1
|
Decker S, Davis G, Vahora I, Vukovic A, Patel P, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of α4β2 nicotinic acetylcholine receptors decreases voluntary ethanol consumption and preference in male and female Sprague-Dawley rats. PLoS One 2022; 17:e0273715. [PMID: 36084045 PMCID: PMC9462806 DOI: 10.1371/journal.pone.0273715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol use disorder is a medical condition that impacts millions of individuals worldwide. Although there are a few pharmacotherapeutic options for alcohol-dependent individuals; there is a need for the development of novel and more effective therapeutic approaches. Alcohol and nicotine are commonly co-abused, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α4β2 nAChRs has been shown to reduce nicotine intake, compulsive-like behavior and neuropathic pain in animal models. dFBr has also been previously shown to cross the blood-brain-barrier. We have recently shown that dFBr can attenuate the response to an acute, hypnotic dose of ethanol, via β2 nAchR. Here, we have investigated the effect of dFBr in modulating ethanol consumption using the intermittent access two-bottle choice (IA2BC) model of voluntary ethanol consumption in male and female Sprague Dawley rats. We show that dFBr selectively reduced ethanol but not sucrose consumption in the IA2BC model. Furthermore, dFBr decreased preference for ethanol in both male and female rats. No rebound increase in ethanol intake was observed after the washout period after dFBr treatment. The ability of dFBr to decrease ethanol consumption, along with its previously demonstrated ability to decrease nicotine self-administration in rodents, suggest that dFBr is an attractive therapeutic candidate to target both nicotine and alcohol abuse.
Collapse
Affiliation(s)
- Steven Decker
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Gregory Davis
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Imran Vahora
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Alen Vukovic
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Parth Patel
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
| | - Asha Suryanarayanan
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Deba F, Munoz K, Peredia E, Akk G, Hamouda AK. Assessing potentiation of the (α4)3(β2)2 nicotinic acetylcholine receptor by the allosteric agonist CMPI. J Biol Chem 2021; 298:101455. [PMID: 34861241 PMCID: PMC8715118 DOI: 10.1016/j.jbc.2021.101455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
The extracellular domain of the nicotinic acetylcholine receptor isoforms formed by three α4 and two β2 subunits ((α4)3(β2)2 nAChR) harbors two high-affinity “canonical” acetylcholine (ACh)-binding sites located in the two α4:β2 intersubunit interfaces and a low-affinity “noncanonical” ACh-binding site located in the α4:α4 intersubunit interface. In this study, we used ACh, cytisine, and nicotine (which bind at both the α4:α4 and α4:β2 interfaces), TC-2559 (which binds at the α4:β2 but not at the α4:α4 interface), and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI, which binds at the α4:α4 but not at the α4:β2 interface), to investigate the binding and gating properties of CMPI at the α4:α4 interface. We recorded whole-cell currents from Xenopus laevis oocytes expressing (α4)3(β2)2 nAChR in response to applications of these ligands, alone or in combination. The electrophysiological data were analyzed in the framework of a modified Monod–Wyman–Changeux allosteric activation model. We show that CMPI is a high-affinity, high-efficacy agonist at the α4:α4 binding site and that its weak direct activating effect is accounted for by its inability to productively interact with the α4:β2 sites. The data presented here enhance our understanding of the functional contributions of ligand binding at the α4:α4 subunit interface to (α4)3(β2)2 nAChR-channel gating. These findings support the potential use of α4:α4 specific ligands to increase the efficacy of the neurotransmitter ACh in conditions associated with decline in nAChRs activity in the brain.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, The University of Texas at Tyler, Tyler, Texas, USA
| | - Kemburli Munoz
- Department of Pharmaceutical Sciences, Texas A&M HSC, Kingsville, Texas, USA
| | - Eloisa Peredia
- Department of Pharmaceutical Sciences, The University of Texas at Tyler, Tyler, Texas, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, The University of Texas at Tyler, Tyler, Texas, USA.
| |
Collapse
|
3
|
DeCristofano L, Decker S, Schulte MK, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α 4β 2 nicotinic receptor modulates the hypnotic response to ethanol. Alcohol 2021; 93:35-44. [PMID: 33652092 DOI: 10.1016/j.alcohol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Binge drinking can increase an individual's risk of developing alcohol use disorder (AUD). Ethanol targets multiple neurotransmitter systems; however, not much is known about its effects on the cholinergic system. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, the heteromeric α4β2 nAChR being a commonly expressed subtype. Desformylflustrabromine (dFBr), a positive allosteric modulator (PAM), increases the efficacy of α4β2 nAChR in vitro and has previously been shown to have translational potential. In this study, we investigated whether dFBr modulates the hypnotic response to ethanol. METHODS Ethanol-induced loss of righting reflex (LORR) duration was measured in the presence and absence of dFBr. The β2 nAChR selective antagonist dihydro-β-erythroidine (DHβE) was used to study the involvement of the β2 subunit. Additionally, we used a crosslinking-based western blot assay to estimate changes in total versus intracellular α4 nAChR protein in thalamic tissue of rats treated with vehicle, dFBr, ethanol, or ethanol and dFBr. Lastly, using Xenopus oocyte two-electrode voltage clamp (TEVC) studies, we determined the effects of ethanol and dFBr on α4β2 nAChR. RESULTS Pretreatment with 6 mg/kg dFBr reduced ethanol-induced LORR duration as compared to rats treated with ethanol alone. LORR studies with DHβE suggest that dFBr reduced ethanol-induced LORR duration via the β2 nAChR subunit. Crosslinking-based western analyses revealed that ethanol caused early increases in total and presumably surface thalamic α4 nAChR subunit protein levels. This ethanol-induced α4 nAChR upregulation was significantly reduced in rats pretreated with 6 mg/kg dFBr. In TEVC studies, ethanol potentiated ACh-induced currents in α4β2 nAChR, while it slightly reduced dFBr potentiation of maximal ACh currents. CONCLUSIONS Our results suggest that thalamic nAChRs containing the α4 subunit are rapidly upregulated by a single intoxicating dose of ethanol. Furthermore, dFBr, an α4β2 nAChR-selective PAM, significantly attenuates the hypnotic response to ethanol via actions on β2 nAChR. Overall, these results indicate that dFBr represents an option to reverse ethanol intoxication.
