1
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
2
|
Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res 2021; 70:e12699. [PMID: 33020940 PMCID: PMC9275476 DOI: 10.1111/jpi.12699] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Our daily rhythmicity is controlled by a circadian clock with a specific set of genes located in the suprachiasmatic nucleus in the hypothalamus. Mast cells (MCs) are major effector cells that play a protective role against pathogens and inflammation. MC distribution and activation are associated with the circadian rhythm via two major pathways, IgE/FcεRI- and IL-33/ST2-mediated signaling. Furthermore, there is a robust oscillation between clock genes and MC-specific genes. Melatonin is a hormone derived from the amino acid tryptophan and is produced primarily in the pineal gland near the center of the brain, and histamine is a biologically active amine synthesized from the decarboxylation of the amino acid histidine by the L-histidine decarboxylase enzyme. Melatonin and histamine are previously reported to modulate circadian rhythms by pathways incorporating various modulators in which the nuclear factor-binding near the κ light-chain gene in B cells, NF-κB, is the common key factor. NF-κB interacts with the core clock genes and disrupts the production of pro-inflammatory cytokine mediators such as IL-6, IL-13, and TNF-α. Currently, there has been no study evaluating the interdependence between melatonin and histamine with respect to circadian oscillations in MCs. Accumulating evidence suggests that restoring circadian rhythms in MCs by targeting melatonin and histamine via NF-κB may be promising therapeutic strategy for MC-mediated inflammatory diseases. This review summarizes recent findings for circadian-mediated MC functional roles and activation paradigms, as well as the therapeutic potentials of targeting circadian-mediated melatonin and histamine signaling in MC-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Science and Mathematics, Texas A&M University – Central Texas, Killeen, TX, USA
| | | | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Biological functions of melatonin in relation to pathogenesis of oral lichen planus. Med Hypotheses 2017; 104:40-44. [DOI: 10.1016/j.mehy.2017.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
|
4
|
Borniger JC, Cisse YM, Surbhi, Nelson RJ. Reciprocal Regulation of Circadian Rhythms and Immune Function. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
O'Keeffe SM, Beynon AL, Davies JS, Moynagh PN, Coogan AN. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock. Eur J Neurosci 2017; 45:1111-1123. [PMID: 28245070 DOI: 10.1111/ejn.13553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S. M. O'Keeffe
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| | - A. L. Beynon
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - J. S. Davies
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - P. N. Moynagh
- Department of Biology; Maynooth University; National University of Ireland; Maynooth Ireland
| | - A. N. Coogan
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| |
Collapse
|
6
|
Cooper JM, Rastogi A, Krizo JA, Mintz EM, Prosser RA. Urokinase-type plasminogen activator modulates mammalian circadian clock phase regulation in tissue-type plasminogen activator knockout mice. Eur J Neurosci 2017; 45:805-815. [PMID: 27992087 DOI: 10.1111/ejn.13511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Glutamate phase shifts the circadian clock in the mammalian suprachiasmatic nucleus (SCN) by activating NMDA receptors. Tissue-type plasminogen activator (tPA) gates phase shifts by activating plasmin to generate m(ature) BDNF, which binds TrkB receptors allowing clock phase shifts. Here, we investigate phase shifting in tPA knockout (tPA-/- ; B6.129S2-Plattm1Mlg /J) mice, and identify urokinase-type plasminogen activator (uPA) as an additional circadian clock regulator. Behavioral activity rhythms in tPA-/- mice entrain to a light-dark (LD) cycle and phase shift in response to nocturnal light pulses with no apparent loss in sensitivity. When the LD cycle is inverted, tPA-/- mice take significantly longer to entrain than C57BL/6J wild-type (WT) mice. SCN brain slices from tPA-/- mice exhibit entrained neuronal activity rhythms and phase shift in response to nocturnal glutamate with no change in dose-dependency. Pre-treating slices with the tPA/uPA inhibitor, plasminogen activator inhibitor-1 (PAI-1), inhibits glutamate-induced phase delays in tPA-/- slices. Selective inhibition of uPA with UK122 prevents glutamate-induced phase resetting in tPA-/- but not WT SCN slices. tPA expression is higher at night than the day in WT SCN, while uPA expression remains constant in WT and tPA-/- slices. Casein-plasminogen zymography reveals that neither tPA nor uPA total proteolytic activity is under circadian control in WT or tPA-/- SCN. Finally, tPA-/- SCN tissue has lower mBDNF levels than WT tissue, while UK122 does not affect mBDNF levels in either strain. Together, these results suggest that either tPA or uPA can support photic/glutamatergic phase shifts of the SCN circadian clock, possibly acting through distinct mechanisms.
