1
|
Inhibition of nuclease activity by a splice-switching oligonucleotide targeting deoxyribonuclease 1 mRNA prevents apoptosis progression and prolong viability of normal human CD4 + T-lymphocytes. Biochimie 2020; 174:34-43. [PMID: 32315661 DOI: 10.1016/j.biochi.2020.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
Abstract
The nuclease activity of deoxyribonuclease 1 (DNase I) is regulated by alternative splicing (AS) of its mRNA. The aim of this study was to define the ability of a splice-switching oligonucleotide (SSO) that base-paired with DNase I pre-mRNA to induce AS and inhibit nuclease activity in human T, B and NK lymphocytes. The SSO for DNase I could significantly downregulate the expression of full-length active DNase I and upregulate a truncated splice variant with a deleted exon 4. Such an induction of AS resulted in inhibition of nuclease activity and slowed apoptosis progression in anti-CD95/FAS stimulated lymphocytes. These results should facilitate further investigations of apoptosis regulation in lymphocytes and demonstrate that SSOs for DNase I are promising cytoprotective agents.
Collapse
|
2
|
Lebon C, Behar-Cohen F, Torriglia A. Cell Death Mechanisms in a Mouse Model of Retinal Degeneration in Spinocerebellar Ataxia 7. Neuroscience 2019; 400:72-84. [PMID: 30625334 DOI: 10.1016/j.neuroscience.2018.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
Spino-cerebellar ataxia type 7 (SCA7) is a polyglutamine (polyQ) disorder characterized by neurodegeneration of the brain, cerebellum, and retina caused by a polyglutamine expansion in ataxin7. The presence of an expanded polyQ tract in a mutant protein is known to induce protein aggregation, cellular stress, toxicity, and finally cell death. However, the consequences of the presence of mutant ataxin7 in the retina and the mechanisms underlying photoreceptor degeneration remain poorly understood. In this study, we show that in a retinal SCA7 mouse model, polyQ ataxin7 induces stress within the retina and activates Muller cells. Moreover, unfolded protein response and autophagy are activated in SCA7 photoreceptors. We have also shown that the photoreceptor death does not involve a caspase-dependent apoptosis but instead involves apoptosis inducing factor (AIF) and Leukocyte Elastase Inhibitor (LEI/L-DNase II). When these two cell death effectors are downregulated by their siRNA, a significant reduction in photoreceptor death is observed. These results highlight the consequences of polyQ protein expression in the retina and the role of caspase-independent pathways involved in photoreceptor cell death.
Collapse
Affiliation(s)
- Cecile Lebon
- Inserm U1138. Centre des Recherches des Cordeliers, 15, rue de l'Ecole de Médecine, 78006 Paris, France; Université Pierre et Marie Curie, France; Université Paris Descartes, France
| | - Francine Behar-Cohen
- Inserm U1138. Centre des Recherches des Cordeliers, 15, rue de l'Ecole de Médecine, 78006 Paris, France; Université Pierre et Marie Curie, France; Université Paris Descartes, France
| | - Alicia Torriglia
- Inserm U1138. Centre des Recherches des Cordeliers, 15, rue de l'Ecole de Médecine, 78006 Paris, France; Université Pierre et Marie Curie, France; Université Paris Descartes, France.
| |
Collapse
|
3
|
Jaadane I, Villalpando Rodriguez GE, Boulenguez P, Chahory S, Carré S, Savoldelli M, Jonet L, Behar‐Cohen F, Martinsons C, Torriglia A. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. J Cell Mol Med 2017; 21:3453-3466. [PMID: 28661040 PMCID: PMC5706508 DOI: 10.1111/jcmm.13255] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Ageing and alteration of the functions of the retinal pigment epithelium (RPE) are at the origin of lost of vision seen in age-related macular degeneration (AMD). The RPE is known to be vulnerable to high-energy blue light. The white light-emitting diodes (LED) commercially available have relatively high content of blue light, a feature that suggest that they could be deleterious for this retinal cell layer. The aim of our study was to investigate the effects of "white LED" exposure on RPE. For this, commercially available white LEDs were used for exposure experiments on Wistar rats. Immunohistochemical stain on RPE flat mount, transmission electron microscopy and Western blot were used to exam the RPE. LED-induced RPE damage was evaluated by studying oxidative stress, stress response pathways and cell death pathways as well as the integrity of the outer blood-retinal barrier (BRB). We show that white LED light caused structural alterations leading to the disruption of the outer blood-retinal barrier. We observed an increase in oxidized molecules, disturbance of basal autophagy and cell death by necrosis. We conclude that white LEDs induced strong damages in rat RPE characterized by the breakdown of the BRB and the induction of necrotic cell death.
