1
|
Vieira BM, de São José VS, Niemeyer Filho PS, Moura-Neto V. Eosinophils induces glioblastoma cell suppression and apoptosis - Roles of GM-CSF and cysteinyl-leukotrienes. Int Immunopharmacol 2023; 123:110729. [PMID: 37536182 DOI: 10.1016/j.intimp.2023.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Glioblastoma is the most common and lethal primary brain tumor in adults. Despite the available cancer treatments, the recurrence of the tumor is high, and the survival rate is low. New approaches to antitumor therapies are needed. Eosinophils are prominent in allergic diseases and accumulate in several human brain tumors. Recently, the antitumor role of eosinophils has been targeted as eosinophils release several cytotoxic factors that induce cell impairment and death. OBJECTIVE Here we aim to evaluate the interaction of the eosinophil and glioblastoma cells, the mechanism involved in the potential killing of the glioblastoma cells by the eosinophils, and how allergy/asthma could confer a better glioblastoma prognosis. METHODS Eosinophils and serum from asthmatic and non-asthmatic donors were cultivated with different glioblastoma cell lines. RESULTS Glioblastoma cells recruit eosinophils via GM-CSF signaling, activating and increasing eosinophil survivability and function on a GM-CSF-dependent manner. Eosinophils reduce glioblastoma cells metabolism, proliferation, and migration, via Fas/FasL. Cysteinyl-leukotrienes are accounted for the asthmatic serum enhancement of the glioblastoma cell migration and proliferation. Cysteinyl-leukotrienes enhance glioblastoma cell proliferation and migration, albeit activate eosinophils that suppress glioblastoma cells. CONCLUSION Eosinophils have the potential to be key cells on glioblastoma therapeutics, as allergy and eosinophilia are correlated with a better glioblastoma prognosis. Eosinophils are elicited and attach to glioblastoma cells, where, by its cytotoxic function, via Fas/FasL, hind glioblastoma cell metabolism, proliferation, migration, and induce cell death.
Collapse
Affiliation(s)
- Bruno Marques Vieira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil.
| | - Vitória Santório de São José
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Soares Niemeyer Filho
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Inflammatory Infiltrate and Angiogenesis in Mantle Cell Lymphoma. Transl Oncol 2020; 13:100744. [PMID: 32120334 PMCID: PMC7052512 DOI: 10.1016/j.tranon.2020.100744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive and rare B-cell non-Hodgkin lymphoma classified in two clinicopathological subtypes according to SOX11 expression and mutation state of immunoglobulin variable region heavy chain (IgVH) gene. The transcription factor SOX11, overexpressed in 78%-93% of MCL patients, plays a central role in modulating tumor microenvironment prosurvival signals and angiogenic genes. In this work, we have explored the lymph node microenvironment of three subgroups of MCL patients classified according to SOX11 expression as negative, light, and strong. CD34+ microvessels, CD4+ and CD8+ T-lymphocytes, CD68+ and CD163+ macrophages, and the oncogene p53 expression were evaluated by immunohistochemistry. Moreover, STAT3 mRNA expression was analyzed by RNA-scope assay. Our results confirmed increased angiogenesis in the sample of patients positive to SOX11 compared to the negative ones and demonstrated that angiogenesis and SOX11 expression positively correlate to a higher T-lymphocytes inflammatory infiltrate. On the contrary, angiogenesis and SOX11 expression negatively correlate with macrophage's inflammatory infiltrate and p53 expression. STAT3 mRNA expression level was not relevant concerning angiogenesis or SOX11 expression. Overall, our data indicate that, in MCL, SOX11 expression is associated with increased angiogenesis and a high CD4+ and CD8+ T-cell infiltration, which are not sustained by CD163+ macrophages infiltrate and p53 expression.