Collapse
Affiliation(s)
- Joanna M Cooper
- Department of Biochemistry and Cellular and Molecular Biology, NeuroNET Research Center, M407 Walters Life Sciences, University of Tennessee, Knoxville, TN, 37996-0001, USA
| | - Ashutosh Rastogi
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Jessica A Krizo
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Eric M Mintz
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Rebecca A Prosser
- Department of Biochemistry and Cellular and Molecular Biology, NeuroNET Research Center, M407 Walters Life Sciences, University of Tennessee, Knoxville, TN, 37996-0001, USA
| |
Collapse
|
7
|
The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions. Sci Rep 2016; 6:26396. [PMID: 27193598 PMCID: PMC4872224 DOI: 10.1038/srep26396] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of the host. In the present study, the bioinformatical analysis of the transcriptomic data from oyster Crassostrea gigas and further biological validation revealed that oyster TNF (CgTNF-1 CGI_10018786) could activate the transcription factors NF-κB and HSF (heat shock transcription factor) through MAPK signaling pathway, and then regulate apoptosis, redox reaction, neuro-regulation and protein folding in oyster haemocytes. The activated immune cells then released neurotransmitters including acetylcholine, norepinephrine and [Met(5)]-enkephalin to regulate the immune response by arising the expression of three TNF (CGI_10005109, CGI_10005110 and CGI_10006440) and translocating two NF-κB (Cgp65, CGI_10018142 and CgRel, CGI_10021567) between the cytoplasm and nuclei of haemocytes. Neurotransmitters exhibited the immunomodulation effects by influencing apoptosis and phagocytosis of oyster haemocytes. Acetylcholine and norepinephrine could down-regulate the immune response, while [Met(5)]-enkephalin up-regulate the immune response. These results suggested that the simple neuroendocrine-immune regulatory network in oyster might be activated by oyster TNF and then regulate the immune response by virtue of neurotransmitters, cytokines and transcription factors.
Collapse
|
8
|
Soták M, Bryndová J, Ergang P, Vagnerová K, Kvapilová P, Vodička M, Pácha J, Sumová A. Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiol Int 2016; 33:520-9. [PMID: 27031999 DOI: 10.3109/07420528.2016.1161643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucocorticoids are considered to synchronize the rhythmicity of clock genes in peripheral tissues; however, the role of circadian variations of endogenous glucocorticoids is not well defined. In the present study, we examined whether peripheral circadian clocks were impaired by adrenalectomy. To achieve this, we tested the circadian rhythmicity of core clock genes (Bmal1, Per1-3, Cry1, RevErbα, Rora), clock-output genes (Dbp, E4bp4) and a glucocorticoid- and clock-controlled gene (Gilz) in liver, jejunum, kidney cortex, splenocytes and visceral adipose tissue (VAT). Adrenalectomy did not affect the phase of clock gene rhythms but distinctly modulated clock gene mRNA levels, and this effect was partially tissue-dependent. Adrenalectomy had a significant inhibitory effect on the level of Per1 mRNA in VAT, liver and jejunum, but not in kidney and splenocytes. Similarly, adrenalectomy down-regulated mRNA levels of Per2 in splenocytes and VAT, Per3 in jejunum, RevErbα in VAT and Dbp in VAT, kidney and splenocytes, whereas the mRNA amounts of Per1 and Per2 in kidney and Per3 in VAT and splenocytes were up-regulated. On the other hand, adrenalectomy had minimal effects on Rora and E4bp4 mRNAs. Adrenalectomy also resulted in decreased level of Gilz mRNA but did not alter the phase of its diurnal rhythm. Collectively, these findings suggest that adrenalectomy alters the mRNA levels of core clock genes and clock-output genes in peripheral organs and may cause tissue-specific modulations of their circadian profiles, which are reflected in changes of the amplitudes but not phases. Thus, the circulating corticosteroids are necessary for maintaining the high-amplitude rhythmicity of the peripheral clocks in a tissue-specific manner.