Collapse
|
4
|
Hamouda AK, Bautista MR, Akinola LS, Alkhlaif Y, Jackson A, Carper M, Toma WB, Garai S, Chen YC, Thakur GA, Fowler CD, Damaj MI. Potentiation of (α4)2(β2)3, but not (α4)3(β2)2, nicotinic acetylcholine receptors reduces nicotine self-administration and withdrawal symptoms. Neuropharmacology 2021; 190:108568. [PMID: 33878302 PMCID: PMC8169606 DOI: 10.1016/j.neuropharm.2021.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/28/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Abstract
The low sensitivity (α4)3(β2)2 (LS) and high sensitivity (α4)2(β2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4β2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4β2 nAChRs, and CMPI, a PAM selective for the LS nAChR. We found that dFBr, but not CMPI, decreased intravenous nicotine self-administration in male mice in a dose-dependent manner. Unlike dFBr, which fully reverses somatic and affective symptoms of nicotine withdrawal, CMPI at doses up to 15 mg/kg in male mice only partially reduced nicotine withdrawal-induced somatic signs, anxiety-like behavior and sucrose preference, but had no effects on nicotine withdrawal-induced hyperalgesia. These results indicate that potentiation of HS α4β2 nAChRs is necessary to modulate nicotine's reinforcing properties that underlie nicotine intake and to reverse nicotine withdrawal symptoms that influence nicotine abstinence. In contrast, both dFBr and CMPI enhanced nicotine's hypothermic effect and reduced nicotine's antinociceptive effects in male mice. Therefore, these results indicate a more prevalent role of HS α4β2 nAChR isoforms in mediating various behavioral effects associated with nicotine, whereas the LS α4β2 nAChR isoform has a limited role in mediating body temperature and nociceptive responses. These findings will facilitate the development of more selective, efficacious, and safe nAChR-based therapeutics for nicotine addiction treatment.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA.
| | - Malia R Bautista
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Wisam B Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. Int J Mol Sci 2020; 21:ijms21144918. [PMID: 32664647 PMCID: PMC7404387 DOI: 10.3390/ijms21144918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a key physiological phenomenon that can be pervasive when dysregulated. Persistent chronic inflammation precedes several pathophysiological conditions forming one of the critical cellular homeostatic checkpoints. With a steady global surge in inflammatory diseases, it is imperative to delineate underlying mechanisms and design suitable drug molecules targeting the cellular partners that mediate and regulate inflammation. Nicotinic acetylcholine receptors have a confirmed role in influencing inflammatory pathways and have been a subject of scientific scrutiny underlying drug development in recent years. Drugs designed to target allosteric sites on the nicotinic acetylcholine receptors present a unique opportunity to unravel the role of the cholinergic system in regulating and restoring inflammatory homeostasis. Such a therapeutic approach holds promise in treating several inflammatory conditions and diseases with inflammation as an underlying pathology. Here, we briefly describe the potential of cholinergic allosterism and some allosteric modulators as a promising therapeutic option for the treatment of neuroinflammation.
Collapse
|
6
|
Deba F, Ramos K, Vannoy M, Munoz K, Akinola LS, Damaj MI, Hamouda AK. Examining the Effects of (α4)3(β2)2 Nicotinic Acetylcholine Receptor-Selective Positive Allosteric Modulator on Acute Thermal Nociception in Rats. Molecules 2020; 25:molecules25122923. [PMID: 32630476 PMCID: PMC7355939 DOI: 10.3390/molecules25122923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptor (nAChR)-based therapeutics are sought as a potential alternative strategy to opioids for pain management. In this study, we examine the antinociceptive effects of 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrazol-4-yl)isoxazole (CMPI), a novel positive allosteric modulator (PAM), with preferential selectivity to the low agonist sensitivity (α4)3(β2)2 nAChR and desformylflustrabromine (dFBr), a PAM for α4-containing nAChRs. We used hot plate and tail flick tests to measure the effect of dFBr and CMPI on the latency to acute thermal nociceptive responses in rats. Intraperitoneal injection of dFBr, but not CMPI, dose-dependently increased latency in the hot plate test. In the tail flick test, the effect achieved at the highest dFBr or CMPI dose tested was only <20% of the maximum possible effects reported for nicotine and other nicotinic agonists. Moreover, the coadministration of dFBr did not enhance the antinociceptive effect of a low dose of nicotine. Our results show that the direct acute effect of dFBr is superior to that for CMPI, indicating that selectivity to (α4)3(β2)2 nAChR is not advantageous in alleviating responses to acute thermal nociceptive stimulus. However, further studies are necessary to test the suitability of (α4)3(β2)2 nAChR-selective PAMs in chronic pain models.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Kara Ramos
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Matthew Vannoy
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Kemburli Munoz
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
| | - Lois S. Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Kontos Medical Science Building, 1217 E. Marshall St., P.O. Box 980613, Richmond, VA 23298, USA; (L.S.A.); (M.I.D.)
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Kontos Medical Science Building, 1217 E. Marshall St., P.O. Box 980613, Richmond, VA 23298, USA; (L.S.A.); (M.I.D.)
| | - Ayman K. Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center MS 131, 1010 W. Ave. B, Kingsville, TX 78363, USA; (K.R.); (M.V.); (K.M.)
- Correspondence: ; Tel.: +1-903-565-6578
| |
Collapse
|
7
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 PMCID: PMC7090325 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
8
|
Wilkerson JL, Deba F, Crowley ML, Hamouda AK, McMahon LR. Advances in the In vitro and In vivo pharmacology of Alpha4beta2 nicotinic receptor positive allosteric modulators. Neuropharmacology 2020; 168:108008. [PMID: 32113032 DOI: 10.1016/j.neuropharm.2020.108008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
Abstract
Receptors containing α4 and β2 subunits are a major neuronal nicotinic acetylcholine receptor (nAChR) subtype in the brain. This receptor plays a critical role in nicotine addiction, with potential smoking cessation therapeutics producing modulation of α4β2 nAChR. In addition, compounds that act as agonists at α4β2 nAChR may be useful for the treatment of pathological pain. Further, as the α4β2 nAChR has been implicated in cognition, therapeutics that act as α4β2 nAChR agonists are also being examined as treatments for cognitive disorders and neurological diseases that impact cognitive function, such as Alzheimer's disease and schizophrenia. This review will cover the molecular in vitro evidence that allosteric modulators of the α4β2 neuronal nAChR provide several advantages over traditional α4β2 nAChR orthosteric ligands. Specifically, we explore the concept that nAChR allosteric modulators allow for greater pharmacological selectivity, while minimizing potential deleterious off-target effects. Further, here we discuss the development and preclinical in vivo behavioral assessment of allosteric modulators at the α4β2 neuronal nAChR as therapeutics for smoking cessation, pathological pain, as well as cognitive disorders and neurological diseases that impact cognitive function. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| | - Farah Deba
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States
| | - Morgan L Crowley
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Texas at Tyler, Tyler, TX, 75799, United States.