Collapse
|
3
|
Kopp S, Sahana J, Islam T, Petersen AG, Bauer J, Corydon TJ, Schulz H, Saar K, Huebner N, Slumstrup L, Riwaldt S, Wehland M, Infanger M, Luetzenberg R, Grimm D. The role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine. Sci Rep 2018; 8:921. [PMID: 29343717 PMCID: PMC5772637 DOI: 10.1038/s41598-017-18556-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Human MCF-7 breast cancer cells were exposed to a Random Positioning Machine (RPM). After 24 hours (h) the cells grew either adherently within a monolayer (AD) or within multicellular spheroids (MCS). AD and MCS populations were separately harvested, their cellular differences were determined performing qPCR on genes, which were differently expressed in AD and MCS cells. Gene array technology was applied to detect RPM-sensitive genes in MCF-7 cells after 24 h. Furthermore, the capability to form multicellular spheroids in vitro was compared with the intracellular distribution of NF-kappaB (NFκB) p65. NFκB was equally distributed in static control cells, but predominantly localized in the cytoplasm in AD cells and nucleus in MCS cells exposed to the RPM. Gene array analyses revealed a more than 2-fold change of only 23 genes including some whose products are affected by oxygen levels or regulate glycolysis. Significant upregulations of the mRNAs of enzymes degrading heme, of ANXA1, ANXA2, CTGF, CAV2 and ICAM1, as well as of FAS, Casp8, BAX, p53, CYC1 and PARP1 were observed in MCS cells as compared with 1g-control and AD cells. An interaction analysis of 47 investigated genes suggested that HMOX-1 and NFκB variants are activated, when multicellular spheroids are formed.
Collapse
Affiliation(s)
- Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Tawhidul Islam
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Asbjørn Graver Petersen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark.,Department of Ophthalmology, Aarhus University Hospital, DK-8000, Aarhus C, Denmark
| | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, D-50931, Cologne, Germany
| | - Kathrin Saar
- Max-Delbrück-Center for Molecular Medicine, D-13092, Berlin-Buch, Germany
| | - Norbert Huebner
- Max-Delbrück-Center for Molecular Medicine, D-13092, Berlin-Buch, Germany
| | - Lasse Slumstrup
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Stefan Riwaldt
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Ronald Luetzenberg
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany
| | - Daniela Grimm
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, D-39120, Magdeburg, Germany. .,Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
4
|
Abstract
Protein p73 is a member of the p53 protein family that can induce cell cycle arrest or apoptosis by the activation of p53-responsive genes as well as p53-independent pathways. Alternative promoter usage, together with differential splicing of the C-terminal exons, forms several distinct mRNAs that are translated into corresponding protein isoforms containing different domains. While TAp73 isoforms respond to genotoxic stress in a manner similar to tumor suppressor p53, ΔTAp73 isoforms inhibit apoptosis during normal development and in cancer cell lines. Thus, the impact of p73 on tumorigenesis depends on a subtle balance between tumor-promoting and -suppressing isoforms. Due to the structural homology between p53 and p73, a subtle balance among p53 family members and their isoforms could influence glioma cell evolution toward malignancy. Thus, the p73 status has to be considered when studying the regulatory role of p53 protein in gliomagenesis. The presented review summarizes recent knowledge about the issue of p73 and its isoforms with respect to neuro-oncology research.