Collapse
Affiliation(s)
- M Soták
- a Department of Epithelial Physiology
| | | | - P Ergang
- a Department of Epithelial Physiology
| | | | | | - M Vodička
- a Department of Epithelial Physiology
| | - J Pácha
- a Department of Epithelial Physiology
| | - A Sumová
- b Department of Neurohumoral Regulations , Institute of Physiology, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
9
|
Paladino N, Mul Fedele ML, Duhart JM, Marpegan L, Golombek DA. Modulation of mammalian circadian rhythms by tumor necrosis factor-α. Chronobiol Int 2014; 31:668-79. [PMID: 24527954 DOI: 10.3109/07420528.2014.886588] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100 µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice. HIGHLIGHTS We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.
Collapse
Affiliation(s)
- Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes , Buenos Aires , Argentina
| | | | | | | | | |
Collapse
|
10
|
Duhart JM, Leone MJ, Paladino N, Evans JA, Castanon-Cervantes O, Davidson AJ, Golombek DA. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α. THE JOURNAL OF IMMUNOLOGY 2013; 191:4656-64. [PMID: 24062487 DOI: 10.4049/jimmunol.1300450] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.
Collapse
Affiliation(s)
- José M Duhart
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1876 Bernal, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Cermakian N, Lange T, Golombek D, Sarkar D, Nakao A, Shibata S, Mazzoccoli G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 2013; 30:870-88. [PMID: 23697902 DOI: 10.3109/07420528.2013.782315] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Tanenhaus AK, Zhang J, Yin JCP. In vivo circadian oscillation of dCREB2 and NF-κB activity in the Drosophila nervous system. PLoS One 2012; 7:e45130. [PMID: 23077489 PMCID: PMC3471920 DOI: 10.1371/journal.pone.0045130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/14/2012] [Indexed: 12/15/2022] Open
Abstract
cAMP response element-binding protein (CREB) and nuclear factor kappa-B (NF-κB) are two ubiquitous transcription factors involved in a wide number of cellular processes, including the circadian system. Many previous studies on these factors use cellular assays that provide limited information on circadian activity or anatomical specificity. The ability to study transcription factors in defined tissue within intact animals will help to bridge the gap between cellular and in vivo data. We have used the GAL4-UAS and FLP-FRT systems to gain spatial control over reporter gene expression. Using a luciferase-based reporter, we show in vivo that Drosophila dCREB2- and NF-κB-mediated transcription oscillates in neuronal cells, glia, and in the mushroom body, a higher-order brain center in flies. This oscillation is under circadian control, cycling with a 24-hour rhythm, under both light-dark and dark-dark conditions. In light-light conditions, dCREB2 and NF-κB reporter flies exhibit a suppression of rhythmic activity. Furthermore, neuronal cycling of dCREB2 and NF-κB activity are modulated in period mutant flies, indicating these oscillations are controlled through the central clock. This study shows for the first time region-specific circadian oscillation of dCREB2/NF-κB activity in the Drosophila nervous system.