Collapse
Affiliation(s)
- Imene Jaadane
- INSERM U1138Centre de Recherches des CordeliersUniversité Paris DescartesUniversité Pierre et Marie CurieParisFrance
- ENVA, Ecole Nationale Vétérinaire d'Alfort. Unité d'ophtalmologieMaisons‐AlfortFrance
| | | | - Pierre Boulenguez
- Division Eclairage et électromagnétismeCSTB, Centre Scientifique et Technique du BâtimentSaint Martin d'HèresFrance
| | - Sabine Chahory
- ENVA, Ecole Nationale Vétérinaire d'Alfort. Unité d'ophtalmologieMaisons‐AlfortFrance
| | - Samuel Carré
- Division Eclairage et électromagnétismeCSTB, Centre Scientifique et Technique du BâtimentSaint Martin d'HèresFrance
| | - Michèle Savoldelli
- INSERM U1138Centre de Recherches des CordeliersUniversité Paris DescartesUniversité Pierre et Marie CurieParisFrance
| | - Laurent Jonet
- INSERM U1138Centre de Recherches des CordeliersUniversité Paris DescartesUniversité Pierre et Marie CurieParisFrance
| | - Francine Behar‐Cohen
- INSERM U1138Centre de Recherches des CordeliersUniversité Paris DescartesUniversité Pierre et Marie CurieParisFrance
| | - Christophe Martinsons
- Division Eclairage et électromagnétismeCSTB, Centre Scientifique et Technique du BâtimentSaint Martin d'HèresFrance
| | - Alicia Torriglia
- INSERM U1138Centre de Recherches des CordeliersUniversité Paris DescartesUniversité Pierre et Marie CurieParisFrance
| |
Collapse
|
4
|
Jaadane I, Boulenguez P, Chahory S, Carré S, Savoldelli M, Jonet L, Behar-Cohen F, Martinsons C, Torriglia A. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic Biol Med 2015; 84:373-384. [PMID: 25863264 DOI: 10.1016/j.freeradbiomed.2015.03.034] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/21/2022]
Abstract
Spectra of "white LEDs" are characterized by an intense emission in the blue region of the visible spectrum, absent in daylight spectra. This blue component and the high intensity of emission are the main sources of concern about the health risks of LEDs with respect to their toxicity to the eye and the retina. The aim of our study was to elucidate the role of blue light from LEDs in retinal damage. Commercially available white LEDs and four different blue LEDs (507, 473, 467, and 449nm) were used for exposure experiments on Wistar rats. Immunohistochemical stain, transmission electron microscopy, and Western blot were used to exam the retinas. We evaluated LED-induced retinal cell damage by studying oxidative stress, stress response pathways, and the identification of cell death pathways. LED light caused a state of suffering of the retina with oxidative damage and retinal injury. We observed a loss of photoreceptors and the activation of caspase-independent apoptosis, necroptosis, and necrosis. A wavelength dependence of the effects was observed. Phototoxicity of LEDs on the retina is characterized by a strong damage of photoreceptors and by the induction of necrosis.
