1
|
Canonichesi J, Bellingacci L, Rivelli F, Tozzi A. Enhancing sleep quality in synucleinopathies through physical exercise. Front Cell Neurosci 2025; 19:1515922. [PMID: 39959465 PMCID: PMC11825755 DOI: 10.3389/fncel.2025.1515922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
During sleep, several crucial processes for brain homeostasis occur, including the rearrangement of synaptic connections, which is essential for memory formation and updating. Sleep also facilitates the removal of neurotoxic waste products, the accumulation of which plays a key role in neurodegeneration. Various neural components and environmental factors regulate and influence the physiological transition between wakefulness and sleep. Disruptions in this complex system form the basis of sleep disorders, as commonly observed in synucleinopathies. Synucleinopathies are neurodegenerative disorders characterized by abnormal build-up of α-synuclein protein aggregates in the brain. This accumulation in different brain regions leads to a spectrum of clinical manifestations, including hypokinesia, cognitive impairment, psychiatric symptoms, and neurovegetative disturbances. Sleep disorders are highly prevalent in individuals with synucleinopathies, and they not only affect the overall well-being of patients but also directly contribute to disease severity and progression. Therefore, it is crucial to develop effective therapeutic strategies to improve sleep quality in these patients. Adequate sleep is vital for brain health, and the role of synucleinopathies in disrupting sleep patterns must be taken into account. In this context, it is essential to explore the role of physical exercise as a potential non-pharmacological intervention to manage sleep disorders in individuals with synucleinopathies. The current evidence on the efficacy of exercise programs to enhance sleep quality in this patient population is discussed.
Collapse
Affiliation(s)
| | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Abdelaziz AM, Rasheed NOA, Zaki HF, Salem HA, El-Sayed RM. Canagliflozin attenuates neurodegeneration and ameliorates dyskinesia through targeting the NLRP3/Nurr1/GSK-3β/SIRT3 pathway and autophagy modulation in rotenone-lesioned rats. Int Immunopharmacol 2025; 146:113839. [PMID: 39700958 DOI: 10.1016/j.intimp.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD. AIMS This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID. Also, correlating NLRP3 expression with all evaluated parameters. MAIN METHODS The PD rat model was induced via eleven rotenone (1.5 mg/kg) subcutaneous injections day after day. Canagliflozin (20 mg/kg) and/or L-dopa/carbidopa (100/25 mg/kg) were orally administered daily from the beginning until the end of the experiment. KEY FINDINGS Canagliflozin significantly improved neurobehavioral and histological assessments, whereas dyskinesia scores declined. The improvement was confirmed through tyrosine hydroxylase and β-catenin upregulation in contrast to NLRP3 and caspase-1 in substantia nigra pars compacta, as revealed immunohistochemically. In addition, canagliflozin induced a prominent elevation in dopamine, Nurr1, PGC-1α, SIRT3, and beclin-1, whereas mTOR and GSK-3β expressions were downregulated. SIGNIFICANCE Our results revealed the aspiring canagliflozin neuroprotective properties against PD and LID in rotenone-lesioned rats via the assumed anti-inflammatory activity and implication of NLRP3/caspase-1, Nurr1/GSK-3β/β-catenin, PGC-1α/SIRT3, and beclin-1/mTOR pathways.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Nora O Abdel Rasheed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt
| |
Collapse
|
3
|
Ishaq S, Shah IA, Lee SD, Wu BT. Effects of exercise training on nigrostriatal neuroprotection in Parkinson's disease: a systematic review. Front Neurosci 2025; 18:1464168. [PMID: 39844853 PMCID: PMC11752748 DOI: 10.3389/fnins.2024.1464168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Parkinson's disease (PD) is characterized by progressive neurodegeneration within the nigrostriatum, leading to motor dysfunction. This systematic review aimed to summarize the effects of various exercise training regimens on protein or gene expression within the nigrostriatum and their role in neuroprotection and motor function improvement in animal models of Parkinson's disease (PD). Methods PubMed, EMBASE, and Web of Science were searched up to June 2024 and included sixteen studies that adhere to PRISMA guidelines and CAMARADES checklist scores ranging from 4 to 6 out of 10. Various exercise training regimens, administered 5 days per week for 6.5 weeks, were applied to MPTP, 6-OHDA, and PFF-α-synuclein-induced PD animal models. Results Exercise training was found to downregulate the inflammatory pathway by attenuating α-synuclein aggregation, inhibiting the TLR/MyD88/IκBα signaling cascade and NF-κB phosphorylation, and decreasing pro-inflammatory cytokines IL-1β and TNF-α while increasing anti-inflammatory cytokines IL-10 and TGF-β within the nigrostriatum. It also inhibited the ASC and NLRP3 inflammasome complex and reduced the BAX/ Bcl-2 ratio and caspase-1/3 proteins, thereby decreasing neuronal apoptosis in the nigrostriatum. Exercise training elevated the expression of Pro-BDNF, BDNF, GDNF, TrkB, and Erk1/2, providing neurotrophic support to dopaminergic neurons. Furthermore, it upregulated the dopaminergic signaling pathway by increasing the expression of TH, DAT, PSD-95, and synaptophysin in the nigrostriatum. Discussion The findings suggested that exercise training downregulated inflammatory and apoptotic pathways while upregulated BDNF/GDNF pathways and dopaminergic signaling within the nigrostriatum. These molecular changes contributed to neuroprotection, reduced dopaminergic neuron loss, and improved motor function in PD animal models. Systematic review registration CRD42024484537 https://www.crd.york.ac.uk/prospero/#recordDetails.