Collapse
Affiliation(s)
- Anne K. Tanenhaus
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jiabin Zhang
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jerry C. P. Yin
- Departments of Genetics and Neurology, University of Wisconsin-Madison, Madison, WI 53706
- * E-mail:
| |
Collapse
|
13
|
Tian R, Alvarez-Saavedra M, Cheng HYM, Figeys D. Uncovering the proteome response of the master circadian clock to light using an AutoProteome system. Mol Cell Proteomics 2011; 10:M110.007252. [PMID: 21859948 DOI: 10.1074/mcp.m110.007252] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the central circadian pacemaker that governs rhythmic fluctuations in behavior and physiology in a 24-hr cycle and synchronizes them to the external environment by daily resetting in response to light. The bilateral SCN is comprised of a mere ~20,000 neurons serving as cellular oscillators, a fact that has, until now, hindered the systematic study of the SCN on a global proteome level. Here we developed a fully automated and integrated proteomics platform, termed AutoProteome system, for an in-depth analysis of the light-responsive proteome of the murine SCN. All requisite steps for a large-scale proteomic study, including preconcentration, buffer exchanging, reduction, alkylation, digestion and online two-dimensional liquid chromatography-tandem MS analysis, are performed automatically on a standard liquid chromatography-MS system. As low as 2 ng of model protein bovine serum albumin and up to 20 μg and 200 μg of SCN proteins can be readily processed and analyzed by this system. From the SCN tissue of a single mouse, we were able to confidently identify 2131 proteins, of which 387 were light-regulated based on a spectral counts quantification approach. Bioinformatics analysis of the light-inducible proteins reveals their diverse distribution in different canonical pathways and their heavy connection in 19 protein interaction networks. The AutoProteome system identified vasopressin-neurophysin 2-copeptin and casein kinase 1 delta, both of which had been previously implicated in clock timing processes, as light-inducible proteins in the SCN. Ras-specific guanine nucleotide-releasing factor 1, ubiquitin protein ligase E3A, and X-linked ubiquitin specific protease 9, none of which had previously been implicated in SCN clock timing processes, were also identified in this study as light-inducible proteins. The AutoProteome system opens a new avenue to systematically explore the proteome-wide events that occur in the SCN, either in response to light or other stimuli, or as a consequence of its intrinsic pacemaker capacity.
Collapse
Affiliation(s)
- Ruijun Tian
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
14
|
Deng XH, Bertini G, Palomba M, Xu YZ, Bonaconsa M, Nygård M, Bentivoglio M. Glial transcripts and immune-challenged glia in the suprachiasmatic nucleus of young and aged mice. Chronobiol Int 2010; 27:742-67. [PMID: 20560709 DOI: 10.3109/07420521003681498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biological rhythms are frequently disturbed with advancing age, and aging-related changes of glia in the hypothalamic suprachiasmatic nucleus (SCN), the master circadian pacemaker, require special attention. In particular, astrocytes contribute to SCN function, and aging is associated with increased inflammatory activity in the brain, in which microglia could be especially implicated. On this basis, we investigated in the SCN of young and old mice glial transcripts and cell features, and the glial cell response to a central inflammatory challenge. Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to analyze the expression of mRNAs encoding the astrocytic glial fibrillary acidic protein and the microglial antigen CD11b. Both these transcripts, here investigated in the SCN for the first time, were significantly increased in the old SCN. Glial cell phenotyping with immunohistochemistry revealed hypertrophic and intensely stained astrocytes and microglia in the aged SCN. In both age groups, microglia were scattered throughout the SCN and astrocytes were prominent in the ventral portion, where retinal fibers are densest; in the aged SCN, astrocytes were also numerous in the dorsal portion. After intracerebroventricular injections of a mixture of interferon-gamma and tumor necrosis factor-alpha, or phosphate-buffered saline as control, immunolabeling was evaluated with stereological cell counts and confocal microscopy. Phenotypic features of astrocyte and microglia activation in response to cytokine injections were markedly enhanced in the aged SCN. Subregional variations in glial cell density were also documented in the aged compared to the young SCN. Altogether, the findings show increases in the expression of glial transcripts and hypertrophy of astrocytes and microglia in the aged SCN, as well as age-dependent variation in the responses of immune-challenged SCN glia. The data thus point out an involvement of glia in aging-related changes of the biological clock.