Collapse
Affiliation(s)
- Imene Jaadane
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Pierre Boulenguez
- CSTB, Centre Scientifique et Technique du Bâtiment, Division Eclairage et électromagnétisme, Saint Martin d׳Heres, France
| | - Sabine Chahory
- ENVA, Ecole Nationale Vétérinaire d׳Alfort, Maison Alfort, France
| | - Samuel Carré
- CSTB, Centre Scientifique et Technique du Bâtiment, Division Eclairage et électromagnétisme, Saint Martin d׳Heres, France
| | - Michèle Savoldelli
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Laurent Jonet
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Francine Behar-Cohen
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France; Hôpital Ophtalmique Jules Gonin, Lausanne, Switzerland
| | - Christophe Martinsons
- CSTB, Centre Scientifique et Technique du Bâtiment, Division Eclairage et électromagnétisme, Saint Martin d׳Heres, France
| | - Alicia Torriglia
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
5
|
Zhdanov DD, Fahmi T, Wang X, Apostolov EO, Sokolov NN, Javadov S, Basnakian AG. Regulation of Apoptotic Endonucleases by EndoG. DNA Cell Biol 2015; 34:316-26. [PMID: 25849439 PMCID: PMC4426297 DOI: 10.1089/dna.2014.2772] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/12/2022] Open
Abstract
Cells contain several apoptotic endonucleases, which appear to act simultaneously before and after cell death by destroying the host cell DNA. It is largely unknown how the endonucleases are being induced and whether they can regulate each other. This study was performed to determine whether apoptotic mitochondrial endonuclease G (EndoG) can regulate expression of other apoptotic endonucleases. The study showed that overexpression of mature EndoG in kidney tubular epithelial NRK-52E cells can increase expression of caspase-activated DNase (CAD) and four endonucleases that belong to DNase I group including DNase I, DNase X, DNase IL2, and DNase γ, but not endonucleases of the DNase 2 group. The induction of DNase I-type endonucleases was associated with DNA degradation in promoter/exon 1 regions of the endonuclease genes. These results together with findings on colocalization of immunostained endonucleases and TUNEL suggest that DNA fragmentation after EndoG overexpression was caused by DNase I endonucleases and CAD in addition to EndoG itself. Overall, these data provide first evidence for the existence of the integral network of apoptotic endonucleases regulated by EndoG.
Collapse
Affiliation(s)
- Dmitry D. Zhdanov
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tariq Fahmi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaoying Wang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Eugene O. Apostolov
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nikolai N. Sokolov
- Laboratory of Medical Biotechnology, V.N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Renal Medicine Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
6
|
Lebon C, Rodriguez GV, Zaoui IE, Jaadane I, Behar-Cohen F, Torriglia A. On the use of an appropriate TdT-mediated dUTP-biotin nick end labeling assay to identify apoptotic cells. Anal Biochem 2015; 480:37-41. [PMID: 25862087 DOI: 10.1016/j.ab.2015.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
Apoptosis is an essential cellular mechanism involved in many processes such as embryogenesis, metamorphosis, and tissue homeostasis. DNA fragmentation is one of the key markers of this form of cell death. DNA fragmentation is executed by endogenous endonucleases such as caspase-activated DNase (CAD) in caspase-dependent apoptosis. The TUNEL (TdT-mediated dUTP-biotin nick end labeling) technique is the most widely used method to identify apoptotic cells in a tissue or culture and to assess drug toxicity. It is based on the detection of 3'-OH termini that are labeled with dUTP by the terminal deoxynucleotidyl transferase. Although the test is very reliable and sensitive in caspase-dependent apoptosis, it is completely useless when cell death is mediated by pathways involving DNA degradation that generates 3'-P ends as in the LEI/L-DNase II pathway. Here, we propose a modification in the TUNEL protocol consisting of a dephosphorylation step prior to the TUNEL labeling. This allows the detection of both types of DNA breaks induced during apoptosis caspase-dependent and independent pathways, avoiding underestimating the cell death induced by the treatment of interest.
Collapse
Affiliation(s)
- Cecile Lebon
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Gloria Villalpando Rodriguez
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Ikram El Zaoui
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Imene Jaadane
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Francine Behar-Cohen
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France
| | - Alicia Torriglia
- Centre de Recherches des Cordeliers, INSERM U1138, Université Pierre et Marie Curie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
7
|
Jaadane I, Chahory S, Leprêtre C, Omri B, Jonet L, Behar-Cohen F, Crisanti P, Torriglia A. The activation of the atypical PKC zeta in light-induced retinal degeneration and its involvement in L-DNase II control. J Cell Mol Med 2015; 19:1646-55. [PMID: 25781645 PMCID: PMC4511362 DOI: 10.1111/jcmm.12539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023] Open
Abstract
Light-induced retinal degeneration is characterized by photoreceptor cell death. Many studies showed that photoreceptor demise is caspase-independent. In our laboratory we showed that leucocyte elastase inhibitor/LEI-derived DNase II (LEI/L-DNase II), a caspase-independent apoptotic pathway, is responsible for photoreceptor death. In this work, we investigated the activation of a pro-survival kinase, the protein kinase C (PKC) zeta. We show that light exposure induced PKC zeta activation. PKC zeta interacts with LEI/L-DNase II and controls its DNase activity by impairing its nuclear translocation. These results highlight the role of PKC zeta in retinal physiology and show that this kinase can control caspase-independent pathways.
