1
|
Abay T, Stickels RR, Takizawa MT, Nalbant BN, Hsieh YH, Hwang S, Snopkowski C, Yu KKH, Abou-Mrad Z, Tabar V, Howitt BE, Ludwig LS, Chaligné R, Satpathy AT, Lareau CA. Transcript-specific enrichment enables profiling of rare cell states via single-cell RNA sequencing. Nat Genet 2025; 57:451-460. [PMID: 39779958 DOI: 10.1038/s41588-024-02036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. In the present report, we addressed these limitations by developing Programmable Enrichment via RNA FlowFISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations defined by the abundance of specific RNA transcripts. Across immune populations (n = 184,126 cells) and fresh-frozen and formalin-fixed, paraffin-embedded brain tissue (n = 33,145 nuclei), we demonstrated that programmable sorting logic via RNA-based cytometry can isolate rare cell populations and uncover phenotypic heterogeneity via downstream, high-throughput, single-cell genomics analyses.
Collapse
Affiliation(s)
- Tsion Abay
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Robert R Stickels
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| | - Meril T Takizawa
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benan N Nalbant
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Hsin Hsieh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sidney Hwang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Catherine Snopkowski
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenny Kwok Hei Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Ronan Chaligné
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Caleb A Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Sheng F, Li M, Yu JM, Yang SY, Zou L, Yang GJ, Zhang LL. IL-33/ST2 axis in diverse diseases: regulatory mechanisms and therapeutic potential. Front Immunol 2025; 16:1533335. [PMID: 39925809 PMCID: PMC11802536 DOI: 10.3389/fimmu.2025.1533335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Interleukin-33 (IL-33) is a nuclear factor and member of the IL-1 cytokine family. IL-33 is mainly expressed by epithelial and endothelial cells and exerts its function through interaction with various immune cells, and binding to its receptor can form the IL-33/Suppression of tumorigenicity 2 (ST2) signaling pathway. While most cytokines are actively synthesized within cells, IL-33 is produced passively in response to tissue damage or cell necrosis, indicating its role as a signaling molecule following cellular infection, stress, or trauma. IL-33/ST2 signaling pathway has been proved to play diverse role in the pathological process of central nervous system disorders, cancer, fibrosis, autoimmune diseases, etc. Although research on the IL-33/ST2 signaling pathway has deepened recently, relevant treatment strategies have been proposed, and even targeted drugs are in the preclinical stage; further research on the effect of the IL-33/ST2 signaling pathway in different diseases is still necessary, to provide a clearer understanding of the different roles of IL-33/ST2 in disease progression and to develop new drugs and treatment strategies. Because IL-33/ST2 plays an important role in the occurrence and progression of diseases, the study of therapeutic drugs targeting this pathway is also necessary. This review focused on recent studies on the positive or negative role of IL-33/ST2 in different diseases, as well as the current related drugs targeting IL-33/ST2 in the preclinical and clinical stage. The mechanism of IL-33/ST2 in different diseases and its mediating effect on different immune cells have been summarized, as well as the antibody drugs targeting IL-33 or ST2, natural compounds with a mediating effect, and small molecule substances targeting relative pathway. We aim to provide new ideas and treatment strategies for IL-33/ST2-related drugs to treat different diseases.
Collapse
Affiliation(s)
- Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Jia-Mei Yu
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Si-Yu Yang
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro−Products, Ningbo University, Ningbo, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
3
|
Anand MAV, Manjula KS, Wang CZ. Functional Role of DDR1 in Oligodendrocyte Signaling Mechanism in Association with Myelination and Remyelination Process in the Central Nerve System. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:161-173. [PMID: 39175192 DOI: 10.4103/ejpi.ejpi-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Multiple sclerosis (MS) is a complicated, inflammatory disease that causes demyelination of the central nervous system (CNS), resulting in a variety of neurological abnormalities. Over the past several decades, different animal models have been used to replicate the clinical symptoms and neuropathology of MS. The experimental model of experimental autoimmune/allergic encephalomyelitis (EAE) and viral and toxin-induced model was widely used to investigate the clinical implications of MS. Discoidin domain receptor 1 (DDR1) signaling in oligodendrocytes (OL) brings a new dimension to our understanding of MS pathophysiology. DDR1 is effectively involved in the OL during neurodevelopment and remyelination. It has been linked to many cellular processes, including migration, invasion, proliferation, differentiation, and adhesion. However, the exact functional involvement of DDR1 in developing OL and myelinogenesis in the CNS remains undefined. In this review, we critically evaluate the current literature on DDR1 signaling in OL and its proliferation, migration, differentiation, and myelination mechanism in OL in association with the progression of MS. It increases our knowledge of DDR1 in OL as a novel target molecule for oligodendrocyte-associated diseases in the CNS, including MS.