Collapse
Affiliation(s)
- Radim Jancalek
- Department of Neurosurgery and International Clinical Research Center, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
5
|
Atukeren P, Kemerdere R, Kacira T, Hanimoglu H, Ozlen F, Yavuz B, Tanriverdi T, Gumustas K, Canbaz B. Expressions of some vital molecules: glioblastoma multiforme versus normal tissues. Neurol Res 2013; 32:492-501. [DOI: 10.1179/174313209x459075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Fu J, Rodova M, Nanta R, Meeker D, Van Veldhuizen PJ, Srivastava RK, Shankar S. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro Oncol 2013; 15:691-706. [PMID: 23482671 DOI: 10.1093/neuonc/not011] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme is the most common form of primary brain tumor, often characterized by poor survival. Glioblastoma initiating cells (GICs) regulate self-renewal, differentiation, and tumor initiation properties and are involved in tumor growth, recurrence, and resistance to conventional treatments. The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryonic morphogenesis. The objectives of this study were to examine the molecular mechanisms by which GIC characteristics are regulated by NPV-LDE-225 (Smoothened inhibitor; (2,2'-[[dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N-dimethylbenzenamine). METHODS Cell viability and apoptosis were measured by XTT and annexin V-propidium iodide assay, respectively. Gli translocation and transcriptional activities were measured by immunofluorescence and luciferase assay, respectively. Gene and protein expressions were measured by quantitative real-time PCR and Western blot analyses, respectively. RESULTS AND CONCLUSION NPV-LDE-225 inhibited cell viability, neurosphere formation, and Gli transcriptional activity and induced apoptosis by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. NPV-LDE-225 increased the expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-R1/DR4, TRAIL-R2/DR5, and Fas and decreased the expression of platelet derived growth factor receptor-α and Bcl2, and these effects were abrogated by Gli1 plus Gli2 short hairpin RNAs. NPV-LDE-225 enhanced the therapeutic potential of FasL and TRAIL by upregulating Fas and DR4/5, respectively. Interestingly, NPV-LDE-225 induced expression of programmed cell death 4 and apoptosis and inhibited cell viability by suppressing micro RNA (miR)-21. Furthermore, NPV-LDE-225 inhibited pluripotency-maintaining factors Nanog, Oct4, Sox2, and cMyc. The inhibition of Bmi1 by NPV-LDE-225 was regulated by induction of miR-128. Finally, NPV-LDE-225 suppressed epithelial-mesenchymal transition by upregulating E-cadherin and inhibiting N-cadherin, Snail, Slug, and Zeb1 through modulating the miR-200 family. Our data highlight the importance of the SHH pathway for self-renewal and early metastasis of GICs.
Collapse
Affiliation(s)
- Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro Oncol 2012; 14:958-78. [PMID: 22573310 DOI: 10.1093/neuonc/nos116] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microglia, which contribute substantially to the tumor mass of glioblastoma, have been shown to play an important role in glioma growth and invasion. While a large number of experimental studies on functional attributes of microglia in glioma provide evidence for their tumor-supporting roles, there also exist hints in support of their anti-tumor properties. Microglial activities during glioma progression seem multifaceted. They have been attributed to the receptors expressed on the microglia surface, to glioma-derived molecules that have an effect on microglia, and to the molecules released by microglia in response to their environment under glioma control, which can have autocrine effects. In this paper, the microglia and glioma literature is reviewed. We provide a synopsis of the molecular profile of microglia under the influence of glioma in order to help establish a rational basis for their potential therapeutic use. The ability of microglia precursors to cross the blood-brain barrier makes them an attractive target for the development of novel cell-based treatments of malignant glioma.
Collapse
Affiliation(s)
- Wei Li
- Brain Tumor Research Laboratories, The Brain and Mind Research Institute, University of Sydney, 94 Mallett St, Camperdown, Sydney, NSW 2050, Australia
| | | |
Collapse
|
8
|
Yu WR, Liu T, Kiehl TR, Fehlings MG. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 2011; 134:1277-92. [PMID: 21490053 DOI: 10.1093/brain/awr054] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although cervical spondylotic myelopathy is a common cause of chronic spinal cord dysfunction in humans, little is known about the molecular mechanisms underlying the progressive neural degeneration characterized by this condition. Based on animal models of cervical spondylotic myelopathy and traumatic spinal cord injury, we hypothesized that Fas-mediated apoptosis and inflammation may play an important role in the pathobiology of human cervical spondylotic myelopathy. We further hypothesized that neutralization of the Fas ligand using a function-blocking antibody would reduce cell death, attenuate inflammation, promote axonal repair and enhance functional neurological outcomes in animal models of cervical spondylotic myelopathy. We examined molecular changes in post-mortem human spinal cord tissue from eight patients with cervical spondylotic myelopathy and four control cases. Complementary studies were conducted using a mouse model of cervical spondylotic myelopathy (twy/twy mice that develop spontaneous cord compression at C2-C3). We observed Fas-mediated apoptosis of neurons and oligodendrocytes and an increase in inflammatory cells in the compressed spinal cords of patients with cervical spondylotic myelopathy. Furthermore, neutralization of Fas ligand with a function-blocking antibody in twy/twy mice reduced neural inflammation at the lesion mediated by macrophages and activated microglia, glial scar formation and caspase-9 activation. It was also associated with increased expression of Bcl-2 and promoted dramatic functional neurological recovery. Our data demonstrate, for the first time in humans, the potential contribution of Fas-mediated cell death and inflammation to the pathobiology of cervical spondylotic myelopathy. Complementary data in a murine model of cervical spondylotic myelopathy further suggest that targeting the Fas death receptor pathway is a viable neuroprotective strategy to attenuate neural degeneration and optimize neurological recovery in cervical spondylotic myelopathy. Our findings highlight the possibility of medical treatments for cervical spondylotic myelopathy that are complementary to surgical decompression.