Collapse
Affiliation(s)
- Xiao-Hua Deng
- Department of Neuroscience, University of Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Archer SN, Carpen JD, Gibson M, Lim GH, Johnston JD, Skene DJ, von Schantz M. Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep 2010; 33:695-701. [PMID: 20469812 PMCID: PMC2864885 DOI: 10.1093/sleep/33.5.695] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
STUDY OBJECTIVES To screen the PER3 promoter for polymorphisms and investigate the phenotypic associations of these polymorphisms with diurnal preference, delayed sleep phase disorder/syndrome (DSPD/DSPS), and their effects on reporter gene expression. DESIGN Interspecific comparison was used to define the approximate extent of the PER3 promoter as the region between the transcriptional start site and nucleotide position -874. This region was screened in DNA pools using PCR and direct sequencing, which was also used to screen DNA from individual participants. The different promoter alleles were cloned into a luciferase expression vector and a deletion library created. Promoter activation was measured by chemiluminescence. SETTING N/A. PATIENTS OR PARTICIPANTS DNA samples were obtained from volunteers with defined diurnal preference (3 x 80, selected from a pool of 1,590), and DSPD patients (n=23). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS We verified three single nucleotide polymorphisms (G -320T, C -319A, G -294A), and found a novel variable number tandem repeat (VNTR) polymorphism (-318 1/2 VNTR). The -320T and -319A alleles occurred more frequently in DSPD compared to morning (P = 0.042 for each) or evening types (P = 0.006 and 0.033). The allele combination TA2G was more prevalent in DSPD compared to morning (P 0.033) or evening types (P = 0.002). Luciferase expression driven by the TA2G combination was greater than for the more common GC2A (P < 0.05) and the rarer TA1G (P < 0.001) combinations. Deletion reporter constructs identified two enhancer regions (-703 to -605, and -283 to -80). CONCLUSIONS Polymorphisms in the PER3 promoter could affect its expression, leading to potential differences in the observed functions of PER3.
Collapse
Affiliation(s)
- Simon N Archer
- Faculty of Health and Medical Sciences, University ofSurrey, Guildford, Surrey, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Casiraghi LP, Croci DO, Poirier F, Rabinovich GA, Golombek DA. "Time sweet time": circadian characterization of galectin-1 null mice. J Circadian Rhythms 2010; 8:4. [PMID: 20403179 PMCID: PMC2876058 DOI: 10.1186/1740-3391-8-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/19/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Recent evidence suggests a two-way interaction between the immune and circadian systems. Circadian control of immune factors, as well as the effect of immunological variables on circadian rhythms, might be key elements in both physiological and pathological responses to the environment. Among these relevant factors, galectin-1 is a member of a family of evolutionarily-conserved glycan-binding proteins with both extracellular and intracellular effects, playing important roles in immune cell processes and inflammatory responses. Many of these actions have been studied through the use of mice with a null mutation in the galectin-1 (Lgals1) gene. To further analyze the role of endogenous galectin-1 in vivo, we aimed to characterize the circadian behavior of galectin-1 null (Lgals1-/-) mice. METHODS We analyzed wheel-running activity in light-dark conditions, constant darkness, phase responses to light pulses (LP) at circadian time 15, and reentrainment to 6 hour shifts in light-dark schedule in wild-type (WT) and Lgals1-/- mice. RESULTS We found significant differences in free-running period, which was longer in mutant than in WT mice (24.02 vs 23.57 h, p < 0.005), phase delays in response to LP (2.92 vs 1.90 circadian h, p < 0.05), and also in alpha (14.88 vs. 12.35 circadian h, p < 0.05). CONCLUSIONS Given the effect of a null mutation on circadian period and entrainment, we indicate that galectin-1 could be involved in the regulation of murine circadian rhythmicity. This is the first study implicating galectin-1 in the mammalian circadian system.