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
9
|
Laikowski MM, Reisdorfer F, Moura S. NAChR α4β2 Subtype and their Relation with Nicotine Addiction, Cognition, Depression and Hyperactivity Disorder. Curr Med Chem 2019; 26:3792-3811. [PMID: 29637850 DOI: 10.2174/0929867325666180410105135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/27/2017] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Neuronal α4β2 nAChRs are receptors involved in the role of neurotransmitters regulation and release, and this ionic channel participates in biological process of memory, learning and attention. This work aims to review the structure and functioning of the α4β2 nAChR emphasizing its role in the treatment of associated diseases like nicotine addiction and underlying pathologies such as cognition, depression and attention-deficit hyperactivity disorder. METHODS The authors realized extensive bibliographic research using the descriptors "Nicotine Receptor α4β2" and "cognition", "depression", "attention-deficit hyperactivity disorder", besides cross-references of the selected articles and after analysis of references in the specific literature. RESULTS As results, it was that found 179 relevant articles presenting the main molecules with affinity to nAChR α4β2 related to the cited diseases. The α4β2 nAChR subtype is a remarkable therapeutic target since this is the most abundant receptor in the central nervous system. CONCLUSION In summary, this review presents perspectives on the pharmacology and therapeutic targeting of α4β2 nAChRs for the treatment of cognition and diseases like nicotine dependence, depression and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Manuela M Laikowski
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Fávero Reisdorfer
- Laboratory of Drug Development and Quality Control, University Federal of Pampa, Brazil
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
10
|
Trigo JM, Le Foll B. Nicotine Self-Administration as Paradigm for Medication Discovery for Smoking Cessation: Recent Findings in Medications Targeting the Cholinergic System. Methods Mol Biol 2019; 2011:165-193. [PMID: 31273700 DOI: 10.1007/978-1-4939-9554-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tobacco kills every year approximately six million people as a direct result of direct use, and it is still considered one of the most excruciating threats for human health worldwide. The low successful rates of the currently available pharmacotherapies to assist in quitting tobacco use suggest there is a need for more effective treatments.The intravenous self-administration (IVSA) paradigm is considered the gold standard to study voluntary drug intake in animal models, including nicotine. The IVSA paradigm has been used to identify key mechanisms involved in the addictive properties of nicotine in both rodents and nonhuman primates. In this chapter we describe how the IVSA paradigm has served to further investigate the role of nicotinic acetylcholine receptors (nAChRs) in the reinforcing properties of nicotine. Notably, this review will cover recent advances (i.e., research carried out during the past decade) using the IVSA paradigm, with a focus on the status of research on current smoking cessation medications (such as varenicline and bupropion) and of other nAChR ligands.The combination of the IVSA paradigm with pharmacological and genetic tools (e.g., knockout animals) has greatly contributed to our understanding of the role of specific subtype nAChRs in nicotine reinforcement processes. We also discuss some of the limitations of the IVSA paradigm so these can be taken into consideration when interpreting and designing new studies.
Collapse
Affiliation(s)
- Jose M Trigo
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Addictions Division, CAMH, Toronto, ON, Canada.
| |
Collapse
|
11
|
Dukat M, Jain A, German N, Ferrara-Pontoriero R, Huang Y, Ma Y, Schulte MK, Glennon RA. des-Formylflustrabromine (dFBr): A Structure-Activity Study on Its Ability To Potentiate the Action of Acetylcholine at α4β2 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2018; 9:2984-2996. [PMID: 30028943 DOI: 10.1021/acschemneuro.8b00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The naturally occurring indole alkaloid des-formylflustrabromine (dFBr; 1) is one of the first agents shown to act as a selective positive allosteric modulator (PAM) at α4β2 nicotinic acetylcholine receptors (nAChRs). We previously deconstructed this agent to determine which of its structural features contribute to its actions and have identified an agent that might serve as the basis for a " working pharmacophore". Here, we elaborate the dFBr (1; EC50 = 0.2 μM) structure to identify how various structural modifications impact its actions. Electrophysiological studies with Xenopus laevis oocytes identified several compounds with dFBr-like potency and one, the 5-bromo analogue of 1 (i.e., 5-bromo dFBr; 25; EC50 = 0.4 μM), with more than twice the efficacy of 1 as a PAM at α4β2 nAChRs.
Collapse
Affiliation(s)
- Małgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Atul Jain
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Nadezhda German
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Rossana Ferrara-Pontoriero
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Yanzhou Huang
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, 600 S 43rd Street, Philadelphia, Pennsylvania 19104-4495, United States
| | - Yilong Ma
- Institute of Arctic Biology, Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775-7000, United States
| | - Marvin K. Schulte
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, 600 S 43rd Street, Philadelphia, Pennsylvania 19104-4495, United States
| | - Richard A. Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| |
Collapse
|
12
|
Lewis JA, Yakel JL, Pandya AA. Levamisole: A Positive Allosteric Modulator for the α3β4 Nicotinic Acetylcholine Receptors Prevents Weight Gain in the CD-1 Mice on a High Fat Diet. Curr Pharm Des 2018; 23:1869-1872. [PMID: 27908269 DOI: 10.2174/1381612822666161201145648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the function of multiple neurotransmitter pathways throughout the central nervous system. This includes nAChRs found on the proopiomelanocortin neurons in the hypothalamus. Activation of these nAChRs by nicotine causes a decrease in the consumption of food in rodents. This study tested the effect of subtype selective allosteric modulators for nAChRs on the body weight of CD-1 mice. Levamisole, an allosteric modulator for the α3β4 subtype of nAChRs, prevented weight gain in mice that were fed a high fat diet. PNU-120596 and desformylflustrabromine were observed to be selective PAMs for the α7 and α4β2 nAChR, respectively. Both of these compounds failed to prevent weight gain in the CD-1 mice. These results suggest that the modulation of hypothalamic α3β4 nAChRs is an important factor in regulating food intake, and the PAMs for these receptors need further investigation as potential therapeutic agents for controlling weight gain.
Collapse
Affiliation(s)
- Jeanne A Lewis
- Department of Bioscience, College of Rural and Community Development, Room 116, Harper Building, 4280, Geist Road, University of Alaska Fairbanks, Fairbanks, AK. 99709-3419. United States
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709. United States
| | - Anshul A Pandya
- Room 116, Harper Building, 4280, Geist Road, University of Alaska Fairbanks, Fairbanks, AK. 99709- 3419. United States
| |
Collapse
|
13
|
Deba F, Ali HI, Tairu A, Ramos K, Ali J, Hamouda AK. LY2087101 and dFBr share transmembrane binding sites in the (α4)3(β2)2 Nicotinic Acetylcholine Receptor. Sci Rep 2018; 8:1249. [PMID: 29352227 PMCID: PMC5775429 DOI: 10.1038/s41598-018-19790-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChRs) have potential therapeutic application in neuropathologies associated with decrease in function or loss of nAChRs. In this study, we characterize the pharmacological interactions of the nAChRs PAM, LY2087101, with the α4β2 nAChR using mutational and computational analyses. LY2087101 potentiated ACh-induced currents of low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs with similar potencies albeit to a different maximum potentiation (potentiation I max = ~840 and 450%, respectively). Amino acid substitutions within the α4 subunit transmembrane domain [e.g. α4Leu256 and α4Leu260 within the transmembrane helix 1 (TM1); α4Phe316 within the TM3; and α4Gly613 within TM4] significantly reduced LY2087101 potentiation of (α4)3(β2)2 nAChR. The locations of these amino acid residues and LY2087101 computational docking analyses identify two LY2087101 binding sites: an intrasubunit binding site within the transmembrane helix bundle of α4 subunit at the level of α4Leu260/α4Phe316 and intersubunit binding site at the α4:α4 subunit interface at the level of α4Leu256/α4Ile315 with both sites extending toward the extracellular end of the transmembrane domain. We also show that desformylflustrabromine (dFBr) binds to these two sites identified for LY2087101. These results provide structural information that are pertinent to structure-based design of nAChR allosteric modulators.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Hamed I Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Abisola Tairu
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Kara Ramos
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Jihad Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, 78363, USA.