Collapse
Affiliation(s)
- Wen Ru Yu
- Department of Pathology, Toronto Western Research Institute, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, and University of Toronto, Room 4W-449, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | | | | | | |
Collapse
|
9
|
Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL, Galli R. Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 2010; 70:7500-13. [PMID: 20858720 DOI: 10.1158/0008-5472.can-10-2353] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a known diagnostic and, although controversial, prognostic marker of human glioblastoma multiforme (GBM). However, its functional role and biological significance in GBM remain elusive. Here, we show that multiple GBM cell subpopulations could be purified from the specimens of patients with GBM and from cancer stem cell (CSC) lines based on the expression of EGFR and of other putative CSC markers. All these subpopulations are molecularly and functionally distinct, are tumorigenic, and need to express EGFR to promote experimental tumorigenesis. Among them, EGFR-expressing tumor-initiating cells (TIC) display the most malignant functional and molecular phenotype. Accordingly, modulation of EGFR expression by gain-of-function and loss-of-function strategies in GBM CSC lines enhances and reduces their tumorigenic ability, respectively, suggesting that EGFR plays a fundamental role in gliomagenesis. These findings open up the possibility of new therapeutically relevant scenarios, as the presence of functionally heterogeneous EGFR(pos) and EGFR(neg) TIC subpopulations within the same tumor might affect clinical response to treatment.
Collapse
Affiliation(s)
- Stefania Mazzoleni
- Neural Stem Cell Biology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O, Thiemann M, Mueller W, Sykora J, Kuhn A, Schreglmann N, Letellier E, Zuliani C, Klussmann S, Teodorczyk M, Gröne HJ, Ganten TM, Sültmann H, Tüttenberg J, von Deimling A, Regnier-Vigouroux A, Herold-Mende C, Martin-Villalba A. Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 2008; 13:235-48. [PMID: 18328427 DOI: 10.1016/j.ccr.2008.02.003] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 11/20/2007] [Accepted: 02/05/2008] [Indexed: 01/12/2023]
Abstract
Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo.
Collapse
Affiliation(s)
- Susanne Kleber
- Molecular Neurobiology Group, German Cancer Research Center (DKFZ), INF 581, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Choi K, Song S, Choi C. Requirement of caspases and p38 MAPK for TRAIL-mediated ICAM-1 expression by human astroglial cells. Immunol Lett 2008; 117:168-73. [PMID: 18339430 DOI: 10.1016/j.imlet.2008.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/15/2008] [Accepted: 01/20/2008] [Indexed: 12/30/2022]
Abstract
Among tumor necrosis factor (TNF) superfamily, TNF-related apoptosis inducing ligand (TRAIL) along with TNF-alpha and FasL is known as death ligand due to its selective cytotoxicity against transformed tumor cells. TRAIL can also induce alternative angiogenic and/or proinflammatory signals other than apoptosis, however, the molecular mechanisms responsible for the alternative signals have not been detailed yet. Intercellular adhesion molecule-1 (ICAM-1) is thought to be involved in the processes of metastasis and angiogenesis in various tumors. We investigated the molecular mechanisms responsible for ICAM-1 expression by death ligands in human astroglial cells to delineate the alternative signals of these ligands. Here, we demonstrate that (1) death ligands induced expression of ICAM-1 at the mRNA and protein levels in human astroglial cells; (2) pre-treatment of z-VAD-fmk and/or SB202190 suppressed death ligand-induced ICAM-1 expression and subsequent adhesion of activated monocytic cells; and (3) inhibition of caspase suppressed death ligand-induced phosphorylation of p38 MAPK and IKK. These findings suggest biological function of death receptors other than apoptosis in human astroglial cells, and the involvement of caspase and/or p38 MAPK in alternative signaling through death receptors.