Collapse
Affiliation(s)
- Shahid Ishaq
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Iqbal Ali Shah
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Bor-Tsang Wu
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Yang YL, Lin TK, Huang YH. MiR-29a efficiently suppresses the generation of reactive oxygen species and α-synuclein in a cellular model of Parkinson's disease by potentially targeting GSK-3β. Eur J Pharmacol 2024; 974:176615. [PMID: 38685306 DOI: 10.1016/j.ejphar.2024.176615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
MicroRNA-29a (miR-29a) has been suggested to serve a potential protective function against Parkinson's disease (PD); however, the exact molecular mechanisms remain elusive. This study explored the protective role of miR-29a in a cellular model of PD using SH-SY5Y cell lines through iTRAQ-based quantitative proteomic and biochemistry analysis. The findings showed that using a miR-29a mimic in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+) significantly decreased cell death and increased mitochondrial membrane potential. It also reduced mitochondrial reactive oxygen species (ROS) and the production of α-synuclein. Subsequent heatmap analysis using iTRAQ-based quantitative proteomics revealed remarkably contrasting protein expression profiles for 882 genes when comparing the groups treated with miR-29a mimic plus MPP + against the control group treated solely with MPP+. The KEGG pathway analysis of these 882 genes indicated the substantial role of miR-29a in the PD pathway (P = 1.58x10-5) and highlighted its function in mitochondrial genes. Furthermore, treatment with a miR-29a mimic in SH-SY5Y cells reduced the levels of GSK-3β, phosphorylated GSK-3β, and cleaved caspase-7 following exposure to MPP+. The miR-29a mimic also upregulated the expressions of α-synuclein clearance proteins FYCO1 and Rab7 in this cellular PD model, thereby inhibiting the production of α-synuclein. Luciferase activity analysis confirmed the specific binding of miR-29a to the 3' untranslated region (3'UTR) of GSK-3β, leading to its repression. Our findings demonstrated miR-29a's neuroprotective role in mitochondrial function and highlighted its potential to inhibit ROS and α-synuclein production, offering possible therapeutic avenues for PD treatment.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
5
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
6
|
Leem YH, Park JS, Park JE, Kim DY, Kim HS. Creatine supplementation with exercise reduces α-synuclein oligomerization and necroptosis in Parkinson's disease mouse model. J Nutr Biochem 2024; 126:109586. [PMID: 38262563 DOI: 10.1016/j.jnutbio.2024.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Parkinson's disease (PD) is an incurable neurological disorder that causes typical motor deficits. In this study, we investigated the effects of creatine supplementation and exercise in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We found that 2% creatine supplementation and/or exercise intervention for 4 weeks elicited neurobehavioral recovery and neuroprotective effects regarding dopaminergic cell loss in MPTP-treated mice; this effect implies functional preservation of dopaminergic cells in the substantia nigra, as reflected by tyrosine hydroxylase expression recovery. Creatine and exercise reduced necroptotic activity in dopaminergic cells by lowering mixed lineage kinase domain-like protein (MLKL) modification to active phenotypes (phosphorylation at Ser345 and oligomerization) and phosphorylated receptor-interacting protein kinase 1 (RIPK1) (Ser166-p) and RIPK3 (Ser232-p) levels. In addition, creatine and exercise reduced the MPTP-induced increase in pathogenic α-synuclein forms, such as Ser129 phosphorylation and oligomerization. Furthermore, creatine and exercise had anti-inflammatory and antioxidative effects in MPTP mice, as evidenced by a decrease in microglia activation, NF-κB-dependent pro-inflammatory molecule expression, and increase in antioxidant enzyme expression. These phenotypic changes were associated with the exercise/creatine-induced AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) and sirtuin 3 (SIRT3)/forkhead box O3 (FoxO3a) signaling pathways. In all experiments, combining creatine with exercise resulted in considerable improvement over either treatment alone. Consequently, these findings suggest that creatine supplementation with exercise has anti-inflammatory, antioxidative, and anti-α-synucleinopathy effects, thereby reducing necroptotic cell death in a PD mouse model.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Do-Yeon Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
7
|