Collapse
Affiliation(s)
| | - Kumar Shivamadhaiah Manjula
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
4
|
Fu JT, Yang CJ, Lee LY, Chen WP, Chen YW, Chen CC, Sun YT, Yang CS, Tzeng SF. Erinacine S, a small active component derived from Hericium erinaceus, protects oligodendrocytes and alleviates mood abnormalities in cuprizone-exposed rodents. Biomed Pharmacother 2024; 173:116297. [PMID: 38394854 DOI: 10.1016/j.biopha.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Hericium erinaceus mycelium extract (HEM), containing erinacine A (HeA) and erinacine S (HeS), has shown promise in promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), crucial for myelin production in the central nervous system (CNS). The main aim of this study was to characterize the protective effects of HEM and its components on OLs and myelin in demyelinating rodents by exposure to cuprizone (CPZ), a copper chelating agent commonly used to induce demyelination in the corpus callosum of the brain. Rats were fed by CPZ-containing diet and simultaneously orally administered HEM, HeA, or HeS on a daily basis for three weeks. We found that HEM and HeS preserved myelin and OLs in the corpus callosum of CPZ-fed rats, along with reduced microglia and astrocyte activation, and downregulated IL-1β expression. Furthermore, post-treatment with HeS, in mouse models with acute (6 weeks) or chronic (12 weeks) CPZ-induced demyelination demonstrated oral administration during the final 4 weeks (HeS4/6 or HeS4/12) effectively preserved myelin in the corpus callosum. Additionally, HeS4/6 and HeS4/12 inhibited anxious and depressive-like behaviors in CPZ-fed mice. In summary, simultaneous administration of HEM and HeS in rats during short-term CPZ intoxication preserved OLs and myelin. Furthermore, post-administration of HeS not only inhibited demyelination and gliosis but also alleviated anxiety and depression in both acute and chronic CPZ-fed mice. This study presents compelling evidence supporting the potential of HeS as a promising small active compound for protecting OLs and preserving myelin in demyelinating diseases associated with emotional disorders.
Collapse
Affiliation(s)
- Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jou Yang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Wan-Ping Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Yu-Wen Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Abay T, Stickels RR, Takizawa MT, Nalbant BN, Hsieh YH, Hwang S, Snopkowski C, Yu KKH, Abou-Mrad Z, Tabar V, Ludwig LS, Chaligné R, Satpathy AT, Lareau CA. Transcript-specific enrichment enables profiling rare cell states via scRNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587039. [PMID: 38586040 PMCID: PMC10996707 DOI: 10.1101/2024.03.27.587039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing (scRNA-seq) identifies many rare populations of interest that express specific marker transcript combinations, traditional flow sorting limits our ability to enrich these populations for further profiling, including requiring cell surface markers with high-fidelity antibodies. Additionally, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. To address these limitations, we describe Programmable Enrichment via RNA Flow-FISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations from complex cellular mixtures defined by the presence or absence of specific RNA transcripts. Across immune populations (n = 141,227 cells) and fresh-frozen and formalin-fixed paraffin-embedded brain tissue (n = 29,522 nuclei), we demonstrate the sorting logic that can be used to enrich for cell populations via RNA-based cytometry followed by high-throughput scRNA-seq. Our approach provides a rational, programmable method for studying rare populations identified by one or more marker transcripts.
Collapse
Affiliation(s)
- Tsion Abay
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Robert R. Stickels
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
| | - Meril T. Takizawa
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benan N. Nalbant
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Hsin Hsieh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Charité Universitätsmedizin Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Sidney Hwang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
| | - Catherine Snopkowski
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenny Kwok Hei Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leif S. Ludwig
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Ronan Chaligné
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ansuman T. Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Caleb A. Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|