| |
Collapse
|
14
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett 2017; 592:1045-1062. [PMID: 29030971 DOI: 10.1002/1873-3468.12884] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are actively being investigated as therapeutic targets for the treatment of pain and inflammation, but despite more than 30 years of research, there are currently no FDA-approved analgesics that are specific for these receptors. Much of the initial research effort focused on the α4β2 nAChR subtype, but more recently, additional subtypes have been identified as promising new leads and include α6β4, α7, and α9-containing nAChRs. This Review will focus on the distribution of these nAChRs in the cell types involved in neuropathic pain and inflammation and the activity of currently available nicotinic ligands.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA.,George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Wang ZJ, Deba F, Mohamed TS, Chiara DC, Ramos K, Hamouda AK. Unraveling amino acid residues critical for allosteric potentiation of (α4)3(β2)2-type nicotinic acetylcholine receptor responses. J Biol Chem 2017; 292:9988-10001. [PMID: 28446611 DOI: 10.1074/jbc.m116.771246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Indexed: 01/29/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are promising drug targets to manage several neurological disorders and nicotine addiction. Growing evidence indicates that positive allosteric modulators of nAChRs improve pharmacological specificity by binding to unique sites present only in a subpopulation of nAChRs. Furthermore, nAChR positive allosteric modulators such as NS9283 and CMPI have been shown to potentiate responses of (α4)3(β2)2 but not (α4)2(β2)3 nAChR isoforms. This selective potentiation underlines that the α4:α4 interface, which is present only in the (α4)3(β2)2 nAChR, is an important and promising drug target. In this report we used site-directed mutagenesis to substitute specific amino acid residues and computational analyses to elucidate CMPI's binding mode at the α4:α4 subunit extracellular interface and identified a unique set of amino acid residues that determined its affinity. We found that amino acid residues α4Gly-41, α4Lys-64, and α4Thr-66 were critical for (α4)3(β2)2 nAChR potentiation by CMPI, but not by NS9283, whereas amino acid substitution at α4His-116, a known determinant of NS9283 and of agonist binding at the α4:α4 subunit interface, did not reduce CMPI potentiation. In contrast, substitutions at α4Gln-124 and α4Thr-126 reduced potentiation by CMPI and NS9283, indicating that their binding sites partially overlap. These results delineate the role of amino acid residues contributing to the α4:α4 subunit extracellular interface in nAChR potentiation. These findings also provide structural information that will facilitate the structure-based design of novel therapeutics that target selectively the (α4)3(β2)2 nAChR.
Collapse
Affiliation(s)
- Ze-Jun Wang
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Farah Deba
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Tasnim S Mohamed
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kara Ramos
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363
| | - Ayman K Hamouda
- From the Department of Pharmaceutical Sciences, Texas A&M Health Sciences Center, Kingsville, Texas 78363, .,Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Sciences Center, Bryan, Texas 77807, and
| |
Collapse
|
16
|
Alcaino C, Musgaard M, Minguez T, Mazzaferro S, Faundez M, Iturriaga-Vasquez P, Biggin PC, Bermudez I. Role of the Cys Loop and Transmembrane Domain in the Allosteric Modulation of α4β2 Nicotinic Acetylcholine Receptors. J Biol Chem 2016; 292:551-562. [PMID: 27864368 DOI: 10.1074/jbc.m116.751206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
Allosteric modulators of pentameric ligand-gated ion channels are thought to act on elements of the pathways that couple agonist binding to channel gating. Using α4β2 nicotinic acetylcholine receptors and the α4β2-selective positive modulators 17β-estradiol (βEST) and desformylflustrabromine (dFBr), we have identified pathways that link the binding sites for these modulators to the Cys loop, a region that is critical for channel gating in all pentameric ligand-gated ion channels. Previous studies have shown that the binding site for potentiating βEST is in the C-terminal (post-M4) region of the α4 subunit. Here, using homology modeling in combination with mutagenesis and electrophysiology, we identified the binding site for potentiating dFBr on the top half of a cavity between the third (M3) and fourth transmembrane (M4) α-helices of the α4 subunit. We found that the binding sites for βEST and dFBr communicate with the Cys loop, through interactions between the last residue of post-M4 and Phe170 of the conserved FPF sequence of the Cys loop, and that these interactions affect potentiating efficacy. In addition, interactions between a residue in M3 (Tyr309) and Phe167, a residue adjacent to the Cys loop FPF motif, also affect dFBr potentiating efficacy. Thus, the Cys loop acts as a key control element in the allosteric transduction pathway for potentiating βEST and dFBr. Overall, we propose that positive allosteric modulators that bind the M3-M4 cavity or post-M4 region increase the efficacy of channel gating through interactions with the Cys loop.
Collapse
Affiliation(s)
- Constanza Alcaino
- From the Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Maria Musgaard
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Teresa Minguez
- From the Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Simone Mazzaferro
- From the Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Manuel Faundez
- the Faculty of Sciences, University of Chile, Santiago 7800003, Chile, and
| | - Patricio Iturriaga-Vasquez
- the Departamento de Ciencias Quimicas y Recursos Naturales, Facultad de Ingenieria y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile
| | - Philip C Biggin
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Isabel Bermudez
- From the Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom,
| |
Collapse
|
17
|
Olsen EK, Hansen E, W K Moodie L, Isaksson J, Sepčić K, Cergolj M, Svenson J, Andersen JH. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs. Org Biomol Chem 2016; 14:1629-40. [PMID: 26695619 DOI: 10.1039/c5ob02416a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barettin, 8,9-dihydrobarettin, bromoconicamin and a novel brominated marine indole were isolated from the boreal sponge Geodia barretti collected off the Norwegian coast. The compounds were evaluated as inhibitors of electric eel acetylcholinesterase. Barettin and 8,9-dihydrobarettin displayed significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 μM respectively towards acetylcholinesterase via a reversible noncompetitive mechanism. These activities are comparable to those of several other natural acetylcholinesterase inhibitors of marine origin. Bromoconicamin was less potent against acetylcholinesterase, and the novel compound was inactive. Based on the inhibitory activity, a library of 22 simplified synthetic analogs was designed and prepared to probe the role of the brominated indole, common to all the isolated compounds. From the structure-activity investigation it was shown that the brominated indole motif is not sufficient to generate a high acetylcholinesterase inhibitory activity, even when combined with natural cationic ligands for the acetylcholinesterase active site. The four natural compounds were also analysed for their butyrylcholinesterase inhibitory activity in addition and shown to display comparable activities. The study illustrates how both barettin and 8,9-dihydrobarettin display additional bioactivities which may help to explain their biological role in the producing organism. The findings also provide new insights into the structure-activity relationship of both natural and synthetic acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Elisabeth K Olsen
- MabCent-SFI, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway
| | - Espen Hansen
- Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway.