Collapse
Affiliation(s)
- Imene Jaadane
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Sabine Chahory
- ENVA, Ecole Nationale Vétérinaire d'Alfort, Maison Alfort, Paris, France
| | - Chloé Leprêtre
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Boubaker Omri
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Laurent Jonet
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Francine Behar-Cohen
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.,Hôpital Ophtalmique Jules-Gonin, Lausanne, Switzerland
| | - Patricia Crisanti
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Alicia Torriglia
- INSERM U1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
8
|
Shu Q, Xu Y, Zhuang H, Fan J, Sun Z, Zhang M, Xu G. Ras homolog enriched in the brain is linked to retinal ganglion cell apoptosis after light injury in rats. J Mol Neurosci 2014; 54:243-51. [PMID: 24664437 DOI: 10.1007/s12031-014-0281-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Ras homolog enriched in the brain (Rheb) is a small GTPase of the Ras family. It has been confirmed that Rheb activation not only regulates cell growth and migration but also induces neuron apoptosis after toxic stimuli. However, the function of Rheb in the retina is still not fully understood. To find out whether Rheb was involved in retinal neuron death, the expression profile of Rheb in light-damaged retinal ganglion cells (RGCs) of adult rats was investigated. Western blotting showed the expression of Rheb was significantly upregulated in the injured retina. Rheb was mainly detected in apoptotic RGCs by using double immunofluorescent staining. Active caspase-3 was upregulated and co-labeled with Rheb. Meanwhile, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that Rheb-positive RGCs underwent apoptosis after light exposure, which suggested that Rheb might be relevant to RGC apoptosis following phototoxicity. Furthermore, Western blotting and immunofluorescence showed that the expression profiles of CyclinD1 and cyclin-dependent kinase 4 (CDK4) were parallel with that of Rheb in a time-space dependent manner. Based on this study, it is speculated that Rheb might play an important role in physiological and pathological process in light-induced retina damage, which might provide a potential therapeutic avenue of retinal degeneration.
Collapse
Affiliation(s)
- Qinmeng Shu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, No.83 Fenyang Road, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Leprêtre C, Tchakarska G, Blibech H, Lebon C, Torriglia A. Apoptosis-inducing factor (AIF) and leukocyte elastase inhibitor/L-DNase II (LEI/LDNaseII), can interact to conduct caspase-independent cell death. Apoptosis 2014; 18:1048-59. [PMID: 23673989 DOI: 10.1007/s10495-013-0862-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Programmed cell death is an important factor in tissue homeostasis. Lot of work has been performed to characterize the caspase-dependent cell death. Caspase-independent cell death, although important in many physiological situations, is less investigated. In this work we show that two caspase-independent effectors of cell death, namely apoptosis-inducing factor and leukocyte elastase inhibitor derived DNase II interact and can cooperate to induce cell death. These results contribute to the knowledge of molecular pathways of cell death, an important issue in the development of new therapeutic strategies for the treatment of cancer or neurodegenerative diseases.