Collapse
Affiliation(s)
- Kyungsun Choi
- Laboratory of Computational Cell Biology, Department of Bio and Brain Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
12
|
Choi K, Choi C. Differential regulation of c-Jun N-terminal kinase and NF-κB pathway by caffeic acid phenethyl ester in astroglial and monocytic cells. J Neurochem 2008. [DOI: 10.1111/j.1471-4159.2007.5193.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Choi K, Choi C. Differential regulation of c-Jun N-terminal kinase and NF-kappaB pathway by caffeic acid phenethyl ester in astroglial and monocytic cells. J Neurochem 2007; 105:557-64. [PMID: 18088368 DOI: 10.1111/j.1471-4159.2007.05193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caffeic acid phenethyl ester (CAPE), an active component of propolis extracts, has been known for its specific inhibition of nuclear factor kappaB (NF-kappaB) and subsequent anti-inflammatory activity. In this study, we report that (i) CAPE exerts its anti-inflammatory action (inhibition of tumor necrosis factor-induced expression of intercellular adhesion molecule-1 and CC chemokine ligand-2) via NF-kappaB inhibition by two distinct molecular mechanisms in a cell-specific manner: CAPE inhibited downstream pathways of inhibitor kappaB (IkappaB) degradation in monocytic cells, while activation of upstream IkappaB kinase was suppressed by CAPE pre-treatment in astroglial cells; and (ii) CAPE paradoxically activates the c-Jun N-terminal kinase (JNK) pathway, which might be responsible for its pro-apoptotic action and divergent regulation of proinflammatory mediators such as CXC chemokine ligand-8.
Collapse
Affiliation(s)
- Kyungsun Choi
- Laboratory of Computational Cell Biology, Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | | |
Collapse
|
14
|
Choi K, Kim M, Ryu J, Choi C. Ginsenosides compound K and Rh2 inhibit tumor necrosis factor-α-induced activation of the NF-κB and JNK pathways in human astroglial cells. Neurosci Lett 2007; 421:37-41. [PMID: 17548155 DOI: 10.1016/j.neulet.2007.05.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 02/08/2023]
Abstract
Ginsenosides, the main component of Panax ginseng, have been known for the anti-inflammatory and anti-proliferative activities. In this study, we investigated the molecular mechanisms responsible for the anti-inflammatory effects of ginsenosides on activated astroglial cells. Among 13 different ginsenosides, intestinal bacterial metabolites Rh(2) and compound K (C-K) showed a significant inhibitory effect on tumor necrosis factor-alpha (TNF-alpha)-induced expression of intercellular adhesion molecule-1 in human astroglial cells. Pretreatment with C-K or Rh(2) suppressed TNF-alpha-induced phosphorylation of IkappaBalpha kinase and the subsequent phosphorylation and degradation of IkappaBalpha. Additionally, the same treatment inhibited TNF-alpha-induced phosphorylation of MKK4 and the subsequent activation of the JNK-AP-1 pathway. The inhibitory effect of ginsenosides on TNF-alpha-induced activation of the NF-kappaB and JNK pathways was not observed in human monocytic U937 cells. These results collectively indicate that ginsenoside metabolites C-K and Rh(2) exert anti-inflammatory effects by the inhibition of both NF-kappaB and JNK pathways in a cell-specific manner.
Collapse
Affiliation(s)
- Kyungsun Choi
- Laboratory of Computational Cell Biology, Department of Brain and Bioengineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|