Collapse
Affiliation(s)
- Leandro P Casiraghi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Argentina
| | - Diego O Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IByME)/CONICET, Argentina
| | - Francoise Poirier
- Jacques Monod Institute, UMR-CNRS7592, Paris Diderot University, 75205 Paris, France
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IByME)/CONICET, Argentina
| | - Diego A Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Argentina
| |
Collapse
|
17
|
Luna-Moreno D, Aguilar-Roblero R, Díaz-Muñoz M. RESTRICTED FEEDING ENTRAINS RHYTHMS OF INFLAMMATION-RELATED FACTORS WITHOUT PROMOTING AN ACUTE-PHASE RESPONSE. Chronobiol Int 2009; 26:1409-29. [DOI: 10.3109/07420520903417003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Mou X, Peterson CB, Prosser RA. Tissue-type plasminogen activator-plasmin-BDNF modulate glutamate-induced phase-shifts of the mouse suprachiasmatic circadian clockin vitro. Eur J Neurosci 2009; 30:1451-60. [DOI: 10.1111/j.1460-9568.2009.06946.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Burioka N, Koyanagi S, Fukuoka Y, Okazaki F, Fujioka T, Kusunose N, Endo M, Suyama H, Chikumi H, Ohdo S, Shimizu E. Influence of intermittent hypoxia on the signal transduction pathways to inflammatory response and circadian clock regulation. Life Sci 2009; 85:372-8. [PMID: 19616563 DOI: 10.1016/j.lfs.2009.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/24/2009] [Accepted: 07/01/2009] [Indexed: 11/19/2022]
Abstract
AIMS Obstructive sleep apnea syndrome (OSAS), characterized by intermittent hypoxia/reoxygenation (IHR), is often associated with changing levels of circulating inflammatory cytokines and causes excessive daytime sleepiness, mood disturbances, and cardiovascular disease. An abnormal rhythm in the expression of circadian clock genes is observed in OSAS patients, and is also implicated in OSAS-related clinical symptoms. IHR-induced signal transduction is thought to underlie OSAS-associated complications. The aim of this study is to elucidate the influence of IHR on signal transduction pathways to inflammatory response and circadian clock regulation. MAIN METHODS To evaluate the direct action of IHR on intracellular signaling, we used a cell culture model to explore the underlying transcriptional events initiated by IHR. KEY FINDINGS Treatment of cultured human lung adenocarcinoma epithelial cells (A549) with IHR resulted in the elevation of mRNA levels of an inflammation cytokine interleukin-6 (IL-6), due to activation of the signaling pathway of nuclear factor-kappaB, a potent transcriptional activator of IL-6. On the other hand, the treatment of cells with IHR had little effect on clock gene response element-driven transcription. As a consequence, there was no significant change in mRNA levels of clock genes in IHR-treated cells. SIGNIFICANCE These results suggest that IHR can activate signal transduction to an inflammatory response, but not to circadian clock regulation. The abnormal rhythm in the expression of clock genes in OSAS patients is attributable to the changed levels of circulating factors that have the ability to modulate clock gene expression.
Collapse
Affiliation(s)
- Naoto Burioka
- Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University, 36-1 Nishimachi, Yonago 683-8504, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Esquifino AI, Cano P, Jiménez-Ortega V, Fernández-Mateos P, Cardinali DP. Neuroendocrine-immune correlates of circadian physiology: studies in experimental models of arthritis, ethanol feeding, aging, social isolation, and calorie restriction. Endocrine 2007; 32:1-19. [PMID: 17992597 DOI: 10.1007/s12020-007-9009-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Virtually all neuroendocrine and immunological variables investigated in animals and humans display biological periodicity. Circadian rhythmicity is revealed for every hormone in circulation as well as for circulating immune cells, lymphocyte metabolism and transformability, cytokines, receptors, and adhesion molecules. Clock genes, notably the three Period (Per1/Per2/Per3) genes and two Cryptochrome (Cry1/Cry2) genes, are present in immune and endocrine cells and are expressed in a circadian manner in human cells. This review discusses the circadian disruption of hormone release and immune-related mechanisms in several animal models in which circulating cytokines are modified including rat adjuvant arthritis, social isolation in rats and rabbits and alcoholism, the aging process and calorie restriction in rats. In every case the experimental manipulation used perturbed the temporal organization by affecting the shape and amplitude of a rhythm or by modifying the intrinsic oscillatory mechanism itself.