Collapse
Affiliation(s)
- Chloé Leprêtre
- Centre de Recherches des Cordeliers, INSERM, UMR S 872, 15, rue de L'école de médecine, 75006, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2244-53. [DOI: 10.1016/j.bbamcr.2013.05.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/17/2022]
|
11
|
Jia H, Chen W, Yu X, Wu X, Li S, Liu H, Liao J, Liu W, Mi M, Liu L, Cheng D. Black rice anthocyanidins prevent retinal photochemical damage via involvement of the AP-1/NF-κB/Caspase-1 pathway in Sprague-Dawley rats. J Vet Sci 2013; 14:345-53. [PMID: 23820171 PMCID: PMC3788161 DOI: 10.4142/jvs.2013.14.3.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/10/2012] [Indexed: 01/28/2023] Open
Abstract
The effects of black rice anthocyanidins (BRACs) on retinal damage induced by photochemical stress are not well known. In the present study, Sprague-Dawley rats were fed AIN-93M for 1 week, after which 80 rats were randomly divided into two groups and treated with (n = 40) or without BRACs (n = 40) for 15 days, respectively. After treatment, both groups were exposed to fluorescent light (3,000 ± 200 lux; 25℃), and the protective effect of dietary BRACs were evaluated afterwards. Our results showed that dietary BRACs effectively prevented retinal photochemical damage and inhibited the retinal cells apoptosis induced by fluorescent light (p < 0.05). Moreover, dietary BRACs inhibited expression of AP-1 (c-fos/c-jun subunits), up-regulated NF-κB (p65) expression and phosphorylation of IκB-α, and decreased Caspase-1 expression (p < 0.05). These results suggest that BRACs improve retinal damage produced by photochemical stress in rats via AP-1/NF-κB/Caspase-1 apoptotic mechanisms.
Collapse
Affiliation(s)
- Hao Jia
- Department of Public Health, Chengdu Medical College, Chengdu City, 610050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Recently, the concept of apoptotic cell elimination was expanded and programed cell death is no longer viewed as an individual cellular event. The complete description of the apoptotic process now includes two phases: the self-driven cell disassembly and the externally-controlled elimination of apoptotic cell corpses by phagocytizing cells. The second, phagocytic phase is essential, highly conserved, and is even more important than the internal phase of cell disassembly. This is because it ensures the complete degradation of the dying cell's DNA, preventing the release of pathological, viral and tumor DNA, and self-immunization. In different cells and species from mammals to flies, a single conserved enzyme--DNase II is responsible for the elimination of cellular DNA in the second "mopping up" phase of apoptosis. Here, we present an assay for the selective detection of the phagocytic phase of apoptosis. The technology capitalizes on the fact that phagocytic DNase II produces identifiable signature DNA breaks, which can be labeled by vaccinia topoisomerase. The assay permits labeling of the previously underestimated phase of apoptotic execution and is a useful tool in the apoptosis detection arsenal.
Collapse
Affiliation(s)
- Vladimir V Didenko
- Departments of Neurosurgery and Molecular & Cellular Biology, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
13
|
Torriglia A, Leprêtre C, Padrón-Barthe L, Chahory S, Martin E. Molecular mechanism of L-DNase II activation and function as a molecular switch in apoptosis. Biochem Pharmacol 2008; 76:1490-502. [DOI: 10.1016/j.bcp.2008.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 01/22/2023]
|
14
|
Leprêtre C, Scovassi AI, Shah GM, Torriglia A. Regulation of poly(ADP-ribose) polymerase-1 functions by leukocyte elastase inhibitor/LEI-derived DNase II during caspase-independent apoptosis. Int J Biochem Cell Biol 2008; 41:1046-54. [PMID: 18951996 DOI: 10.1016/j.biocel.2008.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 01/29/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is an important regulator of apoptosis. Its over-activation at the onset of apoptosis can inhibit the action of apoptotic endonucleases like caspase-activated DNase and DNAS1L3. Therefore, controlled PARP-1 proteolysis during caspase-dependent apoptosis is considered essential to promote DNA degradation. Yet, little is known about the interplay of PARP-1 and endonucleases that operate during caspase-independent cell death. Here we show that in the long-term cultured HeLa cells which undergo caspase-independent death, PARP-1 co-immunoprecipitates with leukocyte elastase inhibitor-derived DNase II (L-DNase II), an acid DNase implicated in this death pathway and activated by serine proteases. Our results indicate that, despite having putative poly(ADP-ribose)-acceptor sites, LEI/L-DNase II is neither significantly poly(ADP-ribosyl)ated nor inhibited by PARP-1 during caspase-independent apoptosis. Unexpectedly, caspase-independent apoptosis induced by hexa-methylene amiloride, LEI/L-DNase II can activate PARP-1 and promote its auto-poly(ADP-ribosyl)ation, thus inhibiting PARP-1 activity. Moreover, overexpression of LEI blocks the pro-survival effect of PARP-1 in this model of cell death. Our results provide the original evidence for a new mechanism of PARP-1 activity regulation in the caspase-independent death pathway involving LEI/L-DNase II.