| | - Lindon W K Moodie
- Department of Chemistry, University of Umeå, SE-901 87, Umeå, Sweden
| | - Johan Isaksson
- Department of Chemistry, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Cergolj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia and Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Johan Svenson
- Department of Chemistry, Materials and Surfaces SP Technical Research Institute of Sweden, Box 857, SE-501 15 Borås, Sweden.
| | - Jeanette H Andersen
- Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway.
| |
Collapse
|
18
|
Moerke MJ, de Moura FB, Koek W, McMahon LR. Effects of nicotine in combination with drugs described as positive allosteric nicotinic acetylcholine receptor modulators in vitro: discriminative stimulus and hypothermic effects in mice. Eur J Pharmacol 2016; 786:169-178. [PMID: 27238974 DOI: 10.1016/j.ejphar.2016.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/25/2023]
Abstract
Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56mg/kg and 0.91mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms.
Collapse
Affiliation(s)
- Megan J Moerke
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA
| | - Fernando B de Moura
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA
| | - Wouter Koek
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center at San Antonio, USA
| | - Lance R McMahon
- (a)Department of Pharmacology, The University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
19
|
Hamouda AK, Deba F, Wang ZJ, Cohen JB. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator. Mol Pharmacol 2016; 89:575-84. [PMID: 26976945 PMCID: PMC4851301 DOI: 10.1124/mol.116.103341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Farah Deba
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Ze-Jun Wang
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Jonathan B Cohen
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| |
Collapse
|
20
|
Mohamed TS, Jayakar SS, Hamouda AK. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation. Front Mol Neurosci 2015; 8:71. [PMID: 26635524 PMCID: PMC4658446 DOI: 10.3389/fnmol.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.
Collapse
Affiliation(s)
- Tasnim S Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA
| | - Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA ; Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Sciences Center Bryan, TX, USA
| |
Collapse
|
21
|
Abstract
Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed.
Collapse
Affiliation(s)
- Natalie Netz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
22
|
Weltzin MM, Schulte MK. Desformylflustrabromine Modulates α4β2 Neuronal Nicotinic Acetylcholine Receptor High- and Low-Sensitivity Isoforms at Allosteric Clefts Containing the β2 Subunit. J Pharmacol Exp Ther 2015; 354:184-94. [PMID: 26025967 PMCID: PMC4518072 DOI: 10.1124/jpet.115.223933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
Alterations in expression patterns of α4β2 nicotinic acetylcholine receptors have been demonstrated to alter cholinergic neurotransmission and are implicated in neurologic disorders, including autism, nicotine addiction, Alzheimer's disease, and Parkinson's disease. Positive allosteric modulators (PAMs) represent promising new leads in the development of therapeutic agents for the treatment of these disorders. This study investigates the involvement of the β2-containing subunit interfaces of α4β2 receptors in the modulation of acetylcholine (ACh)-induced responses by the PAM desformylflustrabromine (dFBr). Eight amino acids on the principal face of the β2 subunit were mutated to alanine to explore the involvement of this region in the potentiation of ACh-induced currents by dFBr. ACh-induced responses obtained from wild-type and mutant α4β2 receptors expressed in Xenopus laevis oocytes were recorded in the presence and absence of dFBr using two-electrode voltage clamp electrophysiology. Wild-type and mutant receptors were expressed in both high and low ACh sensitivity isoforms by using biased injection ratios of 1:5 or 5:1 α4 to β2 complementary RNA. Mutations were made in the B, C, and A loops of the principal face of the β2 subunit, which are regions not involved in the binding of ACh. Mutant β2(Y120A) significantly eliminated dFBr potency in both isoform preparations. Several other mutations altered dFBr potentiation levels in both preparations. Our findings support the involvement of the principal face of the β2 subunit in dFBr modulation of ACh-induced responses. Findings from this study will aid in the improved design of dFBr-like PAMs for potential therapeutic use.
Collapse
Affiliation(s)
- Maegan M Weltzin
- Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (M.M.W.); and Department of Pharmaceutical Science, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania (M.K.S.)
| | - Marvin K Schulte
- Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (M.M.W.); and Department of Pharmaceutical Science, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania (M.K.S.)
| |
Collapse
|
23
|
Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 2015; 97:408-417. [PMID: 26231943 DOI: 10.1016/j.bcp.2015.07.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are receptors for the neurotransmitter acetylcholine and are members of the 'Cys-loop' family of pentameric ligand-gated ion channels (LGICs). Acetylcholine binds in the receptor extracellular domain at the interface between two subunits and research has identified a large number of nAChR-selective ligands, including agonists and competitive antagonists, that bind at the same site as acetylcholine (commonly referred to as the orthosteric binding site). In addition, more recent research has identified ligands that are able to modulate nAChR function by binding to sites that are distinct from the binding site for acetylcholine, including sites located in the transmembrane domain. These include positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent allosteric modulators (SAMs) and compounds that are able to activate nAChRs via an allosteric binding site (allosteric agonists). Our aim in this article is to review important aspects of the pharmacological diversity of nAChR allosteric modulators and to describe recent evidence aimed at identifying binding sites for allosteric modulators on nAChRs.