Zhang JW, Huang LY, Li YN, Tian Y, Yu J, Wang XF. Mitochondrial carrier homolog 2 increases malignant phenotype of human gastric epithelial cells and promotes proliferation, invasion, and migration of gastric cancer cells. World J Gastrointest Oncol 2024; 16:991-1005. [PMID: 38577443 PMCID: PMC10989370 DOI: 10.4251/wjgo.v16.i3.991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The precise role of mitochondrial carrier homolog 2 (MTCH2) in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated. AIM To determine the role of MTCH2 in gastric cancer. METHODS We collected 65 samples of poorly differentiated gastric cancer tissue and adjacent tissues, constructed MTCH2-overexpressing and MTCH2-knockdown cell models, and evaluated the proliferation, migration, and invasion of human gastric epithelial cells (GES-1) and human gastric cancer cells (AGS) cells. The mitochondrial membrane potential (MMP), mitochondrial permeability transformation pore (mPTP) and ATP fluorescence probe were used to detect mitochondrial function. Mitochondrial function and ATP synthase protein levels were detected via Western blotting. RESULTS The expression of MTCH2 and ATP2A2 in gastric cancer tissues was significantly greater than that in adjacent tissues. Overexpression of MTCH2 promoted colony formation, invasion, migration, MMP expression and ATP production in GES-1 and AGS cells while upregulating ATP2A2 expression and inhibiting cell apoptosis; knockdown of MTCH2 had the opposite effect, promoting overactivation of the mPTP and promoting apoptosis. CONCLUSION MTCH2 can increase the malignant phenotype of GES-1 cells and promote the proliferation, invasion, and migration of gastric cancer cells by regulating mitochondrial function, providing a basis for targeted therapy for gastric cancer cells.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- School of Basic Medical Science, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling-Yan Huang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ya-Ning Li
- School of Basic Medical Science, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ying Tian
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jia Yu
- School of Basic Medical Science, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Fei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| |
Collapse
|
8
|
Burtscher J, Moraud EM, Malatesta D, Millet GP, Bally JF, Patoz A. Exercise and gait/movement analyses in treatment and diagnosis of Parkinson's Disease. Ageing Res Rev 2024; 93:102147. [PMID: 38036102 DOI: 10.1016/j.arr.2023.102147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Cardinal motor symptoms in Parkinson's disease (PD) include bradykinesia, rest tremor and/or rigidity. This symptomatology can additionally encompass abnormal gait, balance and postural patterns at advanced stages of the disease. Besides pharmacological and surgical therapies, physical exercise represents an important strategy for the management of these advanced impairments. Traditionally, diagnosis and classification of such abnormalities have relied on partially subjective evaluations performed by neurologists during short and temporally scattered hospital appointments. Emerging sports medical methods, including wearable sensor-based movement assessment and computational-statistical analysis, are paving the way for more objective and systematic diagnoses in everyday life conditions. These approaches hold promise to facilitate customizing clinical trials to specific PD groups, as well as personalizing neuromodulation therapies and exercise prescriptions for each individual, remotely and regularly, according to disease progression or specific motor symptoms. We aim to summarize exercise benefits for PD with a specific emphasis on gait and balance deficits, and to provide an overview of recent advances in movement analysis approaches, notably from the sports science community, with value for diagnosis and prognosis. Although such techniques are becoming increasingly available, their standardization and optimization for clinical purposes is critically missing, especially in their translation to complex neurodegenerative disorders such as PD. We highlight the importance of integrating state-of-the-art gait and movement analysis approaches, in combination with other motor, electrophysiological or neural biomarkers, to improve the understanding of the diversity of PD phenotypes, their response to therapies and the dynamics of their disease progression.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Centre for Interventional Neurotherapies (NeuroRestore), UNIL-CHUV and Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Davide Malatesta
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien F Bally
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Aurélien Patoz
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Research and Development Department, Volodalen Swiss Sport Lab, Aigle, Switzerland
| |
Collapse
|
9
|
Zikereya T, Shi K, Chen W. Goal-directed and habitual control: from circuits and functions to exercise-induced neuroplasticity targets for the treatment of Parkinson's disease. Front Neurol 2023; 14:1254447. [PMID: 37881310 PMCID: PMC10597699 DOI: 10.3389/fneur.2023.1254447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and cognitive impairments. The progressive depletion of dopamine (DA) is the pathological basis of dysfunctional goal-directed and habitual control circuits in the basal ganglia. Exercise-induced neuroplasticity could delay disease progression by improving motor and cognitive performance in patients with PD. This paper reviews the research progress on the motor-cognitive basal ganglia circuit and summarizes the current hypotheses for explaining exercise intervention on rehabilitation in PD. Studies on exercise mediated mechanisms will contribute to the understanding of networks that regulate goal-directed and habitual behaviors and deficits in PD, facilitating the development of strategies for treatment of PD.
Collapse
Affiliation(s)
- Talifu Zikereya
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| |
Collapse
|