Collapse
Affiliation(s)
- C Leprêtre
- Université Pierre et Marie Curie-Paris 6, France; Université Paris Descartes-Paris 5, France.
| | | | | | | |
Collapse
|
15
|
Liu MF, Wu XP, Wang XL, Yu YL, Wang WF, Chen QJ, Boireau P, Liu MY. The functions of Deoxyribonuclease II in immunity and development. DNA Cell Biol 2008; 27:223-8. [PMID: 18419230 DOI: 10.1089/dna.2007.0691] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Apoptosis, which is usually accompanied by DNA degradation, is important not only for the homeostasis of metazoans but also for mammalian development. If DNA is not properly degraded in these processes, it can cause diverse diseases, such as anemia, cataracts, and some autoimmune diseases. A large effort has been made to identify these nucleases that are responsible for these effects. In contrast to Deoxyribonuclease I (DNase I), Deoxyribonuclease II (DNase II) has been less well characterized in these processes. Additionally, enzymes of DNase II family in Trichinella spiralis, which is an intracellular parasitic nematode, are also considered involved in the development of the nematode. We have compiled information from studies on DNase II from various organisms and found some nonclassic features in these enzymes of T. spiralis. Here we have reviewed the characterization and functions of DNase II in these processes and predicted the functions of these enzymes in T. spiralis during host invasion and development.
Collapse
Affiliation(s)
- Ma-feng Liu
- Key Laboratory of Zoonosis, Institute of Zoonosis, Jilin University, Ministry of Education, Changchun, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Leprêtre C, Fleurier Y, Martin E, Torriglia A. Nuclear export of LEI/L-DNase II by Crm1 is essential for cell survival. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:1068-75. [PMID: 18342633 DOI: 10.1016/j.bbamcr.2008.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 01/24/2023]
Abstract
LEI/L-DNase II is the key protein of a caspase-independent pathway activated by serine proteases. LEI (Leukocyte elastase inhibitor), L-DNase II precursor, is a member of the clade B serpins (also called serpin b1). In its native conformation it inhibits several intracellular proteases and has an anti-apoptotic activity. Following a metabolic stress and the increase of protease activity in the cell, LEI is cleaved and transformed into L-DNase II (LEI-derived DNase II). This transformation is due to a conformational modification that exposes a nuclear localization signal and an endonuclease active site. In this paper we show that LEI can bind the exportin Crm1, and we identify on LEI a nuclear export signal involved in the control of LEI/L-DNase II nuclearization in healthy cells. Point mutation of this site increases the accumulation of the molecule in the nucleus and triggers cell death.
Collapse
|
17
|
Doonan F, Donovan M, Gomez-Vicente V, Bouillet P, Cotter TG. Bim expression indicates the pathway to retinal cell death in development and degeneration. J Neurosci 2007; 27:10887-94. [PMID: 17913922 PMCID: PMC6672824 DOI: 10.1523/jneurosci.0903-07.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Programmed cell death (PCD) during development of the mouse retina involves activation of the mitochondrial pathway. Previous work has shown that the multidomain Bcl-2 family proteins Bax and Bak are fundamentally involved in this process. To induce mitochondrial membrane permeabilization, Bax and Bak require that prosurvival members of the family be inactivated by binding of "BH3-only" members. We showed previously that the BH3-only protein BimEL is highly expressed during postnatal retinal development but decreases dramatically thereafter. The purpose of this study was to investigate a possible role for Bim, in retinal development and degeneration, upstream of Bax and Bak. Bim-/- mice analyzed for defective retinal development exhibit an increase in retinal thickness and a delay in PCD, thereby confirming a role for Bim. We also demonstrate that in response to certain death stimuli, bim+/+ retinal explants upregulate BimEL leading to caspase activation and cell death, whereas bim-/- explants are resistant to apoptosis. Finally, we analyzed Bim expression in the retinal degeneration (rd) mouse, an in vivo model of retinal degeneration. Bim isoforms, which decrease during development, are not reexpressed during retinal degeneration and ultimately photoreceptor cells die by a caspase-independent mechanism. Thus, we conclude that in cases in which BimEL is reexpressed during pathological cell death, developmental cell death pathways are reactivated. However, the absence of BimEL expression correlates with caspase-independent death in the rd model.