Collapse
|
24
|
Grupe M, Jensen AA, Ahring PK, Christensen JK, Grunnet M. Unravelling the mechanism of action of NS9283, a positive allosteric modulator of (α4)3(β2)2 nicotinic ACh receptors. Br J Pharmacol 2015; 168:2000-10. [PMID: 23278456 DOI: 10.1111/bph.12095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/22/2012] [Accepted: 12/14/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Strong implications in major neurological diseases make the neuronal α4β2 nicotinic ACh receptor (nAChR) a highly interesting drug target. In this study, we present a detailed electrophysiological characterization of NS9283, a potent positive allosteric modulator acting selectively at 3α:2β stoichiometry of α2* and α4* nAChRs. EXPERIMENTAL APPROACH The whole-cell patch-clamp technique equipped with an ultra-fast drug application system was used to perform electrophysiological characterization of NS9283 modulatory actions on human α4β2 nAChRs stably expressed in HEK293 cells (HEK293-hα4β2). KEY RESULTS NS9283 was demonstrated to increase the potency of ACh-evoked currents in HEK293-hα4β2 cells by left-shifting the concentration-response curve ~60-fold. Interestingly, this modulation did not significantly alter maximal efficacy levels of ACh. Further, NS9283 did not affect the rate of desensitization of ACh-evoked currents, was incapable of reactivating desensitized receptors and only moderately slowed recovery from desensitization. However, NS9283 strongly decreased the rate of deactivation kinetics and also modestly decreased the rate of activation. This resulted in a left-shift of the ACh window current of (α4)3(β2)2 nAChRs in the presence of NS9283. CONCLUSIONS AND IMPLICATIONS This study demonstrates that NS9283 increases responsiveness of human (α4)3(β2)2 nAChR to ACh with no change in maximum efficacy. We propose that this potentiation is due to a significant slowing of deactivation kinetics. In summary, the mechanism of action of NS9283 bears high resemblance to that of benzodiazepines at the GABAA receptor and to our knowledge, NS9283 constitutes the first nAChR compound of this class.
Collapse
Affiliation(s)
- M Grupe
- NeuroSearch A/S, Ballerup, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Hamouda AK, Wang ZJ, Stewart DS, Jain AD, Glennon RA, Cohen JB. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor. Mol Pharmacol 2015; 88:1-11. [PMID: 25870334 PMCID: PMC4468644 DOI: 10.1124/mol.115.098913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼ 1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([(3)H]phencyclidine; IC50 = 4 μM) than in the resting state ([(3)H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([(3)H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [(3)H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [(3)H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [(3)H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., D.S.S., J.B.C.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (A.D.J., R.A.G.); and Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville,Texas (A.K.H., Z.-J.W.)
| | - Ze-Jun Wang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., D.S.S., J.B.C.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (A.D.J., R.A.G.); and Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville,Texas (A.K.H., Z.-J.W.)
| | - Deirdre S Stewart
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., D.S.S., J.B.C.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (A.D.J., R.A.G.); and Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville,Texas (A.K.H., Z.-J.W.)
| | - Atul D Jain
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., D.S.S., J.B.C.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (A.D.J., R.A.G.); and Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville,Texas (A.K.H., Z.-J.W.)
| | - Richard A Glennon
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., D.S.S., J.B.C.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (A.D.J., R.A.G.); and Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville,Texas (A.K.H., Z.-J.W.)
| | - Jonathan B Cohen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., D.S.S., J.B.C.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (A.D.J., R.A.G.); and Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville,Texas (A.K.H., Z.-J.W.)
| |
Collapse
|
26
|
Grupe M, Grunnet M, Bastlund JF, Jensen AA. Targeting α4β2 Nicotinic Acetylcholine Receptors in Central Nervous System Disorders: Perspectives on Positive Allosteric Modulation as a Therapeutic Approach. Basic Clin Pharmacol Toxicol 2014; 116:187-200. [DOI: 10.1111/bcpt.12361] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Morten Grupe
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
| | - Morten Grunnet
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Anders A. Jensen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
27
|
Abstract
This review covers the isolation, chemical structure, biological activity, structure activity relationships including synthesis of chemical probes, and pharmacological characterization of neuroactive marine natural products; 302 references are cited.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | |
Collapse
|
28
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
29
|
Liu X. Positive allosteric modulation of α4β2 nicotinic acetylcholine receptors as a new approach to smoking reduction: evidence from a rat model of nicotine self-administration. Psychopharmacology (Berl) 2013; 230:203-13. [PMID: 23712602 PMCID: PMC3797181 DOI: 10.1007/s00213-013-3145-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 05/06/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE The α4β2 subtype of nicotinic acetylcholine receptors (nAChRs) plays a central role in the mediation of nicotine reinforcement. Positive allosteric modulators (PAMs) at α4β2 nAChRs facilitate the intrinsic efficiency of these receptors, although they do not directly activate the receptors. α4β2 PAMs are hypothesized to reduce nicotine self-administration in subjects engaged in routine nicotine consumption. The present study tested this hypothesis using a rat model of nicotine self-administration. METHODS Male Sprague-Dawley rats were trained in daily 1-h sessions to intravenously self-administer nicotine (0.03 mg/kg per infusion, free base) on a fixed-ratio 5 schedule. The effects of the α4β2 PAM desformylflustrabromine (dFBr), α4β2 agonist 5-iodo-A-85380, and acetylcholinesterase inhibitor galantamine on nicotine intake were examined. The ability of dFBr and 5-iodo-A-85380 to substitute for nicotine was also assessed. RESULTS dFBr and 5-iodo-A-85380 dose-dependently reduced nicotine self-administration without changing lever responses for food. Galantamine decreased the self-administration of nicotine and food at high doses. Unlike 5-iodo-A-85380, dFBr failed to substitute for nicotine in supporting self-administration behavior. CONCLUSIONS These results demonstrated the effectiveness of dFBr in reducing nicotine intake and the inability of dFBr to support self-administration behavior. These findings suggest that positive allosteric modulation of α4β2 nAChRs may be a promising target for the treatment of nicotine addiction. Moreover, α4β2 PAMs, in contrast to agonist medications, may have clinical advantages because they may have little liability for abuse because of their lack of reinforcing actions on their own.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA,
| |
Collapse
|
30
|
Adla SK, Sasse F, Kelter G, Fiebig HH, Lindel T. Doubly prenylated tryptamines: cytotoxicity, antimicrobial activity and cyclisation to the marine natural product flustramine A. Org Biomol Chem 2013; 11:6119-30. [DOI: 10.1039/c3ob40896e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Weltzin MM, Huang Y, Schulte MK. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES. Eur J Pharmacol 2012; 732:159-68. [PMID: 22732654 DOI: 10.1016/j.ejphar.2012.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 11/28/2022]
Abstract
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbank, AK 99775, USA
| | - Yanzhou Huang
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbank, AK 99775, USA
| | - Marvin K Schulte
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbank, AK 99775, USA.
| |
Collapse
|
32
|
Pérez EG, Cassels BK, Eibl C, Gündisch D. Synthesis and evaluation of N1-alkylindole-3-ylalkylammonium compounds as nicotinic acetylcholine receptor ligands. Bioorg Med Chem 2012; 20:3719-27. [DOI: 10.1016/j.bmc.2012.04.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/17/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
33
|
Pandya A, Yakel JL. Allosteric modulators of the α4β2 subtype of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2011; 82:952-8. [PMID: 21596025 PMCID: PMC3162104 DOI: 10.1016/j.bcp.2011.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion conducting transmembrane channels from the Cys-loop receptor super-family. The α4β2 subtype is the predominant heteromeric subtype of nicotinic receptors found in the brain. Allosteric modulators for α4β2 receptors interact at a site other than the orthosteric site where acetylcholine binds. Many compounds which act as allosteric modulators of the α4β2 receptors have been identified, with both positive and negative effects. Such allosteric modulators either increase or decrease the response induced by agonist on the α4β2 receptors. Here we discuss the concept of allosterism as it pertains to the α4β2 receptors and summarize the important features of allosteric modulators for this nicotinic receptor subtype.
