Kaplan-Meier plots, ssGSEA, and enrichment analyses. RESULTS In PD, we identified 17 differentially expressed HSPs. Enrichment analysis revealed significant pathways related to protein homeostasis and cellular stress responses. LASSO regression pinpointed 12 genes, including HSPA1L, as significant markers for PD, with nomogram and calibration plots indicating predictive accuracy. Stratification based on HSPA1L expression in PD highlighted differentially active biological processes, immune responses, and metabolic disruptions. In the pan-cancer analysis, HSPA1L showed variable expression across cancer types and a significant correlation with patient survival and immune infiltration. In glioma, low HSPA1L expression was associated with worse overall survival, distinct immune infiltration patterns, and altered pathway activities. CONCLUSION This integrative study reveals the substantial role of HSPs, especially HSPA1L, in the pathogenesis and prognosis of PD and glioma. Our findings offer new perspectives on the molecular mechanisms underlying these diseases and propose HSPA1L as a potential prognostic biomarker and a target for therapeutic intervention.
Collapse
Affiliation(s)
- Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000.
| | - Jing Wang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000; Medicine Section, The Third People's Hospital of Danyang, Jiangsu, Danyang, China, 212300
| | - Yingjie Zhao
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000; Cardiovascular Medicine, The Third People's Hospital of Danyang, Jiangsu, Danyang, China, 212300
| | - Xiaoli Hou
- Yangzhou Vocational University Medical College, Jiangsu, Yangzhou, China, 225000
| | - Fang Ling
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000; Otorhinolaryngology, The Third People's Hospital of Danyang, Jiangsu, Danyang, China, 212300
| | - Yixia Wang
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000
| | - Yasen Cao
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China, 225000
| |
Collapse
|
4
|
Kim K, Cho HR, Kim BY, Kim J, Park D, Kwon RJ, Son Y. Oxysterol Induces Expression of 60 kDa Chaperone Protein on Cell Surface of Microglia. Int J Mol Sci 2024; 25:9073. [PMID: 39201760 PMCID: PMC11354638 DOI: 10.3390/ijms25169073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Microglia, essential immune cells in the brain, play crucial roles in neuroinflammation by performing various functions such as neurogenesis, synaptic pruning, and pathogen defense. These cells are activated by inflammatory factors like β-amyloid (Aβ) and oxysterols, leading to morphological and functional changes, including the secretion of inflammatory cytokines and the upregulation of MHC class II molecules. This study focused on identifying specific markers for microglial activation, with a particular emphasis on the roles of oxysterols in this process. We used the HMC3 human microglial cell line to investigate the induction of heat shock protein 60 (HSP60), a chaperonin protein by oxysterols, specifically in the presence of 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol). Our findings obtained by the proteomics approach revealed that these oxysterols significantly increased HSP60 expression on microglial cells. This induction was further confirmed using Western blot analysis and immunofluorescence microscopy. Additionally, Aβ1-42 also promoted HSP60 expression, indicating its role as a microglial activator. HSP60 involved in protein folding and immune modulation was identified as a potential marker for microglial activation. This study underscores the importance of HSP60 in the inflammatory response of microglia, suggesting its utility as a target for new therapeutic approaches in neuroinflammatory diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| | - Hyok-rae Cho
- Department of Neurosurgery, College of Medicine, Kosin University, Busan 49267, Republic of Korea;
| | - Bo-young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jaesung Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| | - Dongha Park
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Family Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| |
Collapse
|
5
|
Fujii F, Kanemasa H, Okuzono S, Setoyama D, Taira R, Yonemoto K, Motomura Y, Kato H, Masuda K, Kato TA, Ohga S, Sakai Y. ATP1A3 regulates protein synthesis for mitochondrial stability under heat stress. Dis Model Mech 2024; 17:dmm050574. [PMID: 38804677 PMCID: PMC11247502 DOI: 10.1242/dmm.050574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Pathogenic variants in ATP1A3, the gene encoding the α3 subunit of the Na+/K+-ATPase, cause alternating hemiplegia of childhood (AHC) and related disorders. Impairments in Na+/K+-ATPase activity are associated with the clinical phenotype. However, it remains unclear whether additional mechanisms are involved in the exaggerated symptoms under stressed conditions in patients with AHC. We herein report that the intracellular loop (ICL) of ATP1A3 interacted with RNA-binding proteins, such as Eif4g (encoded by Eif4g1), Pabpc1 and Fmrp (encoded by Fmr1), in mouse Neuro2a cells. Both the siRNA-mediated depletion of Atp1a3 and ectopic expression of the p.R756C variant of human ATP1A3-ICL in Neuro2a cells resulted in excessive phosphorylation of ribosomal protein S6 (encoded by Rps6) and increased susceptibility to heat stress. In agreement with these findings, induced pluripotent stem cells (iPSCs) from a patient with the p.R756C variant were more vulnerable to heat stress than control iPSCs. Neurons established from the patient-derived iPSCs showed lower calcium influxes in responses to stimulation with ATP than those in control iPSCs. These data indicate that inefficient protein synthesis contributes to the progressive and deteriorating phenotypes in patients with the p.R756C variant among a variety of ATP1A3-related disorders.