Collapse
Affiliation(s)
- Francesca Doonan
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Republic of Ireland, and
| | - Maryanne Donovan
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Republic of Ireland, and
| | - Violeta Gomez-Vicente
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Republic of Ireland, and
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
| | - Thomas G. Cotter
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Republic of Ireland, and
| |
Collapse
|
18
|
Yu X, Chen K, Wei N, Zhang Q, Liu J, Mi M. Dietary taurine reduces retinal damage produced by photochemical stress via antioxidant and anti-apoptotic mechanisms in Sprague-Dawley rats. Br J Nutr 2007; 98:711-9. [PMID: 17466093 DOI: 10.1017/s0007114507744409] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Taurine has been shown to be tissue protective in many models of oxidant-induced injury. However, its protective role against retinal damage induced by photochemical stress is less well known. The purpose of the present study was to investigate whether dietary taurine reduced retinal photochemical damage in Sprague-Dawley rats and to further explore the underlying molecular mechanisms of this action. Twenty rats fed AIN-93 formulation and maintained in the dark for 48 h were used as controls (n 20). Another forty rats were randomly divided into two groups and then treated with (n 20) or without 4 % taurine (n 20) for 15 d respectively. After treatment, these two groups were exposed to fluorescent light (3000 +/- 200 lux and 25 degrees C), and the protective effects of dietary taurine were then evaluated. The present results showed that dietary taurine effectively prevented retinal photochemical damage as assessed by changes of morphology. Also, the supplementation caused an increase of taurine in the retina, a decrease of malondialdehyde (P < 0.01), and elevation of superoxide dismutase (P < 0.01) and glutathione peroxidase activities in the retina (P < 0.01). Moreover, dietary taurine inhibited activator protein-1 (AP-1) (c-fos/c-jun subunits) expression (P < 0.05), up regulated NF-kappaB (p65) expression (P < 0.05), and decreased caspase-1 expression (P < 0.05) so as to reduce the apoptosis of photoreceptors in the retina (P < 0.05). These results suggest that dietary taurine reduced retinal damage produced by photochemical stress via antioxidant and anti-AP-1-NF-kappaB-caspase-1 apoptotic mechanisms in rats.
Collapse
Affiliation(s)
- Xiaoping Yu
- Department of Nutrition and Food Hygiene, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
19
|
Counis MF, Torriglia A. Acid DNases and their interest among apoptotic endonucleases. Biochimie 2006; 88:1851-8. [PMID: 16989934 DOI: 10.1016/j.biochi.2006.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/05/2006] [Indexed: 01/11/2023]
Abstract
Apoptosis is characterized by cell shrinkage, nuclear condensation and internucleosomal DNA cleavage. Besides the central role of caspases and other proteases, cell death triggers DNA degradation so that DNases have an active role in apoptotic cell death. The best-characterized apoptotic DNase is CAD, a neutral Mg-dependent endonuclease. Its activity is regulated by its inhibitor, ICAD, which is cleaved by caspases. Other neutral DNases have been shown to cleave nuclear DNA in apoptotic conditions: endonuclease G, GADD. In cells, the cytosolic pH is maintained to 7.2, mostly due to the activity of the Na(+)/H(+) exchanger. In many apoptotic conditions, a decrease of the intracellular pH has been shown. This decrease may activate different acid DNases, mostly when pH decreases below 6.5. Three acidic DNases II are so far known: DNase II alpha, DNase II beta and L-DNase II, a DNase II, derived from the serpin LEI (Leukocyte Elastase Inhibitor). Their activation during cell death is discussed in this review.