Collapse
Affiliation(s)
- Anshul Pandya
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
34
|
German N, Kim JS, Jain A, Dukat M, Pandya A, Ma Y, Weltzin M, Schulte MK, Glennon RA. Deconstruction of the α4β2 nicotinic acetylcholine receptor positive allosteric modulator desformylflustrabromine. J Med Chem 2011; 54:7259-67. [PMID: 21905680 DOI: 10.1021/jm200834x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Desformylflustrabromine (dFBr; 1), perhaps the first selective positive allosteric modulator of α4β2 neuronal nicotinic acetylcholine (nACh) receptors, was deconstructed to determine which structural features contribute to its actions on receptors expressed in Xenopus ooycytes using two-electrode voltage clamp techniques. Although the intact structure of 1 was found to be optimal, several deconstructed analogs retained activity. Neither the 6-bromo substituent nor the entire 2-position chain is required for activity. In particular, reduction of the olefinic side chain of 1, as seen with 6, not only resulted in retention of activity/potency but in enhanced selectivity for α4β2 versus α7 nACh receptors. Pharmacophoric features for the allosteric modulation of α4β2 nACh receptors by 1 were identified.
Collapse
Affiliation(s)
- Nadezhda German
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pandya A, Yakel JL. Allosteric modulator Desformylflustrabromine relieves the inhibition of α2β2 and α4β2 nicotinic acetylcholine receptors by β-amyloid(1-42) peptide. J Mol Neurosci 2011; 45:42-7. [PMID: 21424792 PMCID: PMC3235685 DOI: 10.1007/s12031-011-9509-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric transmembrane proteins that belong to the cys-loop ligand-gated ion channel family. These receptors are widely expressed in the brain and implicated in the pathophysiology of many neurological conditions, including Alzheimer's disease (AD), where typical symptoms include the loss of cognitive function and dementia. The presence of extracellular neuritic plaques composed of β amyloid (Aβ(1-42)) peptide is a characteristic feature of AD. Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) for α4β2 nAChRs since it increases peak ACh responses without inducing a response on its own. Previously, the effect of dFBr on the α2β2 nAChR subtype was not known. The action of dFBr was tested on α2β2 receptors expressed in Xenopus oocytes. It was found that dFBr is also a PAM for the α2β2 receptor. Next we tested whether dFBr had any effect on the previously known block of both the α4β2 and α2β2 receptors by Aβ(1-42). We found that the functional blockade of ACh-induced currents in oocytes expressing α4β2 and α2β2 receptors by Aβ(1-42) was prevented by dFBr. We conclude that dFBr is a positive allosteric modulator for both α4β2 and α2β2 subtypes of nAChRs and that it also relieves the blockade of these receptors by Aβ(1-42). This study demonstrates that PAMs for the non-α7 nAChRs have the potential to develop into clinically applicable drugs for AD and other disorders.
Collapse
Affiliation(s)
- Anshul Pandya
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
36
|
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82:915-30. [PMID: 21575610 DOI: 10.1016/j.bcp.2011.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL Neurocypres, United States
| | | | | |
Collapse
|
37
|
Tadesse M, Tabudravu JN, Jaspars M, Strøm MB, Hansen E, Andersen JH, Kristiansen PE, Haug T. The antibacterial ent-eusynstyelamide B and eusynstyelamides D, E, and F from the Arctic bryozoan Tegella cf. spitzbergensis. JOURNAL OF NATURAL PRODUCTS 2011; 74:837-841. [PMID: 21370896 DOI: 10.1021/np100499c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The brominated tryptophan-derived ent-eusynstyelamide B (1) and three new derivatives, eusynstyelamides D, E, and F (2-4), were isolated from the Arctic bryozoan Tegella cf. spitzbergensis. The structures were elucidated by spectroscopic methods including 1D and 2D NMR and analysis of mass spectrometric data. The enantiomer of 1, eusynstyelamide B, has previously been isolated from the Australian ascidian Eusynstyela latericius. Antimicrobial activities are here reported for 1-4, with minimum inhibitory concentrations (MIC) as low as 6.25 μg/mL for 1 and 4 against Staphylococcus aureus. Eusynstyelamides 2 and 3 showed weak cytotoxic activity against the human melanoma A 2058 cell line.
Collapse
Affiliation(s)
- Margey Tadesse
- Norwegian College of Fishery Science, University of Tromsø, Breivika N-9037, Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Morales-Ríos MS, Rivera-Becerril E, González-Juárez DE, García-Vázquez JB, Trujillo-Serrato JJ, Hernández-Barragán A, Joseph-Nathan P. Synthesis of Pyrrolidinoindolines from 2-(2-Oxo-3-indolyl)acetates: Scope and Limitations. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of 1,3a,8-alkylpyrrolidinoindolines have been synthesized. The scope and limitations of the alkylation of starting methyl oxindol-3-acetates are explored employing electron-rich and electron-poor alkylating agents. Hydrolysis and reductive lactonization of the resulting carboxylic γ-oxindolic acid derivatives proceeds with good yields to afford 2-oxofuroindolines providing ready access to the pyrrolidinoindoline derivatives.
Collapse
Affiliation(s)
- Martha S. Morales-Ríos
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
- Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
| | - Ernesto Rivera-Becerril
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
- Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
| | - Daphne E. González-Juárez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
- Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
| | - Juan Benjamín García-Vázquez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
- Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
| | - Joel J. Trujillo-Serrato
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
| | - Angelina Hernández-Barragán
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
| | - Pedro Joseph-Nathan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
- Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, D. F., 07000 México
| |
Collapse
|
39
|
Ignatenko VA, Zhang P, Viswanathan R. Step-economic synthesis of (±)-debromoflustramine A using indole C3 activation strategy. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Weltzin MM, Schulte MK. Pharmacological characterization of the allosteric modulator desformylflustrabromine and its interaction with alpha4beta2 neuronal nicotinic acetylcholine receptor orthosteric ligands. J Pharmacol Exp Ther 2010; 334:917-26. [PMID: 20516140 PMCID: PMC2939658 DOI: 10.1124/jpet.110.167684] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/28/2010] [Indexed: 11/22/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of ligand-gated ion channels. nAChRs are involved in modulating nicotinic-based signal transmission in the central nervous system and are implicated in a range of disorders. Desformylflustrabromine (dFBr) is a positive allosteric modulator that potentiates alpha4beta2 nAChRs. It has been reported that dFBr is selective for the alpha4beta2 receptor relative to other common nAChR subtypes (Neurosci Lett 373:144-149, 2005). Coapplication of dFBr with acetylcholine (ACh) produces a bell-shaped dose-response curve with a peak potentiation of more than 265% (Bioorg Med Chem Lett 17:4855-4860, 2007) at dFBr concentrations <10 microM and inhibition of responses at concentrations >10 microM. The potentiation and inhibition components of dFBr-modulated responses were examined by using two-electrode voltage clamp and human alpha4beta2 nAChRs expressed in Xenopus laevis oocytes. Currents to both partial and full agonists were potentiated by dFBr. Responses to low-efficacy agonists were potentiated significantly more than responses to high-efficacy agonists. Antagonist pIC(50) values were unaffected by coapplication of dFBr. In addition to its potentiating effects, dFBr was able to induce current spikes when applied to desensitized receptors, suggestive of a shift in equilibrium from the desensitized to open conformation. In contrast to potentiation, inhibition of ACh responses by dFBr depends on membrane potential and is probably the result of open-channel block by dFBr and ACh. Our data indicate distinct mechanisms for the potentiation and inhibition components of dFBr action. dFBr could prove useful for therapeutic enhancement of responses at alpha4beta2-containing synapses.