Collapse
Affiliation(s)
- Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Heat Shock Protein 90 in Parkinson's Disease: Profile of a Serial Killer. Neuroscience 2024; 537:32-46. [PMID: 38040085 DOI: 10.1016/j.neuroscience.2023.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies (BIO-INN), Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Dandurand J, Monné M, Samouillan V, Rosa M, Laurita A, Pistone A, Bisaccia D, Matera I, Bisaccia F, Ostuni A. The 75-99 C-Terminal Peptide of URG7 Protein Promotes α-Synuclein Disaggregation. Int J Mol Sci 2024; 25:1135. [PMID: 38256207 PMCID: PMC10816444 DOI: 10.3390/ijms25021135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular β-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.
Collapse
Affiliation(s)
- Jany Dandurand
- CIRIMAT Physique des Polymères, Université Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France; (J.D.); (V.S.)
| | - Magnus Monné
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Valérie Samouillan
- CIRIMAT Physique des Polymères, Université Toulouse 3, Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France; (J.D.); (V.S.)
| | - Martina Rosa
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Alessandro Laurita
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Alessandro Pistone
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | | | - Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (M.M.); (M.R.); (A.L.); (A.P.); (I.M.)
| |
Collapse
|
8
|
Cossu D, Hatano T, Hattori N. The Role of Immune Dysfunction in Parkinson's Disease Development. Int J Mol Sci 2023; 24:16766. [PMID: 38069088 PMCID: PMC10706591 DOI: 10.3390/ijms242316766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Recent research has unveiled intriguing insights suggesting that the body's immune system may be implicated in Parkinson's disease (PD) development. Studies have observed disparities in pro-inflammatory and anti-inflammatory markers between PD patients and healthy individuals. This finding underscores the potential influence of immune system dysfunction in the genesis of this condition. A dysfunctional immune system can serve as a primary catalyst for systemic inflammation in the body, which may contribute to the emergence of various brain disorders. The identification of several genes associated with PD, as well as their connection to neuroinflammation, raises the likelihood of disease susceptibility. Moreover, advancing age and mitochondrial dysfunction can weaken the immune system, potentially implicating them in the onset of the disease, particularly among older individuals. Compromised integrity of the blood-brain barrier could facilitate the immune system's access to brain tissue. This exposure may lead to encounters with native antigens or infections, potentially triggering an autoimmune response. Furthermore, there is mounting evidence supporting the notion that gut dysbiosis might represent an initial trigger for brain inflammation, ultimately promoting neurodegeneration. In this comprehensive review, we will delve into the numerous hypotheses surrounding the role of both innate and adaptive immunity in PD.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Taku Hatano
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
9
|
Clark CE, Rigby BR. Can exposure to heat attenuate neurodegeneration in older adults with Parkinson's disease? Front Aging Neurosci 2023; 15:1239656. [PMID: 37744389 PMCID: PMC10513428 DOI: 10.3389/fnagi.2023.1239656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
| | - Brandon Rhett Rigby
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, United States
| |
Collapse
|