Collapse
Affiliation(s)
- Ana I Esquifino
- Departamento de Bioquimica y Biologia Molecular III, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | |
Collapse
|
21
|
Jhaveri KA, Ramkumar V, Trammell RA, Toth LA. Spontaneous, homeostatic, and inflammation-induced sleep in NF-kappaB p50 knockout mice. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1516-26. [PMID: 16793936 DOI: 10.1152/ajpregu.00262.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dimeric transcription factor nuclear factor-kappaB (NF-kappaB) regulates several endogenous sleep-modulatory substances and thereby serves as a pivotal mediator of sleep-wake homeostasis. To further define the role of NF-kappaB in sleep regulation, we monitored sleep and temperature in mice that lack the p50 subunit of NF-kappaB [p50 knockout (KO) mice]. Compared with the control B6129PF2/J strain, p50 KO mice spend more time in slow-wave sleep (SWS) and rapid eye movement sleep (REMS) under normal conditions and show enhanced homeostatic recovery of sleep after sleep loss. p50 KO mice also show increased SWS and reduced REMS and temperature after the administration of lipopolysaccharide, yet they are behaviorally less responsive to challenge with influenza virus. These data support a role for NF-kappaB, and, in particular, for the p50 subunit, in the regulation of sleep in healthy mice and in mice experiencing immune challenge.
Collapse
Affiliation(s)
- K A Jhaveri
- Dept. of Pharmacology, SIU School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | | | | | | |
Collapse
|
22
|
Leone MJ, Marpegan L, Bekinschtein TA, Costas MA, Golombek DA. Suprachiasmatic astrocytes as an interface for immune-circadian signalling. J Neurosci Res 2006; 84:1521-7. [PMID: 16955486 DOI: 10.1002/jnr.21042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothalamic suprachiasmatic nuclei (SCN), the site of a mammalian circadian clock, exhibit a dense immunoreactivity for glial fibrillary acidic protein (GFAP), a specific marker for astrocytes. Although there is evidence of a circadian variation in GFAP-IR in the hamster SCN and of the participation of glial cells in input and output mechanisms of the clock, the role of these cells within the circadian system is not clearly understood. The fact that astroglia can express and respond to cytokines suggests that they could work as mediators of immune signals to the circadian system. In the present study, we have found a daily variation of GFAP-IR in the mouse SCN, peaking during the light phase. In addition, we have identified GFAP and nuclear factor-kappaB (NF-kappaB) in glial cells within the SCN and in primary cultures of the mouse SCN. Moreover, SCN glia cultures were transfected with an NF-kappaB/luc construct whose transcriptional activity was increased with lipopolysaccharide 2 mug/ml, tumor necrosis factor-alpha 20 ng/ml, or interleukin-1alpha 100 ng/ml, after 12 hr of stimulation. These results suggest that the glial cells of the SCN can mediate input signals to the mouse circadian system coming from the immune system via NF-kappaB signaling.
Collapse
|
23
|
Marpegán L, Bekinschtein TA, Costas MA, Golombek DA. Circadian responses to endotoxin treatment in mice. J Neuroimmunol 2004; 160:102-9. [PMID: 15710463 DOI: 10.1016/j.jneuroim.2004.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/10/2004] [Accepted: 11/10/2004] [Indexed: 11/24/2022]
Abstract
We tested the ability of Escherichia coli lipopolysaccharide (LPS) to phase-shift the activity circadian rhythm in C57Bl/6J mice. Intraperitoneal administration of 25 microg/kg LPS induced photic-like phase delays (-43+/-10 min) during the early subjective night. These delays were non-additive to those induced by light at CT 15, and were reduced by the previous administration of sulfasalazine, a NF-kappaB activation inhibitor. At CT 15, LPS induced c-Fos expression in the dorsal area of the suprachiasmatic nuclei (SCN). Our results suggest that the activation of the immune system should be considered an entraining signal for the murine circadian clock.
Collapse
Affiliation(s)
- Luciano Marpegán
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, R.S. Peña 180, (1876) Bernal, Buenos Aires, Argentina
| | | | | | | |
Collapse
|