Collapse
Affiliation(s)
- Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska, 900 Yukon Drive, Fairbanks, AK 99775, USA
| | | |
Collapse
|
41
|
de Filippi G, Mogg AJ, Phillips KG, Zwart R, Sher E, Chen Y. The subtype-selective nicotinic acetylcholine receptor positive allosteric potentiator 2087101 differentially facilitates neurotransmission in the brain. Eur J Pharmacol 2010; 643:218-24. [PMID: 20624387 DOI: 10.1016/j.ejphar.2010.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
Abstract
Positive allosteric modulators of centrally expressed nicotinic acetylcholine receptors have therapeutic potentials in areas of cognition, motor function and reward. Several chemical classes of allosteric modulators that are selective for alpha7 nicotinic receptors have been characterised, but potentiators for the most widely expressed alpha4beta2 nicotinic receptor subtype are few and less defined, owing probably to the difficulty to achieve selectivity over other heteromeric receptor subtypes. 2087101 (2-amino-5-keto)thiazole) is a potent potentiator of both alpha7 and alpha4beta2 receptors and it has selectivity against the alpha3beta4 subtype, which may be responsible for the undesirable peripheral side effects. To further characterise its ability to differentiate between native nicotinic receptors, we examined the effects of 2087101 on alpha7, alpha4beta2* and alpha3beta4* receptor-mediated responses in the rat brain in electrophysiological and neurochemical experiments. 2087101 significantly potentiated agonist-induced, alpha7 and non-alpha7 receptor-mediated, GABAergic postsynaptic currents in cultured hippocampal neurones, but not the nicotine-stimulated [(3)H]noradrenaline release from hippocampal slices, which was primarily mediated by alpha3beta4* receptors, confirming its selectivity for alpha7 and alpha4beta2* receptors in native systems. 2087101 also significantly enhanced nicotine-stimulated firing increase in dopamine neurones of the ventral tegmental area, an effect that was dihydro-beta-erythroidine-sensitive and thereby mediated by alpha4beta2* nicotinic receptors. 2087101 can therefore enhance native nicotinic activities mediated by alpha7 and alpha4beta2*, but not alpha3beta4* receptors, showing its unique ability to discriminate between native heteromeric nicotinic receptor subtypes and its therapeutic potential for treating brain disorders by concurrent modulation of both alpha7 and alpha4beta2* nicotinic receptors.
Collapse
|
42
|
Arias HR. Positive and negative modulation of nicotinic receptors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:153-203. [PMID: 21109220 DOI: 10.1016/b978-0-12-381264-3.00005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
43
|
Morales-Ríos MS, Suárez-Castillo OR. Synthesis of Marine Indole Alkaloids from Flustra foliacea. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brominated natural indoles are frequently reported metabolites of marine seaweeds. The bryozoan Flustra foliacea has been a rich source of brominated indole alkaloids bearing prenyl or isoprenyl substituents at various positions. Because interest in the chemistry of these marine alkaloids is steadily growing and shows unique promise in the discovery of new important medicinal drugs, the methods which have been employed towards their total synthesis are reviewed in detail.
Collapse
Affiliation(s)
- Martha S. Morales-Ríos
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico, D. F., 07000 Mexico
| | - Oscar R. Suárez-Castillo
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Hidalgo, Apartado 1-328, Pachuca, Hidalgo, 42001 Mexico
| |
Collapse
|
44
|
Kim JS, Padnya A, Weltzin M, Edmonds BW, Schulte MK, Glennon RA. Synthesis of desformylflustrabromine and its evaluation as an alpha4beta2 and alpha7 nACh receptor modulator. Bioorg Med Chem Lett 2007; 17:4855-60. [PMID: 17604168 PMCID: PMC3633077 DOI: 10.1016/j.bmcl.2007.06.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Desformylflustrabromine (dFBr; 1) and desformylflustrabromine-B (dFBr-B; 2) have been previously isolated from natural sources, and the former has been demonstrated to be a novel and selective positive allosteric modulator of alpha4beta2 nicotinic acetylcholine (nACh) receptors. The present study describes the synthesis of water-soluble salts of 1 and 2, and confirms and further investigates the actions of 1 and 2 using two-electrode voltage clamp recordings.
Collapse
Affiliation(s)
- Jin-Sung Kim
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Anshul Padnya
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Maegan Weltzin
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian W. Edmonds
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK 99801, USA
| | - Marvin K. Schulte
- Department of Chemistry and Biochemistry, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Richard A. Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
45
|
Abstract
Marine natural products isolated from organisms collected from cold-water habitats are described. Emphasis is on bioactive compounds from tunicates, sponges, microbes, bryozoans, corals, algae, molluscs and echinoderms. Synthetic studies of several important classes of cold-water compounds are highlighted.
Collapse
Affiliation(s)
- Matthew D Lebar
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, CHE205, Tampa, FL, USA
| | | | | |
Collapse
|
46
|
Lindel T, Bräuchle L, Golz G, Böhrer P. Total Synthesis of Flustramine C via Dimethylallyl Rearrangement. Org Lett 2006; 9:283-6. [PMID: 17217285 DOI: 10.1021/ol0627348] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The marine natural product flustramine C from the bryozoan Flustra foliacea was synthesized in five steps and 38% yield starting from Nb-methyltryptamine. The key step is the biomimetic oxidation of the natural product deformylflustrabromine causing selective 1,2-rearrangement of the inverse prenyl group. By 1H,15N HMBC experiments, it is unambiguously shown that the reaction with t-BuOCl commences with chlorination of the side chain nitrogen. Deformylflustrabromine itself was synthesized via Danishefsky inverse prenylation. [reaction: see text].
Collapse
Affiliation(s)
- Thomas Lindel
- Ludwig Maximilian University, Department of Chemistry and Biochemistry, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | | | | | | |
Collapse
|