Collapse
Affiliation(s)
- Marie-France Counis
- INSERM U 598, Centre de Recherches Biomédicales des Cordeliers, Paris, France.
| | | |
Collapse
|
20
|
Fombonne J, Padrón L, Enjalbert A, Krantic S, Torriglia A. A novel paraptosis pathway involving LEI/L-DNaseII for EGF-induced cell death in somato-lactotrope pituitary cells. Apoptosis 2006; 11:367-75. [PMID: 16538380 DOI: 10.1007/s10495-006-4568-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have recently reported that EGF triggers an original form of cell death in pituitary cell line (GH4C1) with a phenotype sharing some characteristics of both apoptosis (internucleosomal DNA fragmentation) and paraptosis (caspase-independence and cytoplasmic vacuolization). However, the endonuclease involved in EGF-induced DNA fragmentation has not been assessed so far. In the present work we therefore further explored the putative paraptosis involvement in EGF-induced cell death and asked whether L-DNaseII might be involved. Indeed, this endonuclease is known to mediate internucleosomal DNA fragmentation in caspase independent manner. Our Western blot, immunocytochemistry and enzymatic measurement assays show that EGF triggers a cleavage of Leukocyte Elastase Inhibitor (LEI) precursor into L-DNaseII, its subsequent enzymatic activation and nuclear translocation thus pointing to the involvement of this endonuclease pathway in caspase-independent DNA fragmentation. In addition, EGF-induced cell death can be blocked by paraptosis inhibitor AIP-1/Alix, but not with its anti-apoptotic C-terminal fragment (Alix-CT). Altogether these data suggest that EGF-induced cell death defines a novel, L-DNaseII-mediated form of paraptosis.
Collapse
Affiliation(s)
- J Fombonne
- Interactions Cellulaires Neuroendocriniennes (ICNE), Unité Mixte de Recherche (UMR6544) Centre National de Recherche Scientifique (CNRS)/Université de la Méditerranée, Institut Jean Roche, Faculté de Médecine Nord 13916, Marseille, France
| | | | | | | | | |
Collapse
|
21
|
Huc L, Rissel M, Solhaug A, Tekpli X, Gorria M, Torriglia A, Holme JA, Dimanche-Boitrel MT, Lagadic-Gossmann D. Multiple apoptotic pathways induced by p53-dependent acidification in benzo[a]pyrene-exposed hepatic F258 cells. J Cell Physiol 2006; 208:527-37. [PMID: 16688778 DOI: 10.1002/jcp.20686] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH), such as benzo[a]pyrene (B[a]P), are ubiquitous genotoxic environmental pollutants. Their DNA-damaging effects lead to apoptosis induction, through similar pathways to those identified after exposure to other DNA-damaging stimuli with activation of p53-related genes and the involvement of the intrinsic apoptotic pathway. However, at a low concentration of B[a]P (50 nM), our previous results pointed to the involvement of intracellular pH (pHi) variations during B[a]P-induced apoptosis in a rat liver epithelial cell line (F258). In the present work, we identified the mitochondrial F0F1-ATPase activity reversal as possibly responsible for pHi decrease. This acidification not only promoted executive caspase activation, but also activated leucocyte elastase inhibitor/leucocyte-derived DNase II (LEI/L-DNase II) pathway. p53 appeared to regulate mitochondria homeostasis, by initiating F0F1-ATPase reversal and endonuclease G (Endo G) release. In conclusion, a low dose of B[a]P induced apoptosis by recruiting a large panel of executioners apparently depending on p53 phosphorylation and, for some of them, on acidification.
Collapse
Affiliation(s)
- Laurence Huc
- Inserm U620, Université Rennes 1, IFR 140, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Samejima K, Earnshaw WC. Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 2005; 6:677-88. [PMID: 16103871 DOI: 10.1038/nrm1715] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two classes of nucleases degrade the cellular DNA during apoptosis. Cell-autonomous nucleases cleave DNA within the dying cell. They are not essential for apoptotic cell death or the life of the organism, but they might affect the efficiency of the process. By contrast, waste-management nucleases are essential for the life of the organism. In post-engulfment DNA degradation, the DNA of apoptotic cells is destroyed in lysosomes of the cells that have phagocytosed the corpses. Waste-management nucleases also destroy DNA that is released into the extracellular compartment. Here, we describe the complex group of nucleases that are involved in DNA destruction during apoptotic cell death.
Collapse
Affiliation(s)
- Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Swann Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | | |
Collapse
|